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SUMMARY

Hand, foot and mouth disease (HFMD) is generally a benign febrile exanthematous childhood

disease caused by human enteroviruses. The route of transmission is postulated to be faeco-oral

in developing areas but attributed more to respiratory droplet in developed areas. Transmission is

facilitated by the prolonged environmental survival of these viruses and their greater resistance to

biocides. Serious outbreaks with neurological and cardiopulmonary complications caused by

human enterovirus 71 (HEV-71) seem to be commoner in the Asian Pacific region than elsewhere

in the world. This geographical predilection is unexplained but could be related to the frequency

of intra- and inter-typic genetic recombinations of the virus, the host populations’ genetic

predisposition, environmental hygiene, and standard of healthcare. Vaccine development could

be hampered by the general mildness of the illness and rapid genetic evolution of the virus.

Antivirals are not readily available; the role of intravenous immunoglobulin in the treatment of

serious complications should be investigated. Monitoring of this disease and its epidemiology in

the densely populated Asia Pacific epicentre is important for the detection of emerging epidemics

due to enteroviruses.
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VIROLOGY

The family Picornaviridae contains 12 genera of

non-enveloped, linear positive-sense, single-stranded

RNA viruses which include Aphthovirus, Cardiovirus,

Enterovirus, Erbovirus, Hepatovirus, Kobuvirus,

Parechovirus, Teschovirus, Tremovirus, Avihepato-

virus, Senecavirus, and Sapelovirus [1]. The last five

genera have not so far been associated with human

infections to date. The currently recognized species

and types of Enterovirus are listed in Table 1 [1, 2].

In addition to the classical communicable disease

syndromes such as poliomyelitis, herpangina, hepa-

titis A, and common cold, several new picornaviruses

are found in humans. These newly described viruses

include human parechoviruses, Saffold Cardiovirus,

Klassevirus, Salivirus and other yet unclassified

viruses, but their association with clinical disease is

still unclear [3–8].

The genome of human enterovirus 71 (HEV-71)

is about 7.4 kb in size, which is flanked by 5k and 3k
untranslated regions. The protein-coding region can

be divided into three regions: P1 encodes for the

structural proteins VP4, VP2, VP3, and VP1; P2 and

P3 for the non-structural proteins 2A, 2B, 2C and

3A, 3B, 3C, 3D, respectively [9, 10]. A single, long
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polyprotein is translated from the viral RNA which

is then cleaved to form the individual proteins. VP1

carries most of the type-specific neutralizing antibody

epitopes. Mutations in VP1 have been associated with

increased virulence in animal models [11].

HEV-71 has three genotypes (A, B, and C) based

on VP1 and VP4 gene sequences. Genotypes B and C

are each further divided into five subtypes B1–B5

and C1–C5, respectively. More recently, analysis of

complete genome sequences of HEV-71 (including

non-structural protein genes) suggested that sub-

genotype C4 should be classified as a new genotype D

(Fig. 1) [12]. Retrospective analysis of strains of

HEV-71 isolated in The Netherlands from 1963 to

1967 suggested that there is a new subgenotype B0

[13].

Genetic recombination among RNA viruses was

first noted in poliovirus [14]. Recombination occurs

through template switch and other mechanisms

mainly in the non-structural protein region of the

genome [14, 15]. Intra-typic recombinations are

commoner than inter-typic ones owing to the higher

degree of sequence homology between the gene seg-

ments. Recombination is also frequent and a major

source of genetic variation in other non-polio

enteroviruses [16–20]. Most recombination occurs

within the same species of virus ; natural inter-species

recombination is uncommon. Intra-typic and inter-

typic HEV-71 recombinants have been detected in

outbreaks in the Asia Pacific region. In Malaysia,

inter-typic recombinants of HEV-71 have been de-

scribed with the P3 region being derived from CV-

A16 [21]. In China, intra-typic recombinants were

found to be circulating in the 2008 outbreak of

HEV-71 [22]. Although recombinants can be a driving

force in the genesis of new epidemics, other factors

such as cross-protection with other genotypes, viru-

lence, and transmissibility may also play a role in

determining the size and outcome of epidemics.

Examples of both intra-typic and inter-typic recom-

binations are shown in Figure 2. Bootscan analysis

of a recent EV-71 strain identified in Guangzhou

suggested that intra-typic recombination occurs be-

tween EV-71 genotypes B and C at junctions 2A–2B

and 3C; however, the analysis of a recent HEV-71

strain identified in Shanghai suggested inter-typic re-

combination between HEV-71 genotype C and CA16

G-10.

PATHOGENESIS AND PATHOLOGY

At least three human cellular receptors of HEV-71

have recently been identified [23–25]. The relative

importance of these receptors in different tissues or in

different phases of the infection awaits clarification.

Human dendritic cells are susceptible to infection by

HEV-71 through DC-SIGN [dendritic cell-specific

intracellular adhesion molecules (ICAM)-3 grab-

bing non-integrin, also known as CD209] [23]. In-

fected dendritic cells serve as antigen-presenting

cells with the ability to prime T cells to generate

protective immune responses. DC-SIGN is unlikely

to be the sole receptor for HEV-71 since cell types

not expressing DC-SIGN can also be infected by the

virus.

Another HEV-71 cellular receptor is the human

P-selectin glycoprotein ligand-1 (CD162) [24]. CD162

is a cell surface glycoprotein which plays an important

role in the binding of leukocytes to endothelial cells

and platelets. It is expressed on the surface of cells

of haematopoietic origin but not on parenchymal

cells of most tissues. Cells expressing the ligand in-

clude circulating leukocytes, dendritic cells, tissue

macrophages (such as those in liver, lung, bowel, and

Langerhans cells in the skin) and myeloid progenitor

cells [26]. Its presence on the macrophages in the

Table 1. Enteroviral species and types currently

recognized

Enterovirus species Types

Human enterovirus A Human Coxsackievirus

A2–8, 10, 12, 14, 16.
Human enterovirus 71,
76, 89–92.

Human enterovirus B Human Coxsackievirus A9,

B1–6.
Human echovirus 1–9,
11–21, 24–27, 29–33.

Human enterovirus 69,
73–75, 77–88, 93, 97, 98,
101, 106, 107.

Human enterovirus C Human poliovirus 1–3.

Human Coxsackievirus A1,
11, 13, 15, 17–22, 24.
Human enterovirus 95, 96,
99, 102, 104, 105, 109.

Human enterovirus D Human enterovirus 68,

70, 94.
Human rhinovirus A, B, C
Porcine enterovirus B

Bovine enterovirus
Simian enterovirus A
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mucosa-associated lymphoid tissues of the alimentary

tract has been postulated to represent the primary site

of viral multiplication after infection and the infection

and activation of Langerhans cells in the skin reflects

the genesis of the skin lesions typical of hand, foot

and mouth disease (HFMD) [24].

A third receptor is the scavenger receptor BII

(SR-BII) which has the physiological function of

mediating high-density lipoprotein uptake into and

cholesterol efflux from cells [25, 27, 28]. It is expressed

in significant amount in various organs and cells,

including the liver, spleen, testes, retinal pigment epi-

thelial cells, osteoblasts, macrophages, and import-

antly, the brain [29–31]. The scavenger receptor class

B is also involved in the uptake of the hepatitis C

viruses [32, 33].

The ubiquity of HEV-71 receptors in different

organs may account for the systemic nature of

HEV-71 infection in severe cases and the predilection

for involvement of the central nervous system (CNS).

In poliovirus infection, the poliovirus receptor CD155

is present in a large number of organs and tissues,

yet not all these organs are sites of viral replication

or exhibit the pathology of infection [34, 35]. Hence,

the presence of receptors per se may be a necessary

but not sufficient prerequisite for the pathogenesis

of the infection. Both polioviruses and HEV-71 are

neurotropic, thus explaining their propensity to

cause neurological complications such as acute flaccid

paralysis. Neuropathological examination of fatal

human encephalomyelitis patients showed that in-

flammation involved the whole grey matter of the

spinal cord, tegmentum of the midbrain, hypothala-

mus, and subthalamic and dentate nuclei, and more

focally and less intensely in the cerebral cortex,

especially the motor cortex. The virus may enter

the CNS via the motor pathway of the peripheral

nervous system, possibly through retrograde axonal

transport [36, 37]. This is supported by the in vitro

finding that infection of the human neuronal cell line

(SK-N-SH) by HEV-71 resulted in the highest level of

viral replication when compared to human laryngeal

(HEp-2), human glial (U373MG), and African green

monkey kidney (Vero) cell lines [38]. Experimental

evidence suggested that HEV-71-infected cells (in-

cluding neurons and Vero cells) undergo apoptosis

0.01
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Fig. 1. Phylogenetic analysis of all genotypes of EV-71 represented by their most recent isolates based on alignment of VP1

gene sequence available in GenBank (891 nucleotide positions in each VP1 region were included in the analysis). The scale
bar indicates the estimated number of substitutions per 100 bases. Phylogenetic tree construction was performed using
neighbour-joining method with GrowTree using Kimura’s two-parameter correction, with bootstrap values calculated from

1000 trees (Genetics Computer Group Inc., USA)
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through a variety of pathways [39–43]. In addition,

neuronal damage can also be caused by HEV-71-

induced cellular autophagy [44]. Finally, HEV-71

infection of endothelial cells can lead to activation

and apoptosis ; this may serve as an alternative

mechanism of end organ damage in systemic infec-

tions [43].

The brains of patients who developed HEV-71

encephalitis generally showed oedema, vascular

congestion, and typical pathological features of
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Fig. 2. (a) A recent example of intra-typic recombination reviewed by bootscan analysis [bootscanning was conducted with
Simplot version 3.5.1 (Kimura distance model: window size 500 bp, step 20 bp) on a gapless nucleotide alignment, generated

with ClustalX, with the genome sequence of the EV-71 strain (01/Guangzhou/China/2008) as the query sequence]. (b) A
recent example of inter-typic recombination reviewed by bootscan analysis [bootscanning was conducted with Simplot
version 3.5.1 (Kimura distance model: window size 500 bp, step 20 bp) on a gapless nucleotide alignment, generated with

ClustalX, with the genome sequence of the EV-71 strain (036/Shanghai/China/2009) as the query sequence].
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encephalitis [45–47]. There is a predominant involve-

ment of the grey matter especially in the brainstem;

inflammation in cerebellum, spinal cord, and the men-

inges is often present. Involvement of the cerebrum

is generally less intense. Neuronal degeneration and

necrosis are common. The inflammatory response is

characterized by perivascular mononuclear cell infil-

tration. Micro-abscess formation and glial nodules

may also be seen. The lung of a patient with cardio-

pulmonary failure is characterized pathologically by

oedema, diffuse alveolar damage and the presence

of inflammatory infiltrates [45]. Viral myocarditis is

not a feature of HEV-71-associated cardiopulmonary

failure in patients who developed brainstem encepha-

litis. The myocardium showed coagulative myocy-

tolysis and myofibrillar degeneration, which suggested

that the pathogenesis is one of neurogenic cardiac

damage rather than direct involvement by infection

[48, 49].

PROTECTIVE IMMUNITY

There is clinical and experimental evidence on the

roles of different arms of immune responses in

the protective immunity against HEV-71 infection.

The cellular and humoral immune responses are both

essential for decreasing the viral load and mortality in

mice [50]. In humans, cellular immunity is important

in preventing the development of serious compli-

cations after HEV-71 infection [51, 52]. On the other

hand, the neutralizing antibodies from the humoral

response appear to be crucial in the protective im-

munity against infection [53–55]. During the 1998

epidemic in Taiwan, attack and case-fatality rates

were lowest in seropositive infants aged <6 months,

suggesting a protective role of maternal antibodies

[56, 57]. In humans, presence of maternal anti-

HEV-71 antibodies has also been demonstrated in

neonates, the prevalence and titre of which correlate

with those levels in the mothers [58]. In mice, trans-

plancental transfer of antibodies following maternal

immunization against EV-71 protects against lethal

infection of newborn mice [59]. Thus, it appears that

the seroprevalence of neutralizing antibodies inwomen

of childbearing age is important in protecting infants

aged<6 months. The protective role of breastfeeding

also needs to be studied: breast milk contains lacto-

ferrin which inhibits binding of HEV-71 to host cells.

Whether secretory IgA in maternal milk contributes

to the mucosal immunity against HEV-71 (as has been

proven in the case of poliovirus) is not known.

CLINICAL DISEASE

Many picornaviral infections occur mainly in child-

hood. The propensity to cause outbreaks is an

important feature of some of these viruses, most

notably poliomyelitis in the pre-vaccination era

and now, enteroviruses. Enterovirus outbreaks range

from small community clusters of acute haemorrhagic

conjunctivitis due to Coxsackieviruses to large nation-

wide HEV-71 epidemics. Most enteroviral infections

are asymptomatic which adds to the difficulty in con-

trolling spread in the community.

Clinical syndromes typically associated with entero-

viral infections include undifferentiated fever ; neuro-

logical manifestations (acute flaccid paralysis, aseptic

meningitis, meningoencephalitis) ; respiratory infec-

tions with exanthems and/or enathems (HFMD,

herpangina) ; eye infections (acute haemorrhagic con-

junctivitis) ; cardiovascular infections (pericarditis,

myocarditis) ; muscle diseases (pleurodynia and Born-

holm disease) ; and systemic infections.

HFMD is a common illness in children aged

<10 years. The infection typically has an incubation

period of 3–7 days. The main manifestations are fever,

lymphadenopathy, followed in 1–2 days’ time by the

appearance of vesicles on the palmar and plantar skin,

buccal mucosa, and tongue. Papular and vesicular

lesions can also occur on other parts of the body. The

oral enanthem helps to distinguish HFMD from

other causes of childhood exanthems, although cases

without oral lesions have been described. Uncom-

plicated HFMD usually resolves in 5–7 days. CV-A16

and HEV-71 are the commonest causes of HFMD,

the latter is especially common in the Asia Pacific

region. Other enteroviruses causing HFMD include

CV-A4 to A7, A9, A10, A24, B2–B5, echoviruses 1, 4,

11, 18, and HEV-18. Clinical features of HFMD

caused by these viruses are indistinguishable. In con-

trast to CV-A16, HFMD caused by HEV-71 is more

likely to cause a high fever (o39 xC) and fever for

>3 days, more severe illness, and a higher risk of

developing complications and fatalities [60, 61].

HFMD is rare in adults but cases due to HEV-71

have been reported. Adults can also develop severe

HEV-71 infections such as encephalitis as a result of

intra-familial transmission [62, 63].

HEV-71 infection commonly manifests as HFMD

or herpangina. In a few patients, neurological and

cardiopulmonary complications with substantial mor-

tality may occur. No specific genotype is associated

with more severe disease [64]. Children aged<5 years

Human enterovirus 71 and HFMD 1075



have the highest incidence of severe complications

[65–67]. Fatal cases of HFMD due to HEV-71 were

more often associated with vomiting and a lower

incidence of mouth ulcers [61]. The predominant

forms of neurological syndrome include aseptic men-

ingitis, acute flaccid paralysis, brainstem encephalitis,

or cerebellitis and vary in different epidemics. These

complications often appear early, at 2–5 days after

the onset of illness [68]. Over an 8-year period from

1998 to 2005, the case-fatality rate of complicated

enteroviral infections – most of which were caused by

HEV-71 – ranged from 10.0% to 25.7% [65].

Long-term neurological sequelae are common in

survivors who had more serious CNS disease and

cardiopulmonary failure. Late complications include

limb weakness, dysphagia requiring tube-feeding,

cerebellar dysfunction, delayed neurodevelopment,

and impaired cognitive functions [69, 70].

Acute cardiopulmonary failure as a complication

of systemic HEV-71 infection has a high mortality.

Pulmonary oedema is related to cerebral compression

or increased intracranial pressure which leads to sym-

pathetic hyperactivity [71]. Pulmonary oedema and

the associated hypoxaemia and acute respiratory dis-

tress syndrome are the commonest causes of death

in severe HEV-71 infections. Similarly, brainstem

encephalitis leads to acute heart failure in 19% of

patients and this complication has a high mortality

rate of 77% [48]. Again, hyperactivity of sympathetic

stimulation to the heart leading to a ‘catecholamine

storm’ and neurogenic cardiac damage is believed to

be the mechanism of cardiac damage in this infection.

Risk factors associated with the progression to

CNS involvement without pulmonary oedema in

HEV-71 infection included fever for o3 days, peak

body temperature of o39 xC, the presence of

headache, lethargy, vomiting, seizure, and hyper-

glycaemia. Hyperglycaemia, leucocytosis, and limb

weakness were found to be risk factors for pulmonary

oedema [72]. In some series, a higher level of leuco-

cytosis was found in patients with CNS involvement

[73]. In a series of 333 patients with CNS involvement

due to non-poliovirus in Taiwan, severe CNS disease

was associated with age <4 years, leucocytosis (over

13r109/l), seizure, myoclonic jerks, and a higher

incidence of skin rash and oral ulcers [74].

In those patients who developed serious CNS dis-

ease due to non-poliovirus infection, poor prognostic

factors included age <2 years, higher peak leucocyte

counts (over 17r109/l), a higher incidence of skin

rash, and a lower yield of virus from the cerebrospinal

fluid [74]. For HEV-71 cardiopulmonary failure,

poorer clinical outcomes were associated with higher

troponin I level, lower initial systolic blood pressure,

longer duration of hypotension, greater requirements

for inotropic support, lower PaO2 :FiO2 ratio, higher

white blood cell counts in the cerebrospinal fluid, and

the lowest Glasgow coma score. Fatality correlated

best with the troponin I level [75].

LABORATORY DIAGNOSIS

Aetiological diagnosis of HFMD can be achieved

by examining the vesicular fluid aspirated from the

skin lesion and naso-/oro-pharyngeal swabs. In com-

plicated cases with brainstem encephalitis and cardio-

pulmonary failure with sparse skin lesions HEV-71

may still be detectable in the cerebrospinal fluid,

naso-/oro-pharyngeal secretions, or faeces. The com-

monest rapid diagnostic test is by reverse tran-

scription–polymerase chain reaction (RT–PCR) of

the RNA extracted from these specimens, targeting

towards the 5k untranslated or VP1 region of the

viral genome [76–78]. Isolation of virus from clinical

specimens is possible using conventional cell culture

or rapid shell viral culture with rhabdomyosarcoma

(RD), HEp-2, colonic carcinoma (CaCo-2), or Vero

cell lines and cytopathic effects can be seen in 3–7 days

[79]. Cell lines infected by HEV-71 or CV-A16 can

be differentiated by immunostaining with specific

monoclonal antibodies against their VP1 proteins.

The isolates can be genotyped by PCR sequencing

of the VP1 and/or VP4 genes. IgM antibody to

HEV-71 has been detected as early as 2 days after

onset of illness but, as the test is not yet widely avail-

able, serological diagnosis generally requires demon-

stration of a fourfold rise in neutralizing antibody

titre taken 10–14 days after the onset of illness [80].

EPIDEMIOLOGY

HEV-71 was first detected in 1969 in California in

an infant suffering from encephalitis. Initial isolations

of HEV-71 were made in the USA and in Australia

in the early 1970s, and outbreaks of HFMD occurred

in Sweden and Japan [81, 82]. In the late 1970s,

Bulgaria (1975) and Hungary (1978) witnessed large

epidemics of HEV-71 infection with prominent neuro-

logical manifestations (aseptic meningitis, encepha-

litis, acute flaccid paralysis) [83, 84]. Since the late

1990s the densely populated Asia Pacific region has

1076 S. S. Y. Wong and others



been the hotspot for epidemics: Taiwan, Singapore,

Malaysia, China, Vietnam, and Australia have ex-

perienced recurrent epidemics of various sizes. The

reason for this geographical distribution is uncertain,

but the association between HLA-A33 (which is

common in some Asian populations) and suscepti-

bility to HEV-71 infection has been suggested as a

possible explanation [85]. Other factors such as gen-

etic predisposition (glucose-6-phosphate dehydro-

genase deficiency, polymorphisms in cytotoxic T

lymphocyte antigen-4 and scavenger receptor BII),

food and water hygiene, and micronutrient de-

ficiencies require further studies to confirm their sig-

nificance [51, 86–91].

Recent epidemics of HFMD disease in the Asia

Pacific region were mainly caused by HEV-71

(Table 2). However, more than one subgenotype of

HEV-71 can be found co-circulating in the same epi-

demic, as well as other non-HEV-71 enteroviruses,

such as CV-A16 (Table 3). Co-infection is possible in

enteroviral HFMD [92, 93]. In Sarawak, Malaysia,

co-infection of HEV-71 with other viruses occurred

in 10% of patients [93]. Co-infection does not appear

to result in more severe clinical disease [92].

The Taiwan epidemic of HEV-71 HFMD in 1998

was the largest outbreak in the Asia Pacific region

until 2008, when 488955 cases of HFMD were re-

ported in China (Table 2), certainly an underesti-

mation of the actual burden of disease. More than

600000 cases were reported fromMarch to June 2009,

but this could be because HFMD became a notifiable

disease in China from May 2008. The epidemic centre

in China in 2008 was the southeastern provinces of

Guangdong, Zhejiang, and Anhui. The overall case-

fatality rate reported from China in 2008 and 2009

was about 0.03%, but in certain local outbreaks,

such as the 2008 outbreak in Fuyang City of Anhui

Province, the case-fatality rate was as high as

0.3% [94].

Humans are the only known natural hosts of

HEV-71. Intra-familial transmission of HEV-71 oc-

curs commonly. In a prospective cohort in Taiwan,

transmission rates from infected children to siblings

were as high as 84% [66]. The rate of symptomatic

infection after household transmission is higher than

that in other community settings (94% vs. 29%)

which is attributed to more prolonged contact with

the cases and possibly a larger infective dose. Faeces

and oropharyngeal secretions are likely to be import-

ant in the transmission of the virus. Shedding of

non-polio enteroviruses in the stool can persist for

3–11 weeks after the onset of illness, while the dur-

ation of shedding from oral secretion is shorter [95,

96]. Enteroviruses are also detectable in throat swabs.

During the 1998 Taiwan HEV-71 epidemic, detection

of the virus from the throat swabs was more frequent

than from stool specimens; the time to positivity

by viral culture was also shorter [97]. The superior

recovery rate of enteroviruses, mainly HEV-71 and

CV-A16, from throat swabs over stool samples (with

or without the testing of vesicle swabs) in HFMD was

confirmed in another study in Sarawak, Malaysia [98].

A recent study from Mongolia showed that hand

washing after defecation was associated with a lower

risk of infection by non-polioviruses in households,

whilst having a bathroom in the house was a risk

factor for infection [99]. These findings suggested that

the faeco-oral route is probably important. However,

other hygiene measures did not affect the incidence

of virus isolation. Hence, modes of transmission other

than faeco-oral could also play an important role in

the households. The relative importance or infectivity

of oropharyngeal secretions vs. faeces in real-life

situations have not been determined. We postulate

that in developing countries, sanitation plays a more

important role. In developed countries, although

personal hygiene and sanitation facilities are much

better, there is also a much larger number of facilities

where great numbers of susceptible children congre-

gate. Under such circumstances, respiratory trans-

mission may become more significant. Faeco-oral

transmission may contribute more to an endemic

disease in the community, whereas the respiratory

tract, whose secretions contain a higher viral load but

have a shorter duration of shedding than faeces, may

contribute more to the epidemic spread of the viruses

during outbreak situations. In the 1998 Taiwan epi-

demic, in addition to intrafamilial contact with cases,

attendance at a kindergarten or childcare centre and

residence in a rural area were significant risk factors

associated with HEV-71 infection. This suggests

that close contacts at schools are important in the

epidemiology of the disease by acting as sources of

spread to the community [56]. Contact transmission

from blister fluid may have a minor role.

Enteroviraemia has been demonstrated in healthy

Scottish blood donors at a predicted prevalence

of 0.023% [100]. The viruses being detected were

primarily Coxsackieviruses and human echoviruses.

Similarly, enterovirus, as well as cytomegalovirus,

parvovirus B9, and adenovirus genomes have been

detected in explanted heart myocardial tissues from
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Table 2. Recent outbreaks of HFMD due to HEV-71 in the Asia Pacific region

Year Location

Reported/

confirmed

cases Deaths Major complications

Genotype

of HEV-71

and other

co-circulating

viruses References

1997 Peninsular

and Sarawak

Malaysia

n.a. o35 Encephalomyelitis,

cardiopulmonary failure

EV-71 B3, B4

(C1, C2)

[43, 170–172]

(CV-A16, A2, A4,

A6, A9; CV-B5;

EV-1, EV-4, EV-5,

EV-7)

1998 Taiwan 129 106* 78 Aseptic meningitis.

encephalitis,

meningoencephalitis,

acute flaccid paralysis,

acute pulmonary oedema/

haemorrhage (o405 cases)

EV-71 C2 [57, 173, 174]

(CV-A16; CV-B1,

B2, B3, B5; EV-6, 7,

11, 22, 27)

1999 Australia 6000 n.a. Aseptic meningitis,

Guillain–Barré syndrome,

acute transverse myelitis,

acute cerebellar ataxia,

opso-myoclonus syndrome,

benign intracranial

hypertension, febrile

convulsion

EV-71 C2 [175, 176]

2000 Australia 200 n.a. Acute pulmonary oedema EV-71 B4 [175]

2000 Singapore 3790 4 (+1

possible

case)

Acute pulmonary oedema

and haemorrhage,

encephalitis, aseptic

meningitis

EV-71 B4 [82]

(CV-A16, A3, A4,

A5, A6, A10, A23;

HEV-18)

2000 Taiwan 80 677 41 291 cases EV-71 B4 [123, 174]

(CV-A16, A9, A24;

CV-B1, B3, B4;

EV-4, EV-9)

2001 Taiwan n.a. 58 389 cases EV-71 B4 [65, 174]

(CV-A16, A6, A9,

A24; CV-B4, B5;

EV-4, EV-6)

2000 Sarawak,

Malaysia

n.a. n.a. EV-71 B4 [124]

(CV-A16)

2000 Peninsular

Malaysia

n.a. n.a. EV-71 C1, B4 [170, 171]

2003 Sarawak,

Malaysia

n.a. n.a. EV-71 B4, B5, C1 [170, 171]

(CV-A16)

2005 Peninsular

Malaysia

n.a. n.a. EV-71 B5, C1 [171]

2006 Singapore 15 282 n.a. 1.8% cases hospitalized# EV-71 B5, CV-A16 [120]

2006 Brunei 1681 3 Neurological EV-71 B5 [177]

2007 China 83 344 17 [178]

2008 China 488 955 126 EV-71 C4 [178, 179]

2009 China 614 901

(March to

June 2009)

200 EV-71 C4 [22, 180]

n.a., Not available ; CV-A, Coxsackievirus A; HEV, human enterovirus; EV, echovirus. Viruses or genotypes in parentheses are not

the predominant strains.

* Actual number of cases estimated to be ten times higher.

# Compared to 0.7–0.8% in epidemics due to CV-A16.
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Table 3. Summary of predominant EV-71 genotypes in the Asia Pacific region

Year B1 B2 B3

Genotypes

B4 B5 C1 C2 C3 C4 C5

1986 Sydney

1987 Sydney

1989 Sydney

1990 Sydney

1991 Sydney

1993 Japan

1994 Sydney

1995 Sydney Australia

1996 Sydney

1997 Sarawak Malaysia,

peninsular Malaysia,

Singapore, Japan

Peninsular Malaysia,

Singapore, Japan

Peninsular Malaysia Peninsular Malaysia,

Japan

China

1998 Sarawak Malaysia,

Singapore

Peninsular Malaysia,

Taiwan

Sarawak Malaysia,

peninsular Malaysia,

Singapore

Peninsular Malaysia,

Taiwan

China

1999 Sarawak Malaysia,

Singapore, Perth

Peninsular Malaysia,

Taiwan

Peninsular Malaysia Peninsular Malaysia,

Perth

China

2000 Sydney, Sarawak

Malaysia, peninsular

Malaysia, Taiwan,

Singapore

Peninsular Malaysia,

Japan

Sarawak Malaysia,

peninsular Malaysia,

Perth

Peninsular Malaysia Korea China

2001 Sarawak Malaysia,

Sydney, Taiwan,

Singapore

China

2002 Sarawak Malaysia,

Taiwan, Singapore

Sarawak Malaysia,

Singapore, Thailand

China

2003 Taiwan Sarawak Malaysia Sarawak Malaysia China, Japan

2004 China, Taiwan

2005 Peninsular Malaysia Peninsular Malaysia,

Vietnam

Taiwan, Vietnam Vietnam

2006 Singapore, Brunei,

Taiwan

Taiwan

2007 Taiwan China Taiwan

2008 China

2009 China

Boldface indicates major outbreaks as indicated by the reports showing a significant increase in incidence above their local baseline.

Data from references [22, 64, 124, 171, 175, 179, 181–186].
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heart transplant donors and recipients in Germany.

The prevalence of enterovirus as detected by RT–

PCR reaction ranged from 21% to 60% of the heart

samples [101]. During the HEV-71 epidemic in

Taiwan in 1998, 20% of patients in one study had

viraemia as detected by RT–PCR [73]. Although these

findings suggested that transfusion of blood products

and transplantation could be potential routes of

transmission, such cases have not yet been reported.

One case of intrauterine infection by HEV-71 was

reported and the pregnancy was complicated by still-

birth with virological evidence of brain and liver

involvement [102]. Another baby who developed

perinatal HEV-71 infection with HFMD and aseptic

meningitis had a benign course and recovered without

long-term neurological sequelae [103].

The contribution of environmental factors in the

ecology and transmission of HEV-71 is not well

understood. Few environmental studies specifically

addressed HEV-71, although one may draw infer-

ences from studies involving other better studied

picornaviruses such as poliovirus and Coxsackie-

viruses. Enteroviruses have a higher level of resistance

to biocides compared to other enveloped viruses.

They are fairly tolerant to temperature, salinity, pH,

and sewage treatment procedures. Different types

of enteroviruses – including HEV-71 – can readily be

detected in sewage and other environmental waters

[104, 105]. The finding of enteroviruses in surface

waters has no correlation with the level of other indi-

cator organisms of water pollution. Outbreaks of

picornavirus meningitis have occurred with the

sources traced to potable or recreational water

sources. Examples include swimming pools (echovirus

30 aseptic meningitis), campsite swimming pool (echo-

virus 9 aseptic meningitis), nature-like swimming

pond (echoviruses 30 and 13), tap and bottled drink-

ing water (echoviruses 30 and 6, CV-B5) [106–109].

Inadequate chlorination might have accounted for

some outbreaks; however, the usual levels of chlori-

nation in swimming pools and potable water

(2–4 ppm and 1 ppm free chlorine, respectively) do

not reliably inactivate picornaviruses. Viable entero-

viruses can also be isolated from bottled and tap

water (vaccine strain of poliovirus, Coxsackievirus B,

echoviruses) [110–112]. The waterborne outbreak in

Belarus in 2003, mainly caused by Echovirus 30 and

to a lesser extent, Echovirus 6, was one of the largest

outbreaks, affecting 1222 children; 57.5% of the

patients developed meningitis [109]. Interestingly,

during the 1998 Taiwan outbreak, usage of tap water

was found to be a risk factor for acquisition of

HFMD or herpangina in univariate analysis [56].

However, the study did not specify whether the

contact involved drinking unboiled tap water, rinsing

of mouth during tooth brushing or face washing.

The role of cross-infection caused by backwashing

of infected saliva onto drinking fountains used in

schools and other public facilities has not been in-

vestigated.

In addition to drinking water, sewage contami-

nation of coastal and marine waters can also lead

to accumulation of enteroviruses in molluscs. Clams,

mussels, oysters, and crabs have been found to have

a high prevalence of enteroviruses (ranging from

8% to 40% in some studies), frequently in the pres-

ence of a normal coliform count in the samples

[112–116]. Foodborne transmission of HEV-71 in

humans has not been demonstrated. However, it

would not be surprising if this turns out to be an im-

portant route of transmission in settings where raw

shellfish is frequently consumed. Apart from hepatitis

A virus, another picornavirus, Aichi virus, has been

found to be involved in causing outbreaks of gastro-

enteritis related to consumption of oysters and other

seafood in France, and the seroprevalence among

adults in the general populations was up to 85%

[117–119].

Although the role of environmental viruses in the

transmission and maintenance of HEV-71 infection

remains to be defined, their contribution needs to be

further studied, especially in developing countries

where sewage treatment, quality of potable water

supply, and food hygiene could be suboptimal. Never-

theless, these environmental factors will not be the

sole determinants of the epidemiology of HEV-71

infections. Some developing countries such as India

has not reported major outbreaks, whereas high

prevalence of enteroviruses has been found in potable

water in developed countries like Korea, and epi-

demics of HEV-71 HFMD have occurred in devel-

oped countries such as Singapore and Taiwan [120].

The policy of surveillance for HFMD and HEV-71

and class suspension in cases of school outbreaks

may have helped to limit the size of outbreaks in sev-

eral of the endemic Southeast Asian countries [121,

122]. Various control measures at epidemic sites

such as school closure or discontinuation of drinking

fountains have not been adequately evaluated. Such

measuresmay theoretically reduce interpersonal trans-

mission at these sites and so prevent further com-

munity spread of the virus.
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The peak season for HFMD and HEV-71 infec-

tion is generally the summer months. Epidemics of

HEV-71 infection tend to occur once every 2–5 years.

The cyclical appearance of epidemics could be due

to the accumulation of susceptible individuals in

the community. On the other hand, introduction of

new genotypes or emergence of new genotypes or

strains has led to outbreaks in the Asia Pacific region

[64]. Studies in Taiwan showed that the level of sero-

prevalence against HEV-71 in different parts of the

island and the age-specific seroprevalence are corre-

lated with the incidence of severe disease and mor-

tality rates [56]. Emergence of a new genotype or

subgenotype of HEV-71 could contribute to the oc-

currence of outbreaks. The two changes in the pre-

vailing genotype of HEV-71 in Taiwan can be seen in

Table 3, with the epidemics in 1998 and 2000 being

caused by C2 and B4 strains, respectively [123].

Similarly, surveillance studies in Sarawak also dem-

onstrated the emergence of a new subgenotype C1

in the 2003 epidemic [124]. New variants of the virus

can also be generated from intra-typic and inter-typic

recombinations of the pre-existing viruses (Fig. 2)

[22, 125, 126]. Nevertheless, epidemic genotypes or

subgenotypes of the virus could circulate for a long

time before causing outbreaks. Similarly, the intro-

duction of new genotypes into a susceptible popu-

lation does not always result in large epidemics. The

lack of herd immunity towards the prevailing strains

of HEV-71 is apparently not sufficient to generate an

epidemic. Virulence of the viral strains could also be

pivotal. However, this area has not been fully studied.

A comparison of the HEV-71 strains from fatal and

non-fatal cases in Taiwan showed that they have a

very high degree of genomic identity, with only minor

differences in the homology of the 3C protease [127].

The 3C protease induces apoptosis in human neural

cells in vitro, but its role in determining the virulence

of the virus has not been documented [128]. Neither

has the role of temperature-sensitivity of the virus

been shown to be of significance in determining viru-

lence in an animal model [129]. The contribution

of micronutrient deficiencies (such as selenium and

vitamin E) in determining the outcome of HEV-71

infection is uncertain.

TREATMENT, PREVENTION, AND

CONTROL

Most HFMD cases are self-limiting and only re-

quired supportive treatment. The case-fatality rate for

HFMD of all causes ranges from 0.06% to 0.11%

[61]. The rapid progression to neurological and

cardiopulmonary complications after the onset of

HEV-71-associated disease (usually within 3–5 days)

suggests that viral replication and direct cytopathic

effects of the virus on the host cells are important

in the pathogenesis of severe manifestations [45, 67,

130]. Thus, early administration of an effective anti-

viral agent should theoretically be beneficial. There

is currently no specific antiviral approved for

HEV-71 infections. Of the available antivirals, pleco-

naril is the best studied agent against picorna-

viruses. It binds to the hydrophobic pocket in the

viral capsid VP1, thereby inhibiting the attachment,

entry, and uncoating of the virus [131]. Pleconaril

is readily absorbed after oral administration and

penetrates well into body fluids including the cer-

ebrospinal fluid. However, the drug is not readily

available in most countries and there are limited

data showing that it lacks in vitro activity against

HEV-71 [132, 133]. Pleconaril has been used in a small

number of patients suffering form HEV-71 encepha-

litis and pulmonary oedema but its efficacy cannot

be ascertained to date [133, 134]. In one study, riba-

virin showed antiviral activity against HEV-71 in vitro

and in animal models but there are no reports of its

use for treating human EV-71 infections [135]. One

animal experiment suggested that type I interferons

may have a useful therapeutic role in EV-71 infection

[136].

Agammaglobulinaemic individuals are prone to

the development of chronic enteroviral meningoen-

cephalitis. Prophylaxis and treatmentwith intravenous

immunoglobulin (IVIG) has been successful in this

group of patients and there are anecdotal reports of

successful treatment of enteroviral meningoencepha-

litis in other immuncompromised patients [137–139].

Since maternal antibody appears to be protective

against enteroviruses including HEV-71, transfusion

of maternal plasma had been used in a case of neo-

natal disseminated echovirus infection [140]. IVIG

has also been used in patients with complicated

HEV-71 infections; in addition to the presence of

neutralizing antibodies and hence the suppression

of viral replication, immunoglobulin may also play

a role in limiting organ damage through its anti-

inflammatory activities [133, 141–143]. However,

its benefits have not yet been demonstrated in ran-

domized controlled trials. Different preparations of

IVIG also vary in their titres of antibodies against

enteroviruses [144]. Based on the deleterious effects
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of dexamethasone in animals, control of the inflam-

matory response using systemic corticosteroids can-

not be recommended at present [136]. The use of

milrinone – a bipyridine inotropic agent used in the

treatment of heart failure – has been recommended

based on a historically controlled study in Taiwan

which demonstrated clinical and survival benefits in

milrinone-treated patients with pulmonary oedema

due to severe HEV-71 infection [145, 146].

With the observation that neutralizing antibodies

offer protection against infection and mortality in

humans and animal models, vaccination is an obvious

pathway towards prevention of HEV-71 infection

and epidemics. Initial work on various models of

HEV-71 vaccines (using VP1 subunits, inactivated

viruses, DNA vaccines, virus-like particles, or oral

vaccination with VP1 protein) in animals appears

promising, although still in the early stages of devel-

opment [147–151]. Animal studies with attenuated

EV-71 vaccine and human seroepidemiological studies

suggested there may be cross-protecting neutralizing

antibodies between different EV-71 genotypes [152,

153]. However, the relevance of these findings to the

development of vaccines (in terms of the choice of

and the need periodically to change vaccine strains)

is uncertain. Rapid changes in VP1 as a result of

recombination necessitate a robust surveillance of

circulating viruses. The generally mild disease mani-

festations, prevalence and lack of monitoring in some

developing countries means the incentive for vaccine

development could be low. A novel potential means

of preventing HEV-71 infection is the use of oral

lactoferrin. In vitro, lactoferrin inhibits binding of

EV-71 to cells and neonatal mice fed with recom-

binant porcine lactoferrin were protected against

lethal infection by EV-71 [154–156].

In the absence of vaccine, prevention of human

EV-71 infections still relies on basic infection control

measures, especially in schools and childcare centres.

Monitoring for the incidence of HEV-71-associated

diseases such as HFMD and herpangina is essential,

as well as virological studies to detect emergence of

new genotypes of the virus.

Proper environmental disinfection in school and

childcare centres and avoidance of possible public

sources of viral acquisition may be necessary [104,

106, 108, 157, 158]. Only one study specifically exam-

ined the efficacy of a peroxygen disinfectant on

HEV-71 [159]. In general, effective environmental

disinfectants against picornaviruses include sodium

hypochlorite, glutaraldehyde, chlorine dioxide, and

peroxygen compounds [159–162]. As an antiseptic,

povidone iodine is highly effective against non-

enveloped viruses [163]. Alcohol hand rubs commonly

used in healthcare settings contain 60–70% v/v

alcohols (such as ethanol, isopropanol, and n-

propanol). These preparations are less effective in

inactivating non-enveloped viruses than bacteria and

enveloped viruses. Higher concentrations of alcohol

(such as 85–95% v/v ethanol) are required for reliable

virucidal activities against non-enveloped viruses

[164]. Alternative hand disinfectants that can be con-

sidered include 0.2% peracetic acid with 80% (v/v)

ethanol and other newer combination alcohol-based

formulations [165–167]. These products should be

used in situations where active outbreaks of en-

terovirus infection are ongoing.

Countries in the Asia Pacific region in particular

should develop national plans for future epidemics of

HEV-71 infection. In Hong Kong, for example, the

following strategies have been developed in antici-

pation of possible community outbreaks: surveillance

and laboratory support ; clinical management and

infection control in healthcare settings ; emergency

preparedness (including stepping up of surveillance

and case investigation, mobilization of clinical and

intensive-care facilities, enhanced laboratory support,

data management, outbreak control measures, and

risk communication) ; health education and capacity

building; and applied research [168].

CONCLUSION

In the past decade, HFMD due to HEV-71 has be-

come a major public health concern in the Asia Pacific

region, which appeared to be the epicentre for the

generation of epidemic genotypes (as with influenza).

Control and prevention of the disease is a difficult

task because of the stability of the virus in the

environment and its high transmissibility, frequency

of genetic recombinations, the lack of an effective

antiviral and vaccine, and the relatively low priority

for vaccine development. Development and studies in

the only available anti-picornavirus agent pleconaril

have been minimal towards HEV-71, and newer

technologies for screening antiviral compounds, for

example, using chemical genetics and screening of

chemical libraries, may help in the discovery of a

novel agent for treatment [169]. The contributions of

genetic, environmental, and viral factors in the genesis

of epidemics in different regions of the world need

to be clarified in order to understand the varying
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epidemiology of the disease in different countries.

Similarly, the role of public health measures to reduce

the impact of outbreaks, such as school closure,

warrant further studies.
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