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ABSTRACT 

In this paper, four- and eight-node quadrilateral finite element models which can readily be 

incorporated into the standard finite element program framework are devised for plane Helmholtz 

problems. In these models, frame (boundary) and domain approximations are defined. The former is 

obtained by nodal interpolation and the latter is truncated from Trefftz solution sets. The equality of 

the two approximations are enforced along the element boundary. Both the Bessel and plane wave 

solutions are employed to construct the domain approximation. For full rankness, a minimal of four 

and eight domain modes are required for the four- and eight-node elements, respectively. By using 

local coordinates and directions, rank sufficient and invariant elements with minimal and close to 

minimal numbers of domain approximation modes are devised. In most tests, the proposed hybrid-

Trefftz elements with the same number of nodes yield close solutions. In absolute majority of the 

tests, the proposed elements are considerably more accurate than their single-field counterparts.  
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1.  INTRODUCTION 

In the hybrid finite element method for stress/structural analyses, the displacement-based finite 

element models are enhanced by introducing stress, strain or another displacement as the additional 

field variable(s) to the displacement obtained by nodal interpolation [1-10]. In the case of the hybrid-

displacement method, the additional field is a domain displacement which leads to equilibrating stress 

and may also satisfy some homogeneous boundary conditions [2,3,10]. This category of hybrid 

elements are also known as hybrid-Trefftz or Trefftz elements linked by the displacement-frame or 

the boundary displacement [4,6-10]. The underlying reason is that the domain displacement is 

truncated from a Trefftz solution set which is the basis of the Trefftz non-singular boundary element 

methods.  

      A major challenge in finite element analyses of Helmholtz problems is that the solutions are 

spatially oscillating in the entire problem domains. This contrasts sharply with stress analyses in 

which high displacement gradients only occur in the stress concentration regions. While considerable 

computational saving can be realized by using graded meshes in stress analyses, the practice is not 

applicable to Helmholtz problems. Hence, the mesh requirement induces tremendous computing load 

when the wavenumber increases. To better tackle the issue, a number of wave-based approaches that 

make use of solution sets for the wave or Helmholtz equations have been proposed in the last 

decades. These include the Trefftz methods [11-18], the plane wave basis method [19-22] and the 

discontinuous enrichment method [23,24], among others.  

      Though a number of Trefftz boundary element methods have been formulated for Helmholtz 

problems [11-15], Trefftz finite element models do not appear to be abundant. Among them, the 

least-square models [16,17] and the traction-frame models [18] can be noted. All Trefftz models 

possess their own domain approximations which are extracted from Trefftz solution sets. The least-

square models are formulated by minimizing a weighted sum of the error norms of the boundary 

conditions and inter-element continuity conditions on the domain approximations of adjacent 

elements. The traction-frame models are equipped with boundary “traction” approximations and 

domain approximations can be condensed at the element level.  

      In the plane wave basis method, the plane wave solutions are employed as the nodal enrichment 

functions in the context of the partition of unity finite element method [19-22]. The value of the 

Helmholtz variable at a node is the sum of plane wave solutions which represent plane waves 

propagating along different directions. Within the element, the Helmholtz variable is obtained by the 

conventional nodal interpolation. Thus, the system equation unknowns are the amplitudes of the 

plane waves at the nodes but not the nodal value of the Helmholtz variable. 



      In the multiscale-based discontinuous enrichment method, the coarse scale approximation 

constructed by the conventional nodal interpolation is enriched by plane wave solutions. The 

enrichment which is intended to resolve the fine scale phenomenon induces discontinuity across the 

inter-element boundary [23,24]. Weak enforcement of the continuity is implemented through 

Lagrange multipliers. While the fine scale enrichments can be condensed at element level, the 

multipliers which link the enrichments of adjacent elements enter the global equation. 

      In this paper, hybrid-Trefftz four-node and eight-node quadrilateral elements will be formulated. 

Unlike the previous Trefftz finite element models, the present elements can readily be incorporated 

into the standard finite element program framework. In these models, independent frame (boundary) 

and domain approximations of the Helmholtz variable are defined. The frame approximation is 

obtained by nodal interpolation and the domain approximation is truncated from Trefftz solution sets 

of the Helmholtz equation. Along the edges of the four-node and eight-node elements, the frame 

variables are obtained by linear and quadratic nodal interpolations, respectively. Equality of the two 

approximations are enforced along the element boundary. The hybrid variational functional employed 

in the formulation is analogous to the functional used in elasticity hybrid-Trefftz elements with 

displacement-frame approximations [2,3,4,8,10,18]. The functional enforces the Helmholtz equation 

on the frame approximation, the natural boundary and an inter-element continuity conditions on the 

domain approximation as well as the equality of the domain and boundary approximations [25]. Both 

the Bessel and plane wave solutions are employed to construct the domain approximation. For the 

full rankness, a minimal of four and eight domain approximation modes are required for the four- and 

eight-node elements, respectively. By using local coordinates, rank sufficient and invariant elements 

[26,27] with the minimal and close to minimal numbers of domain approximation modes are devised. 

Numerical tests show that all the hybrid-Trefftz elements are more accurate than their single-field 

counterparts.  

 

2.  THE CONVENTIONAL FINITE ELEMNET FORMULATION 

Helmholtz equation is often introduced by using the steady state acoustics. The Helmholtz variable u 

can be the spatial amplitude of the pressure or the velocity potential. This paper will restrict itself to 

bounded domain problems. With the problem domain  partitioned into sub-domains or finite 

elements es and  denoting (/x, /y)T, the problem can be summarized as: 

  (a) Helmholtz equation: 2 2 0u k u         in all e  

  (b) the natural boundary condition:  T u t n       on all e
t    



  (c) the essential boundary condition: u u  and 0u        on all e
u   

  (d) the reciprocity condition: ( ) ( ) 0T Tu u    n n       on all e
m  

  (e) the compatibility condition: u u   and u u         on all e
m   

In the above expressions, 2 = T is the Laplace operator, n is the outward unit normal vector to 

the element boundary, k is the wave number,  is the variational symbol and e
m  is the inter-element 

boundary. Moreover, ()+ and ()- denote the braced quantities at the two sides of e
m . In the absence 

of dissipation, k is real. Otherwise, it is complex. For simplicity, it will be assumed as usual that 

element boundary or frame e can be partitioned into the non-overlapping portions e
t , e

u  and 

e
m , i.e. 

 e e e
t u m      = e   and   e e e e e e

t u u m m t            = null.  (1) 

      The elemental variational functional for the conventional finite element formulation of the 

Helmholtz problem is well-known to be: 

  2 21 ( )
2 e e

t

e Tu u k u d tud
 

          (2) 

in which u is obtained from the conventional nodal interpolation. The functional for the problem 

domain is equal to the sum of all es. By invoking (1) and the divergence theorem: 

  2( ) ( )
e e

T Tf h h f d h f d
 

         n  (3) 

for any smooth functions f and h in e, variation of (2) can be written as: 

 2 2( ) ( ) ( )
e e e

t m

e T Tu k u u d u t u d u u d   
  

              n n  (4) 

The first and second integrals enforce (a) and (b). The last integral when co-considered with those 

from the neighborhood elements enforces (d). Conditions (c) and (e) can be easily satisfied by the 

interpolated u and are taken as prerequisites .  

      Figure 1a shows an eight-node quadrilateral element in the global (x,y) coordinate plane. In four-

node elements, there are only four corner nodes and the element edges must be straight. The global 

coordinates and the field variable u can be interpolated and expressed as: 
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where n is the number of nodes in the element. The nodal interpolation functions Nis are functions of 

the natural coordinates  and  [-1,+1]. They can be found in standard finite element textbooks and 

will not be repeated here. The interpolation matrix N and the vector of nodal dofs d  are self-defined. 

With (5) substituted into (2), 

 1
2

e T T
c  d K d f d   (6) 

in which  

    
1 1

2 2

1 1

( ) ( ) ( ) ( )
e

T T T T
c k d k Jd d 

 

 

          K N N N N N N N N   and   
e
t

T t d


 f N . 

In the element matrix Kc, J = (x/)(y/) - (y/)(x/) is the Jacobian determinant of the 

coordinate transformation between (x,y) and (,).  

 

3.  THE HYBRID-TREFFTZ FINITE ELEMNET FORMULATION 

The following elemental hybrid functional can be formed by introducing a second Helmholtz 

approximation g to (2): 

  2 21 ( ) ( )( )
2 e e e

t

e T T
h g g k g d g u g d tud

  

             n . (7) 

In the functional, u, which needs to be known along the frame only, and g can be regarded as the 

frame and domain variables, respectively. Obviously, (7) degenerates into (2) when u equals g. 

Again, the functional for the problem domain equals to the sum of all e
h s. Variation of e

h  is:  

    2( ) ( )( ) ( )( )
e e e

t

e T T T
h g g k g g d g u g g u g d t ud      

  

                n n . (8) 

By invoking the divergence theorem in (3) and assuming that u satisfies (c) and (e) as prerequisites,  

  2 2( ) ( )( ) ( ) ( )
e e e e

t m

e T T T
h g k g g d g u g d g t ud g ud    

   

                   n n n . (9) 

It can be seen that the second integral enforces the equality of u and g along the frame e. The first, 

third and fourth integrals enforce respectively (a), (b) and (d) with u replaced by g. If g satisfies the 



Helmholtz equation, i.e.  

 2 2 0g k g    (10) 

pointwisely, (7) can be expressed as: 

  1 ( ) ( )
2e e

t

e T T
h g g g u d tud

 

         n n  (11) 

which only involves boundary integrals and the standard interpolation for u in (5) is still applicable.  

 Let the domain variable be expressed as: 

 g  P  (12) 

where P is the shape function matrix and  is the vector of coefficients. With (5) and (12) substituted 

into (11),  

 1
2

e T T T
h    H Gd f d   .  (13) 

in which  

 ( )
e

T T d


  H n P P  ,  ( )
e

T T d


  G n P N   

and f has been defined in (6). To conduct the boundary integration, four natural coordinates i  [-

1,+1] are established along the four element edges as shown in Figure 1a and it is trivial that 1 = ,  

2 = ,  3 = - and 4 = -. For the four-node element, the frame variable and the Cartesian 

coordinates along all its edges are linear and are given as: 

 i i j ju M u M u   , i i j jx M x M x   , i i j jy M y M y   (14) 

where Mi = (1-i)/2, Mj = (1-j)/2, j = mod(i,4) + 1 and mod(i,4) returns the remainder of the integer 

division i/4. Similarly, the expressions are quadratic for the eight-node element and they are: 

 i i m m j ju M u M u M u    , i i m m j jx M x M x M x    , i i m m j jy M y M y M y    (15) 

where Mi = i(1-i)/2, Mm = 1-i
2, Mj = i(1+i)/2, j = mod(i,4) + 1 and m = i + 4. With (14) and (15)

, the differential boundary length can be expressed as: 

 2 2( / ) ( / )i i id d x y          , 
2 2

/1
/( / ) ( / )

i

ii i

y
xx y


 

           
n  (16) 

Hence, the H-matrix and G-matrix can be evaluated as:  
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P PG N . (17) 

in which the N-matrix along each element edge can be constructed from (14) or (15). Furthermore, 

the H-matrix should be symmetric but it may lose its symmetry if it is numerically evaluated. In our 

implementation, H is symmetrized by averaging itself and its transpose. The variation of (13) with 

respect to  yields: 

 H Gd    or     1 H Gd  (18) 

with which the domain variable can be retrieved via (12) as: 

 1g  P PH Gd   (19) 

and  can be condensed from e
h . The latter becomes: 

 11 1( )
2 2

e T T T T T
h h

    d G H G d f d d K d f d   (20) 

where Kh is self-defined and is the element matrix of the hybrid-Trefftz finite element model. Same 

as the conventional element matrix Kc, Kh can also be incorporated into the standard finite element 

program framework.  

 In designing hybrid elements for stress/structural analyses [1,4,26-30], the two common 

guidelines on the selection of the stress (domain) modes are that the element should be rank 

sufficient and invariant. An element is invariant if the element prediction remains intact when (i) the 

element is translated, (ii) the element is rotated and (iii) the element connectivity, which defines the 

directions of the parametric coordinates, is changed [26-27]. Accordingly, the invariance requirement 

can be subdivided into (i) translational invariance, (ii) rotational invariance and (iii) connectivity 

invariance. Furthermore, the optimal number of stress modes in the hybrid stress element is often 

considered to be the minimal number that can secure the rank sufficiency.  

 

4.  DOMAIN APPROXIMATION FROM BESSEL SOLUTION SET 

While the above section outlines the principle to formulate the hybrid-Trefftz element model for the 

plane Helmholtz problem, it does not discuss the selection of the domain approximation modes. In 

this and next sections, elements with their domain approximation modes devised from the Bessel and 

plane wave solution sets will be devised, respectively. The Bessel solution set can be expressed as: 

  ( ) exp( ), 0,1, 2,...mJ kr im m   (21) 



where Jm is the m-th order Bessel function of the first kind, r2 = x2 + y2, i2 = -1 and   [- , ] is the 

principal angle of tan-1(y/x). Both the real and imaginary parts of the members in the solution set can 

be taken to be domain approximation modes. The elements are not intended to tackle singularity of 

the field variables within the element domains or on the element boundaries. Hence, the solution set 

set based upon the Bessel function of the second kind is not considered. To insensitize the Bessel 

mode to element translation, the following local Cartesian coordinates ( x , y ) and polar coordinates 

( r , ) synchronized with the parametric origin (x,y)|= =0 = (xo,yo) of the element are defined:  

 ox x x  ,  oy y y  ,  2 2r x y    ,  1tan ( / )y x     (22) 

as shown in Figure 1a. With them, the following Bessel solution set: 

  ( ) exp( ), 0,1,2,...mJ kr im m   (23) 

is translational invariant. When the element is rotated by any angle , the real and imaginary modes 

from Jm can be expanded as: 

  Re ( )exp[ ( )] Re[ ( )exp( )]cos Im[ ( ) exp( )]sinm m mJ kr im J kr im m J kr im m        , 

  Im ( )exp[ ( )] Im[ ( )exp( )]cos Re[ ( )exp( )]sinm m mJ kr im J kr im m J kr im m         (24)  

which, therefore, constitute a rotational invariant basis. It is also trivial that { ( )exp( )mJ kr im } is 

insensitive to the chosen connectivity. Hence,  

 { ( )exp( )} {Re( ( )exp( )), Im( ( )exp( ))}m m mJ kr im J kr im J kr im          where m = 0, 1, 2, …  (25) 

is an invariant basis which possess translational, rotational and connectivity invariance. It should be 

remarked that the sets in (21) and (23) contain infinite members arising from all positive integer m 

whilst the set in (25) contains only the member(s) of a specific m.  

 

4.1  Four-Node Quadrilateral Elements J5 and J4 

 A four-node hybrid-Trefftz element has been devised by using the following five-mode shape 

function matrix [25]: 

 0 1 1 2 2[ ( ), ( ) cos , ( ) sin , ( ) cos 2 , ( ) sin 2 ]J kr J kr J kr J kr J kr   P         . (26) 

The element will here be termed as J5. It is rank sufficient, complete to the second order Bessel 

functions of the first kind and invariant but the number of domain modes exceeds the minimum or 

four by one.  



 To reduce the domain modes to minimal, we first consider a square element with its natural 

coordinates (,) and Cartesian coordinate axes (x,y) parallel. By means of a symbolic computational 

software such as Mathematica, Maple or Maxima, it can be easily proven that the fourth mode in 

(26) does not couple with any other modes in the H-matrix and the fourth row of the G-matrix (see 

(13)) is zero regardless of the element size and the k value. In other word, the square J5 element 

would be identical to the element formulated with the following shape function matrix: 

 0 1 1 2[ ( ), ( )cos , ( ) sin , ( ) sin 2 ]J kr J kr J kr J kr  P        (27) 

Keeping the natural coordinates parallel to the Cartesian coordinates, we next consider a rectangular 

J5 element, the coupling terms between the first and fourth modes in the H-matrix and the fourth 

row in the G-matrix are no longer zero. However, the fourth mode, i.e. 2( ) cos 2J kr  , would only be 

motivated slightly with respect to the fifth mode, i.e. 2 ( ) sin 2J kr  , in (26). As an illustration, we 

consider two J5 rectangular elements with dimensions 1/k1/(5k) and 1/(5k)1/k which are chosen 

because more extreme aspect ratios are not encouraged in practical finite element analysis [28]. In 

both elements, the entries in the fourth and fifth row of H-1G are 0.447 and 20.2, respectively. As 
1g  P PH Gd  , see (18), it can be seen that the fifth mode is more dominating than the fourth 

and, thus, the effect of sacrificing the completeness in J2 by discarding 2 ( )cos 2J kr   should be 

small. This point can be seen in the numerical examples.  

 For general quadrilaterals in which the natural and Cartesian coordinates need not be parallel, the 

four-mode shape function matrix is taken to be:  

 0 1 1 2 1[ ( ), ( ) cos , ( )sin , ( )sin 2( )]J kr J kr J kr J kr    P        (28) 

With the directions of the - and -axes written as respectively  and  as shown in Figure 1b, 1 in 

the above equation is defined to be: 

 1
1 ( )
2 4 

      (29) 

The direction was also used by Cook in formulated invariant selectively reduced integrated element 

[29]. Since a local direction is employed to define the J2-mode 2 1( )sin 2( )J kr   , the mode is 

rotational invariant. The mode is also connectivity invariant. To illustrate this point, Figure 1c 

considers the same element but the natural coordinates are now ’ and ’. It can be noted that  

 ’ =  ,   ’ =  +     and   1' ' ' 1
1 1( ) ( )
2 4 2 4 2   

                  



Under the new connectivity, the J2-mode is: 

 2 1' 2 1 2 1( )sin 2( ) ( ) sin[2( ) ] ( ) sin 2( )J kr J kr J kr                  

The above mode differs from the J2-mode in (28) by a negative sign which can be absorbed by the 

coefficient associated with the mode. One can examine the other two possible connectivity 

arrangements and confirm that the J2-mode and, thus, the resultant element are connectivity 

invariant. It should be remarked that the connectivity invariance cannot be yielded by all locally 

defined directions such as  and . The resulting invariant element will be termed J4. By chain rule, 

the derivatives of a general term in P can be computed as: 

   1 1 2

/
( ) exp[ ( )] [ ( ) ( ) ( ) ]exp[ ( )]

2/ m m m m
x x yk mJ kr im J kr J kr i J kr im

r ry y x
    

                      

     
  

  (30) 

where   denotes a constant angle.  

 

4.2  Eight-Node Quadrilateral Elements J9 and J8 

 Compared with four-node elements, eight-node elements are sometimes preferred as they possess 

higher convergent rate and can more accurately model curved domain boundaries. Starting from the 

lowest order terms in (23), the following nine domain modes form an invariant basis: 

 0 1 1 2 2[ ( ), ( ) cos , ( )sin , ( ) cos 2 , ( ) sin 2 ,J kr J kr J kr J kr J kr   P          

 3 3 4 4( ) cos 3 , ( )sin 3 , ( )cos 4 , ( )sin 4 ]J kr J kr J kr J kr          . (31) 

The resulting element is complete to the fourth order Bessel functions, rank sufficient and will be 

termed as J9.  

 To derive a rank sufficient element with the minimum number of domain modes, the square 

element with its natural coordinates (,) and Cartesian coordinate axes (x,y) parallel is again 

considered. By means of a symbolic computational software such as Maple, it can be easily proven 

that the ninth mode does not couple with any other modes in the H-matrix and the ninth row of the 

G-matrix (see (13) for the definitions of the two matrices) is zero regardless of the element size. In 

other word, the square J9 element would be identical to the element formulated with the following 

domain mode shape function matrix: 

 0 1 1 2 2[ ( ), ( )cos , ( )sin , ( ) cos 2 , ( ) sin 2 ,J kr J kr J kr J kr J kr   P          

 3 3 4( ) cos3 , ( ) sin 3 , ( )cos 4 ]J kr J kr J kr        (32) 



Keeping the natural coordinates parallel to the Cartesian coordinates, we then consider a rectangular 

J9 element, the coupling terms between the fifth and ninth modes in the H-matrix and the ninth row 

in the G-matrix are no longer zero. However, the ninth mode, i.e. 4 ( ) sin 4J kr  , would only be 

motivated slightly with respect to the fifth mode. As an example, two rectangular elements with 

dimensions 1/k1/(5k) and 1/(5k)1/k are considered. In both elements, the absolute values of the 

entries in the eighth rows of H-1G range from 5.46 to 249 whilst those in the ninth rows range from 

0 to 9.59. The average absolution values of the eighth and ninth rows are 126 and 4.78. As 
1g  P PH Gd  , see (18), it can be seen that the eighth mode is more dominating than the ninth 

and, thus, the effect of sacrificing the completeness in J4 by discarding 4 ( ) sin 4J kr   should be small. 

This point can be seen in the numerical examples.  

 For general quadrilaterals in which the natural and Cartesian coordinates need not be parallel, the 

eight-mode shape function matrix is taken to be:  

 0 1 1 2 2[ ( ), ( ) cos , ( )sin , ( ) cos 2 , ( ) sin 2 ,J kr J kr J kr J kr J kr   P          

 3 3 4 1( ) cos 3 , ( )sin 3 , ( ) cos 4( )]J kr J kr J kr         (33) 

in which 1 has been defined in (29) for the four-node J4 element. By repeating the same arguments 

of the last section, it can be proven that the J4 mode 4 1( ) cos 4( )J kr    and, thus, the resultant 

eight-node element are invariant. The element will be termed as J8.  

 

5.  DOMAIN APPROXIMATION FROM PLANE WAVE SOLUTION SET 

In this section, elements with their domain approximation modes devised from the plane wave 

solution set will be devised. The solution set can be expressed as: 

   { ( ), 1, 2,3,...} exp cos( ) , 1,2,3,...l lp l ikr l       

   exp ( cos sin ) , 1,2,3,...l li kx ky l     (34) 

where p’s are self-defined and l denotes the propagation direction of the plane wave with respect to 

the global coordinates. The set of angles 1, 2, … is often picked at equal interval [17-23]. 

Furthermore, 

    Re ( ) cos( cos sin ) Re ( )l l l lp kx ky p        ,  

    Im ( ) sin( cos sin ) Im ( )l l l lp kx ky p          . (35) 



In other words, once a direction is included, its reverse should not be employed so as to avoid 

linearly dependence. It is trivial that when r in (34) is replaced by r  defined in (22) and l is a local 

direction, the following is a translational and rotational invariant basis of the domain modes: 

      { ( )} exp ( cos sin ) cos( cos sin ),sin( cos sin )l l l l l l lp i kx ky kx ky kx ky                  (36) 

in which ( , )x y   have been defined in (22).  

 

5.1  Four-Node Quadrilateral Element P4 

Let us again consider a square element with its natural coordinates parallel to the Cartesian 

coordinates. If the wave propagation directions are to be symmetric with respect to the element 

geometry, the only directions are either parallel to the element edges (i.e. { (0), ( / 2)}p p    or the 

element diagonals { ( / 4), ( / 4)}p p    . However, the former choice leads to a rank deficient 

element and should not be adopted. To generalize the latter choice to general quadrilateral elements, 

1 defined in (29) and Figure 1(b) may be resorted to. The modified domain approximation basis is: 

 1 1{ ( ), ( )}
4 4

p p 
     (37) 

which can be easily shown to be connectivity invariant and, thus, invariant.  

 Next, the trapezoidal element in Figure 2a is considered. In the figure, “ - ” is the wave 

crest 0x y    in the following mode among (37): 

 1
( )Re( ( )) Re( ( )) cos

4 4 2
k x yp p  

  
    (38) 

Clearly, the mode assumes its maximum value along the element boundary away from the nodes. In 

the four-node frame approximation, the extremum values can only occur at the nodes. To unify the 

extremum points of the frame and domain approximations along the element boundary, the two 

element diagonals can be taken to wave crests. This can be achieved by taken the following basis: 

 2 3 2 2 3 3{ ( ), ( )} {Re( ( )), Im( ( )), Re( ( )), Im( ( ))}
2 2 2 2 2 2

p p p p p p                  (39) 

where   

   ( ) exp ( cos sin )p i kx ky    , cx x x  , cy y y  . 

In the above expressions, 2 and 3 are the directions of the element diagonals whilst (xc, yc) is their 

intersection point as shown in Figure 2(b). The four-node element that employs the four plane wave 



domain modes in (39) will be termed as P4. The derivatives of ( )
l

p kr   can be computed by chain 

rule as: 

       
/ / cos

( ) exp ( cos sin ) exp ( cos sin )
/ / sin

x x
p i kx ky ik i kx ky

y y


    


                        
 (40) 

 

5.2  Eight-Node Quadrilateral Element P8 

 The eight-node element needs at least eight domain modes to secure the rank sufficiency. Starting 

from the plane wave modes in (39), the two wave propagation directions bisecting those of (39) can 

be included. In other words, the following eight modes are employed: 

2 3 2 3
2 3 2 2 3{ ( ), ( ), ( ), ( )} {Re( ( )), Im( ( )), Re( ( )),

2 2 2 2 2 2 2 2
p p p p p p p              

        

 2 3 2 3 2 3 2 3
3Im( ( ),Re( ( )), Im( ( )), Re( ( )), Im( ( ))}

2 2 2 2 2 2 2
p p p p p              

    (41) 

The resulting element has been verified to be rank sufficient and invariant. It will be termed as P8. 

Note worthily, the two directions bisecting the element diagonals have been employed by MacNeal 

to secure the invariance of an assumed strain shell element [28,30]. 

 

6.  NUMERICAL EXAMPLES 

Predictions of the following Q4 (four-node quadrilateral) and Q8 (eight-node quadrilateral) element 

models will be presented and discussed in this section: 

C4 – the conventional Q4 element, see (6).  

J4 or Q4-J4– the hybrid Q4 element with 4 domain modes from the Bessel solution set, see (28).  

J5 or Q4-J5– the hybrid Q4 element with 5 domain modes from the Bessel solution set, see (26). 

P4 – the hybrid Q4 element with 4 plane-wave domain modes, see  (39).  

C8 – the conventional Q8 element, see (6).  

C8(2) – the conventional Q8 element which is evaluated by the second order quadrature, see (6).  

J8 or Q8-J8– the hybrid Q8 element with 8 domain modes from the Bessel solution set, see (33).  

J9 or Q8-J9– the hybrid Q8 element with 9 domain modes from the Bessel solution set, see (32).  

P8 – the hybrid Q8 element with 8 domain modes from the plane wave solution set, see (41).  



Unless stated otherwise, the matrices for the four-node and eight-node elements are evaluated by the 

second and third order quadratures, respectively.  

 When exact solution uexact of a problem exist, the following normalized error will be computed 

for the conventional elements: 
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where u denotes the finite element prediction. In the hybrid-Trefftz elements, u is the prediction 

along the element boundary and g is the prediction within the element domain. Hence, the above 

normalized error is modified to be  
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In (42) and (43), the domain integrations are evaluated by using the same order of quadrature as for 

evaluating the element matrix. (42) is also evaluated for the hybrid-Trefftz element using nodal 

integration in which the sampling points of the integrand are the nodes. The normalized error for g 

and the nodal integrated error for u are exceptionally close and graphically indistinguishable. Hence, 

the latter will not be separately shown for graphical clarity. Furthermore, the following parameter 

will be employed to quantity the mesh or nodal density with respect to the wavelength: 

 Nn = wave length / nodal spacing = 2 / (kh)  (44) 

For conventional element models, 10 or above being the recommended value of Nn can be noted in 

the literature (see, e.g., [21]).  

 

6.1  Condition Number versus Integration Order 

 The single element problem in Figure 3 is considered. The element edge lengths are 1, 5, 10 

and 10. For the four-node and eight-node elements, the average nodal spacings are 2 and 1 whilst 

the wavenumbers are taken to 1/4 and 1/2, respectively. The chosen wavenumber will lead to Nn  

2. Let  denote the eigenvalue of the element matrix, ||max, ||min and the condition number Nc (= 

||max/||min) are computed and listed in Table 1 when the element matrices are evaluated by various 

orders of quadrature.  



      Four-node Elements – All the four-node elements are rank deficient (Nc = ) when the first 

order quadrature is employed. On the order hand, the changes in Ncs are less than 1.8% when second 

or higher order quadratures are used. In this light, second order quadrature will be employed for 

evaluating the element matrices and the normalized errors of all four-node elements. It is also 

checked that their predictions remain practically constant when the third or higher order quadrature 

rule is employed. 

 

Table 1.  ||max, ||min and Nc of the elements (Nn  2) under different orders of quadrature. 

2nd order quadrature 3rd order quadrature 4th order quadrature 5th order quadrature 
 

||max |min Nc ||max |min Nc ||max |min Nc ||max |min Nc 

C4* 1.563 0.315 4.955 1.591 0.315 5.043 1.593 0.315 5.050 1.591 0.315 5.049 

J4* 1.473 0.335 4.394 1.471 0.335 4.391 1.471 0.335 4.391 1.471 0.335 4.391 

J5* 1.473 0.335 4.397 1.471 0.335 4.393 1.471 0.335 4.393 1.471 0.335 4.393 

P4* 1.456 0.336 4.337 1.454 0.335 4.336 1.454 0.335 4.336 1.454 0.335 4.336 

C8 6.482 0.175 37.06 6.859 0.175 39.16 6.870 0.175 39.23 6.853 0.175 39.17 

J8 --- 0  3.211 0.173 18.54 3.212 0.177 18.15 3.212 0.177 18.15 

J9 --- 0  3.211 0.179 17.94 3.212 0.179 17.92 3.212 0.179 17.92 

P8 --- 0  3.211 0.179 17.90 3.211 0.179 17.89 3.211 0.179 17.89 

*  Under the first order quadrature, Nc of all four-node elements are equal to .  

 

      Eight-node Elements – Among the eight-node elements, only the conventional element C8 is 

rank sufficient when the second order quadrature is employed. However, Nc of C8 changes by nearly 

5.7% when the quadrature order switches from second to third. On the order hand, the difference in 

Nc of all the hybrid-Trefftz elements are less than 2.2% when the third or higher order quadratures 

are used. Unless otherwise specified, the third order quadrature will be employed for all eight-node 

elements. Their predictions remain practical constant when the fourth or higher order quadrature rule 

is employed. It will also be seen in some examples that C8, which is evaluated by the third order 

quadrature, is considerably more accurate than its counterpart C8(2) evaluated by the second order 

quadrature. 



 

6.2  Invariant Tests 

 The single element problem in Figure 3 is also employed for the invariant tests. All elements are 

translated in the x-y-plane and rotated about A. Different connectivity is also attempted. Under all 

settings, all the element eigenvalues remain unchanged. The invariance (comprising translational, 

rotational and connectivity invariance) of all elements are confirmed.  

 

6.3  Plane Wave Problem modeled by Square Elements 

 Figure 4a depicts a LL problem domain modelled by 44 square elements and L is set to be 2. 

The domain boundary is prescribed with the natural boundary condition with respect to to the 

following plane wave solution: 

 exact cos( cos sin )u kx ky    (45) 

where  is the wave propagation direction. As the predictions exhibit a periodicity of 45, only those 

for 0    90 are presented.  

      Four-node Square Elements - Figure 5 shows the normalized error versus  for kL = 8, 12 and 

16. The Nn-value is fixed at 2 by varying the mesh density. The data are computed at 5 interverl of 

. As the elements are square in shape, the predictions of J4 and J5 are identical. On the other hand, 

J4/J5 and P4 produce graphically indistinguishable results which are not separately presented in the 

figure for clarity. By normalizing the average errors of J4/J5/P4 with those of C4, one gets 56%, 

51% and 79% for kL equal to 8, 12 and 16, respectively. Figure 6 plots the normalized error versus 

  by fixing kL at 8. Three different meshes which lead to Nn = 2, 3 and 4 are considered. 

Convergence is obvious. By normalizing the average errors of J4/J5/P4 with those of C4, one gets 

56%, 52% and 51% for Nn equal to 2, 3 and 4, respectively. Figure 7 shows another 

convergence study in which kL is raised to 16. As the previous normalized errors attain their 

maximum or minimun at   = 0 or 45,  the predictions at two intermediate propagation directions 

given by   = 15 and 30 are considered. The range of Nn is wide and it covers from 2 to 24.5. 

All elements are markedly more accurate when   = 30. In Figures 5 to 7, the hybrid four-node 

elements are consistently more accurate than their convenctional counterpart.   

      Eight-node Square Elements - Figure 8 shows the normalized error versus  for kL = 8, 12 and 

16. The Nn-value is again fixed to 2. As the elements are square in shape, the predictions of J8 and 

J9 are identical. On the other hand, J8/J9 and P8 produce graphically indistinguishable results which 

are not separately presented in the figure for clarity. By normalizing the average errors of J8/J9/P8 



with those of C8, one gets 17%, 8% and 29% for kL equal to 8, 12 and 16, respectively. Figure 9 

plots the normalized error versus   by fixing kL to 8. Three meshes with Nn = 2, 3 and 4 are 

considered. Convergence is apparent. By normalizing the average errors of J8/J9/P8 with those of 

C8, one gets 17%, 14% and 11% for Nn equal to 2, 3 and 4, respectively. Figure 10 shows 

another convergence study in which kL is raised to 16. As the previous normalized errors attain their 

maximum or minimun when   is close to 0 or 45,  the predictions at two intermediate propagation 

directions given by   = 15 and 30 are considered. The range of Nn is wide and spans from 2 to 

12. Unlike Figure 7 for the four-node elements, the vertical axis is on logarithmic scale as the 

normalized error varies from 0.01% to 100%. All elements are markedly more accurate at   = 30. 

To avoid compressing the ordinate, the error of C8(2) which is evaluated by the second order 

quadrature and is considerable larger than that of C8 is not included in Figures 8 and 9 but only in 

Figure 10. Except at the left end of the abscissa, it can be seen that the error of C8(2) is roughly 80% 

larger than that of C8. In Figures 8 to 10, the hybrid eight-node elements are consistently more 

accurate than their convenctional counterpart.  

 Given the same Nn or nodal spacing per wavelength, it can be seen in this series of examples that 

C4 and C8 yield similar accuracy whislt the hybrid Q8 elements are markedly more accurate than the 

hybrid Q4 elements. 

 

6.4  Plane Wave Problem modeled by Rectangular Elements 

 This subsection study the effect of non-square element geometry on the elemen predictions using 

the previous plane wave problem. Figure 4b depicts the problem domain modelled by 84 

rectangular elements.  

      Four-node Rectangular Elements – Figure 11 plots the normalized errors versus   for the 

element aspect ratios 2 and 4 which are realized by modelling the problem domain with 168 and 

164 four-node elements, respectively. Furthermore, kL is set to be 8 for limiting the maximum 

normalized error to 50%. All elements are most accurate at   = 0/180 and most erroneous at 

around   = 90. The observations are understandable as nodal spacing is shortest and longest along 

  = 0/180 and 90, respectively. By normalizing the average errors of hybrid four-node elements 

with those of C4 (see Figure 6 and Figure 11), one gets 51%, 59% and 37% when 1616 (aspect 

ratio = 1), 168 (aspect ratio = 2) 164 (aspect ratio = 4) elements are employed, respectively. For 

most values of  in Figure 11, J4 is more accurate than J5/P4.  

      Eight-node Rectangular Elements – Figure 12 plots the normalized errors versus   for the 

element aspect ratios 2 and 4 which are realized by modelling the problem domain with 84 and 82 



eight-node elements, respectively. kL is again set to be 8 for limiting the maximum normalized error 

to 50%. Again, all elements are most accurate at   = 0/180 and most erroneous at around   = 

90. By normalizing the average errors of hybrid eight-node element with those of C8 (see Figure 9 

and Figure 13), one gets 11%, 42% and 64% when 88 (aspect ratio = 1), 84 (aspect ratio = 2) 

82 (aspect ratio = 4) element are are employed, respectively. Unlike the four-node elements, the 

eight-node hybrid elements are less and less accurate with respect to the eight-node conventional 

element when the aspect ratio increases. 

 All elements are adversely affected when the aspect ratio departs from unity. Neverthelss, the 

hybrid elements remain to be consistently more accurate than the conventional elements.  

 

6.5  Plane Wave Problem modeled by Skew Elements 

 This subsection study the effect of element skewness on the predictions using the plane wave 

problem. Figure 4c depicts the LL problem domain modelled by 44 skew elements. Here, an 

element is said to be a skew one if any pair of its opposite edges are non-parallel. Two skewed 

meshes with 4e/L = 0.16 and 0.32 are considered. Noteworthily, some elements would possess 

convex interior corners and negative Jacobian determinants when 4e/L > 0.5. The skewness implied 

by 4e/L = 0.32 is indeed unrealistically severe and are always avoided in practice.  

      Four-node Skew Elements – Figure 13 plots the normalized errors versus   when the problem 

domain is modelled by 1616 four-node elements which are obtained by subdividing each of the 44 

elements in Figure 4(c) into 44 elements. Inheriting from the last subsection, kL is again set to be 8 

which leads to Nn  4. At the chosen kL and mesh density, the conventional elements are most 

erroneous and accurate at   = 45 and 0/90, respectively. Conversely, the hybrid elements are 

most erroneous and accurate at   = 0/90 and 45, respectively. By normalizing the average errors 

of hybrid elements with those of C4 (see Figure 6 and Figure 13), one gets 51%, 53% and 51% for 

4e/L equals 0, 0.16 and 0.32, respectively. J4 is sometimes more accurate than J5/P4 and vice versa.   

      Eight-node Skew Elements – The problem domain is now modelled by 44 eight-node elements 

as shown in Figure 4c. kL is again set to be 8 which leads to Nn  2. The combination of kL and 

mesh density is chosen such that the maximum error of conventional element is limited to 50% as in 

Figure 13. Figure 14 plots the normalized errors versus   for the eight-node elements. The 

conventional elements are most accurate at   = 45 and 0/90. On the other hand, the hybrid 

elements are most erroneous and accurate at   = 0/90 and 45, respectively. By normalizing the 

average errors of hybrid elements with those of C8 (see Figure 9 and Figure 14), one gets 14%, 

22%, 43% for 4e/L = 0, 0.16 and 0.32, respectively. Unlike the four-node elements, the eight-node 



hybrid elements are less and less accurate with respect to the eight-node conventional element when 

the aspect ratio increases. 

 All elements are adversely affected by the geometric skewness. Neverthelss, the hybrid elements 

are consistently more accurate than the conventional elements.  

 

6.6  Quarter Circular Panel Problem 

 Figure 15 shows a quarter of a circular panel of unit radius modeled by n (= 8) elements along 

each coordinate axis. It can be seen that all elements are only mildly distorted. The exact solution of 

this problem is: 

 2exact

2

( )2 cos 2
( )

J kru
J k

  (46) 

Natural boundary condition is prescribed along the entire boundary of the panel. In this example, the 

normalized errors are computed for 5  kR  20 whilst the mesh densities are selected such that Nn 

falls roughly in between 10 and 20. The predictions of J5 and P4 are graphically indistinguishable and 

would not be plotted separately for clarity. On the other hand, the predictions of J8, J9 and P8 are 

graphically indistinguishable and would not be plotted separately for clarity. 

 Four-node Elements – Figure 16 plots the normalized error for 5  kR  10 in an increment of 

0.25. With 16 elements along the coordinate axis, Nn  20 and 10 when kR = 5 and 10, respectively. 

The average errors of J4, J5/P4 and C4 are in the ratio of 30% : 31% : 100%.  C4 is consistently less 

accurate than the hybrid elements. Figure 17 plots the normalized error for 10  kR  20 at 

increments of 0.5. With 32 elements along the coordinate axis, Nn  20 and 10 when kR = 10 and 20, 

respectively. The ratio of the averaged errors of J4, J5/P4 and C4 is 45% : 46% : 100%. C4 is 

consistently less accurate than the hybrid elements except at kR = 16 and 19.5 where all elements 

exhibit error peaks. Figures 16 and 17 show that all the hybrid elements are close in accuracy. At 

some values of kR, J4 is marginally more accurate than J5/P4 and vice versa.  

 Eight-node Elements – Figure 18 plots the normalized error for kR from 5 to 10 in an increment 

of 0.25. With 8 elements along the coordinate axis, Nn  20 and 10 when kR = 5 and 10, 

respectively. The averaged errors of J8/J9/P8, C8(2) and C8 are in the ratio of 20% :  172% : 100%. 

Figure 19 plots the normalized error for kR from 10 to 20 in the increment of 0.5. With 16 elements 

along the coordinate axis, Nn  20 and 10 when kR = 10 and 20, respectively. The average errors of 

J8/J9/P8, C8(2) and C8 are in the ratio of 23% : 180% : 100%. From the present problem and the 

last plane wave problem, the error of C8(2) is 60%~80% larger than that of C8. Though the second 



order quadrature is computationally more efficient and C8(2) is rank sufficient, the integration 

scheme is highly detrimental to the element accuracy. In Figures 18 and 19, the hybrid elements are 

consistenly more accuracy than the conventional elements.  

 

6.7  Square Panel with a Circular Cutout 

 A 1010 square panel with a 2 circular cutout is portrayed in Figure 20. Its left-hand and right-

hand edges are prescribed with u = 1 and 0, respectively, whilst u,n = 0 along the boundary of the 2 

circular cutout, the top and bottom edges. Owing to symmetry, only half of the domain is modeled 

and meshed into n2n elements whilst u,n = 0 is prescribed along AB and DE. Unlike the last 

example, the present problem contains considerably distorted elements. In particular, the aspect ratio 

of the elements along the problem domain boundaries A-F-G-E and BCD are roughly 2.5. The 

predictions along ABCDE are plotted against s  [0,8+] which is the length coordinate along 

ABCDE. The Nn-value will be calculated as the wavelength divided by A and (A)/2 for the four-

node and eight-node elements, respectively, in which A denote the average area of the element. 

Results for k equal to 2, 4 and 6 are computed. Highly converged solutions have been computed for 

reference.  

 Four-node Elements – Figures 21, 22 and 23 show the predictions. The Nn-value is kept 

constant at 40.9 which is yielded by using 64128, 128256 and 192384 four-node elements for k 

equal to 2, 4 and 6, respectively. The combinations of Nn and k are chosen such that predictions of 

the hybrid elements vary from accurate at k =2 to erroneous at k = 6. The “dispersion” effect is more 

obvious at higher k [31].  All hybrid elements are markedly more accurate than C4 which is 

erroneous even at k = 2. “Dispersion” effect in C4 is also obvious at higher k.  Note worthily, J4 is 

markedly more accurate than J5/P4 in this problem which is modeled by considerably distorted 

meshes.  

 Eight-node Elements – Figures 24, 25 and 26 show the predictions. The Nn-value is kept 

constant at 12.8 which is yielded by using 1020, 2040 and 3060 eight-node elements for k equal 

to 2, 4 and 6, respectively. Again, the combinations of Nn and k are chosen such that predictions of 

the hybrid elements vary from accurate at k =2 to erroneous at k = 6. All hybrid elements are 

markedly more accurate than C8 which is erroneous even at k = 2. “Dispersion” effect in C8 is also 

obvious at higher k. J8 is marginally more accurate than J9/P8.  

 In this example, the mesh distortion is characterized by fairy large element aspect ratios and small 

skewness. The observation that J4 and J8 are more accurate than J5 and J9, respectively, echoes the 



results presented in Section 6.5.  

 

6.8  Effect of Additional Domain Approximation Modes 

 It has been mentioned in Section 4 that the optimal number of stress modes in the hybrid stress 

element is often considered to be the same as the minimal number of stress modes required for 

securing the element rank sufficiency. When the plane wave problem is modeled by square elements 

(see Figure 4a), the four-node or Q4 hybrid elements yield exceptionally close predictions in mildly 

distorted mesh. The same observation applies to the eight-node or Q8 hybrid-Trefftz elements. 

Hence, the square mesh would be the best choice for examining the effect of including additional 

domain approximation modes into the elements. In this light, Q4-J7, Q4-J9, Q8-J11 and Q8-J13 are 

implemented. Their shape function matrices of the domain approximation modes are obtained by 

augmenting the five-mode matrix in (26) with increasing number pairs of terms of the form 

[ ( ) cos , ( )sin ]m mJ kr m J kr m     where m = 3, 4, 5 and 6. The matrices (G and H) of the four 

elements are computed by the second, third, third and fourth order quadratures, respectively. Any 

lower order integration rule would lead to rank deficient elements. All elements are invariant. Their 

accuracy and convergence are studied by the plane wave problem with the wave propagation 

direction angles  set at 15 and 30.  

 Four-node Elements – Figure 27 shows the results for the four-node hybrid-Trefftz elements. As 

the problem is modeled by square elements, the predictions of Q4-J4 and Q4-J5 are identical. 

Elements Q4-J4/Q4-J5 and Q4-J4/Q4-J5/Q4-J7 yield close prediction which, however, are slightly 

more accurate than Q4-J9.  

 Eight-node Elements – Figure 28 shows the results for the eight-node hybrid-Trefftz elements. 

As this problem employs only square elements, the predictions of Q8-J8 and Q8-J9 are identical. The 

two element models are markedly more accurate than Q8-J11 and Q8-J13.On the other hand, Q8-

J11 is slightly more accurate than Q8-J13.  

 In all previous examples involving distorted elements, Q4-J4 and Q8-J8 are mostly more accurate 

and sometimes markedly more accurate than Q4-J5 and Q8-J9, respectively. It only happens 

occasionally that Q4-J5 and Q8-J9 are marginally more accurate than Q4-J5 and Q8-J8, respectively. 

These examples together with the present one support the use of minimal number of domain modes 

from accuracy point of view. From computational point of view, using the minimal number of 

domain modes is advantageous for reducing the cost in matrix manipulation and integration.  

 



6.9  A Further Set of Problems on Effect of Mesh Distortion 

 This set of problems are protrayed in Figures 29(a) to (c). They are suggested by a reviewer for 

further studying the effect of mesh distortion which is characterized by “e” varying from 0 to 0.5. 

Boundary conditions with respect to the plane wave propagating at  = /8 (see (45)) are adopted. 

For the domain edges along which the nodal spacings are identical, natural boundary conditions are 

prescribed. For the remaining edges, essential boundary conditions are presribed. In other words, 

both essential and natural boundary conditions are used in the same mesh. In (a) and (b), 88 nodal 

spacings are employed. In (c), 164 nodal spacings are employed. With k = 2, the average Nn equals 

4. The Nn is chosen such that the the largest normalized errors of the two conventional elements C4 

and C8 are about 10% which occurs in (c) for both elements. Figures 30, 31 and 32 plot the 

normalized errrors versus “e” for the four-node elements in (a), (b) and (c), respectively. The errors 

of J5 are always between those of P4 and J4 and, thus, are not included in the figures for clarity. The 

hybrid elements produce very close results with J4 being the most accurate one among them. Their 

errors are roughly 30~50% of their conventional counterpart. Figures 33, 34 and 35 show the 

normalized errrors versus “e” for the eight-node elements in (a), (b) and (c), respectively. The errors 

of J9 are always between those of P8 and J8 and, thus, are not included in the figures for clarity. The 

hybrid elements produce very close results with J8 being the most accurate one among them. Their 

errors are roughly 10~30% of their conventional counterpart.  

As a matter of fact, results for  = 0 and /4 are also computed. For the two directions, the error 

ratio of hybrid to conventional elements are lower than those for  = /8. In other word, the relative 

accuracy of the hybrid elements with respect to the conventional are higher. The results are not 

shown to save page length. 

 

7.  CLOSURE 

Plane four-node and eight-node hybrid-Trefftz elements are devised in this paper. They have the 

same boundary (nodal, frame or inter-element) degrees of freedom as the conventional single-field 

elements and can be readily be incorporated into the standard finite element program framework. 

Both the Bessel and plane wave solution sets are employed in constructing the domain (or intra-

element) approximation space. By using local coordinate systems and directions, the new elements 

are invariant and possess the minimal numbers or one additional domain approximation modes for 

rank sufficiency of the element matrices. The examples are affirmative to the use of minimal number 

of domain modes for higher accuracy. From computational point of view, using the minimal number 

of domain modes is also advantageous for reducing the cost in matrix manipulation and integration.  



 In absolute majority of the examples, the hybrid-Treffty elements are markedly more accurate 

than the conventional single-field elements of the same nodal configurations. When the elements are 

close to square in shape, the proposed hybrid-Treffty elements with the same nodal configuration 

yield close solutions. However, when distorted elements are employed, the elements employing the 

minimal numbers of Bessel modes are more accurate than their counterparts that employ additional 

numbers of Bessel modes and minimal numbers of plane wave modes. 

 Mesh distortion sensitivity is studied by using slender and skew mesh geometry. All elements are 

adversely affected by the distortion. Judging from the ratios of the normalized errors of the hybrid-

Trefftz and conventional elements, the normalized accuracy of the hybrid four-node elements with 

respect to that of the conventional four-node element does not drop when the mesh distortion 

increases. On the other hand, the normalized accuracy of the hybrid eight-node elements with respect 

to that of the conventional  eight-node element drops when the mesh distortion increases but the 

deterioration is trivial only when mesh distortion is considerably severe. Unlike the finite deformation 

solid mechanics problem in which the mesh deforms with the solid, severe distortion in static meshes 

can readily be avoided by mildly experienced finite element practitioners and even the most 

affordable quad-mesh generation software. Most importantly, the hybrid-Trefftz elements still 

surpass the conventional elements even when the mesh distortion is impractically severe.  

 Same as the hybrid-stress elements, the use of domain approximations in the present hybrid-

Trefftz elements cannot improve the rate of convergence (see Figure 7 and 10) which is controlled 

by the nodal interpolation order. In examples where the conventional element can yield moderate 

predictions (e.g. < 20%), the errors of four-node hybrid-Trefftz elements are typically 40~50% of 

their conventional counterpart whereas the errors of eight-node hybrid-Trefftz elements are typically 

10~20% of their conventional counterpart. The improvement in accuracy can justify the higher 

computational cost of the hybrid-Trefftz elements as the overall computational cost for moderate and 

large problems is dominated by the matrix solution time [28].  

 Finally, the proposed elements are not expected to cope with problems (such as those with high 

k-values) which cannot be coped with by the conventional single-field elements. Given a problem 

which can be tackled by the conventional elements, the proposed elements can provides considerably 

more accurate solutions than the conventional elements. 
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      (a)        (b)        (c) 

Figure 1. (a) The eight-node quadrilateral element, its parametric coordinates (,). ( ,x y  ) and ( ,r  ) 
are the local coordinates defined with respect to the parametric origin (xo,yo). is are the four 
parametric boundary coordinates. (b) The local directions ,  and 1 = ( +)/2 - /4. (c) 
Another set of local directions ’, ’ and 1’ = (’+’)/2 - /4) due to a change in element 

connectivity. 
 

 

 

 
        (a)           (b) 

Figure 2. (a) The wave crest  -  for the plane wave mode 1Re( ( / 4))p    in a trapezoidal 
element. (b) The running directions (2 and 3) along the element diagonals. ( ,x y ) and ( ,r  ) are 

local coordinates defined with respect to the intersection point (xo,yo) of the diagonals. 

 

 

 
Figure 3.  The single-element problem for examining the condition number and invariance of the 
element matrix. E, F, G and H are mid-edge nodes which appear only in the eight-node elements. 

 

 



 

 

 

 

         
          (a)          (b)        (c) 

Figure 4.  The plane wave problem in which exact solution is  uexact = cos (kx cos  + ky sin ).  
A LL problem domain modeled by (a) 44 square elements, (b) 84 rectangular elements and (c) 

44 skew elements.  
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Figure 5. Normalized error of the four-node square elements for kL = 8, 12 and 16. The problem 
domain is modeled by 88, 1212 and 1616 elements, respectively, see Figure 4(a). 
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Figure 6. Normalized error of the four-node square elements for kL = 8. The problem domain is 
modeled by 88 (Nn = 2), 1212 (Nn = 3) and 1616 (Nn = 4) elements, see Figure 4(a).  
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Figure 7. Convergence of the four -node square elements. When the number of element  

equals 16 and 196, Nn equals 2 and 24.5, respectively, see Figure 4(a). 
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Figure 8. Normalized error of the eight-node square elements for kL = 8, 12 and 16. The problem 
domain is modeled by 44, 66 and 88 elements, respectively, see Figure 4(a). 
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Figure 9.  Normalized error of the eight-node square elements for kL = 8. The problem domain is 
modeled by 44 (Nn = 2), 66 (Nn = 3) and 88 (Nn = 4) elements, see Figure 4(a). 
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Figure 10. Convergence of the eight-node square elements. When the number of element  

equals 8 and 48, Nn equals 2 and 12, respectively, see Figure 4(a). 
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Figure 11.  Normalized error of the four-node rectangular elements at aspect ratio 2 (168 elements) 

and 4 (164 elements) with kL = 8, see Figure 4(b).  
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Figure 12.  Normalized error of the eight-node elements at aspect ratio 2 (84 elements) and 4 (82 
elements) with kL = 8, see Figure 4(b). 
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Figure 13.  Normalized error of the four-node elements at different distortions “e”. The problem 
domain is modeled by 1616 elements with k = 4 and L = 2 (Nn  4), see Figure 4(b). 
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Figure 14.  Normalized error of the eight-node elements at different distortions “e”. The problem 

domain is modeled by 44 elements with k = 4 and L = 2 (Nn  2), see Figure 4(b). 

 

 



 

 

 

 
Figure 15.  The quarter circular panel problem in which R equals unity. There are n (= 8) elements 

along each coordinate axis. The exact solution is u = 2 J2(kr) cos 2 /J2(k).  
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Figure 16. Normalized error of four-node elements for 5 < kR < 10. There are 16 elements along 

each coordinate axis, see Figure 11. At kR = 5 and 10, Nn = 20.1 and 10.1, respectively, see Figure 
15. 
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Figure 17. Normalized error of the four-node elements for 10 < kR < 20 with 32 elements along each 
coordinate axis, see Figure 11. At kR = 10 and 20, Nn = 20.1 and 10.1, respectively, see Figure 15. 
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Figure 18. Normalized error of the eight-node elements for 5 < kR < 10 with 8 elements along each 
coordinate axis, see Figure 11. At kR = 5 and 10, Nn = 20.1 and 10.1, respectively, see Figure 15. 
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Figure 19. Normalized error of the eight-node elements for 10 < kR < 20 with 16 elements along 

each coordinate axis, see Figure 11. At kR = 10 and 20, Nn = 20.1 and 10.1, respectively, see Figure 
15. 

 

 

 

 

 
Figure 20.  A square panel with a central circular obstacle. Owing to symmetry,  

only the upper half of the panel is modeled.  
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(a) Before zooming the ordinate.  
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(b) After zooming the ordinate. 
 

Figure 21. The nodal predictions (along ABCDE in Figure 16) obtained  
by 64128 four-node elements for k = 2 and Nn = 40.9, see Figure 20. 
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(a) Before zooming the ordinate. 
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(b) After zooming the ordinate. 
 

Figure 22. The nodal predictions (along ABCDE in Figure 16) obtained  
by 128256 four-node elements for k = 4 and Nn = 40.9, see Figure 20. 
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(a) Before zooming the ordinate. 
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(b) After zooming the ordinate. 
 

Figure 23. The nodal predictions (along ABCDE in Figure 16) obtained  
by 192384 four-node elements for k = 6 and Nn = 40.9, see Figure 20. 
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Figure 24. The nodal predictions (along ABCDE in Figure 16) obtained  
by 1020 eight-node elements for k = 2 and Nn = 12.8, see Figure 20. 
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Figure 25. The nodal predictions (along ABCDE in Figure 16) obtained  
by 2040 eight-node elements for k = 4 and Nn = 12.8, see Figure 20. 
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(a) Before zooming the ordinate. 
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(b) After zooming the ordinate. 
 

Figure 26. The nodal predictions (along ABCDE in Figure 16) obtained by  
3060 eight-node elements for k = 6 and Nn = 12.8, see Figure 20.  
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Figure 27. Convergence of hybrid four-node elements with different numbers of domain modes. 
When the number of element equals 16 and 196, Nn equals 2 and 24.5, respectively, see Figure 

4(a). 
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Figure 28. Convergence of hybrid eight-node elements with different numbers of domain modes. 
When the number of element equals 8 and 48, Nn equals 2 and 12, respectively, see Figure 4(a). 

 



 

    (a)        (b)          (c) 

Figure 29.  Meshes for studying the effect of element distortion in the plane wave problem with k = 2 
and propagation angle  = /8. “e” is varied from 0 to 0.5. In (a) and (b), 88 nodal spacings are 

employed. In (c), 164 nodal spacings are employed. Hence, the average Nn is 4.  
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Figure 30.  Normalized error of the four-node elements in the plane-wave problem using the mesh in 

Figure 29 (a) at different distortion “e”.  
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Figure 31.  Normalized error of the four-node elements in the plane-wave problem using the mesh in 

Figure 29 (b) at different distortion “e”.  
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Figure 32.  Normalized error of the four-node elements in the plane-wave problem using the mesh in 

Figure 29(c) at different distortion “e”.  
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Figure 33.  Normalized error of the eight-node elements in the plane-wave problem using the mesh in 

Figure 29 (a) at different distortion “e”.  
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Figure 34.  Normalized error of the eight-node elements in the plane-wave problem using the mesh in 

Figure 29 (b) at different distortion “e”.  
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Figure 35.  Normalized error of the eight-node elements in the plane-wave problem using the mesh in 

Figure 29(c) at different distortion “e”.  
 

 


