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Abstract— We generalize a result in [8] and derive an asymp-
totic formula for entropy rate of a hidden Markov chain around
a “weak Black Hole”. We also discuss applications of the
asymptotic formula to certain channels.

I. INTRODUCTION

Consider a finite-state stationary stochastic process Y =
Y ∞
−∞. The entropy rate of Y is defined to be

H(Y ) = lim
n→∞H(Y 0

−n)/(n + 1);

here, H on finite length distributions is taken with the usual
definition, with log taken to mean the natural logarithm.

If Y = {Y ∞
−∞} is a Markov chain with alphabet

{1, 2, · · · , B} and transition probability matrix Δ, it is well
known that H(Y ) can be explicitly expressed with the sta-
tionary vector of Y and Δ. A function Z = {Z∞

−∞} of
the Markov chain Y with the form Z = Φ(Y ) is called
a hidden Markov chain; here Φ is a finite valued function
defined on {1, 2, · · · , B}, taking values in A := {1, 2, · · · , A}
(alternatively a hidden Markov chain is defined as a Markov
chain observed in noise). For a hidden Markov chain Z, H(Z)
turns out (see Equation (1)) to be the integral of a certain
function defined on a simplex with respect to a measure due
to Blackwell [4]. However Blackwell’s measure is somewhat
complicated and the integral formula appears to be difficult to
evaluate in most cases.

Recently, the problem of computing the entropy rate of
a hidden Markov chain has drawn much interest, and many
approaches have been adopted to tackle this problem. For
instance, Blackwell’s measure has been used to bound the
entropy rate [14] and a variation on the Birch bound [3]
was introduced in [5]. An efficient Monte Carlo method for
computing the entropy rate of a hidden Markov chain was
proposed independently by Arnold and Loeliger [1], Pfister
et. al. [16], and Sharma and Singh [18]. The connection
between the entropy rate of a hidden Markov chain and the
top Lyapunov exponent of a random matrix product has been
observed [10], [11], [12], [6]. In [7], it is shown that under mild
positivity assumptions the entropy rate of a hidden Markov
chain varies analytically as a function of the underlying
Markov chain parameters.

Another recent approach is based on computing the coeffi-
cients of an asymptotic expansion of the entropy rate around
certain values of the Markov and channel parameters. The

first result along these lines was presented in [12], where
for a binary symmetric channel with crossover probability ε
(denoted by BSC(ε)), the Taylor expansion of H(Z) around
ε = 0 is studied for a binary hidden Markov chain of order
one. In particular, the first derivative of H(Z) at ε = 0 is
expressed very compactly as a Kullback-Liebler divergence
between two distributions on binary triplets, derived from the
marginal of the input process X . Further improvements and
new methods for the asymptotic expansion approach were
obtained in [15], [19], [20] and [8]. In [15] the authors
express the entropy rate for a binary hidden Markov chain
where one of the transition probabilities is equal to zero as
an asymptotic expansion including a O(ε log ε) term. The
asymptotic expansion is further generalized in [9], [13].

This paper is organized as follows. In Section II we give an
asymptotic formula for the entropy rate of a hidden Markov
chain around a “Weak Black Hole”. In Section III, we discuss
applications of the formula to certain channels.

II. ASYMPTOTIC FORMULA FOR ENTROPY RATE

Let W be the simplex, comprising the vectors

{w = (w1, w2, · · · , wB) ∈ R
B : wi ≥ 0,

∑
i

wi = 1},

and for a ∈ A, let Wa be all w ∈ W with wi = 0 for
Φ(i) �= a. For a ∈ A, let Δa denote the B × B matrix such
that Δa(i, j) = Δ(i, j) for j with Φ(j) = a, and Δa(i, j) = 0
otherwise. For a ∈ A, define the scalar-valued and vector-
valued functions ra and fa on W by

ra(w) = wΔa1,

and
fa(w) = wΔa/ra(w).

Note that fa defines the action of the matrix Δa on the simplex
W .

If Y is irreducible, it turns out that

H(Z) = −
∫ ∑

a

ra(w) log ra(w)dQ(w), (1)

where Q is Blackwell’s measure [4] on W . This measure,
which satisfies an integral equation dependent on the param-
eters of the process, is however very hard to extract from the
equation in any explicit way.

Definition 2.1: (see [8]) Suppose that for every a ∈ A, Δa

is a rank one matrix, and every column of Δa is either strictly
positive or all zeros. We call this the Black Hole case.
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It was shown [8] that H(Z) is analytic around a Black Hole
and the derivatives of H(Z) can be exactly computed around a
Black Hole. In this sequel, we consider weakened assumptions
and prove an asymptotic formula for entropy rate of a hidden
Markov chain around a “weak Black Hole”, generalizing the
corresponding result in [8].

Definition 2.2: Suppose that for every a ∈ A, Δa is a rank
one matrix. We call this the weak Black Hole case.

Remark 2.3: The weak Black Hole condition relaxes the
Black Hole condition by eliminating the zero-positivity re-
quirement. The differences and connections between these
two conditions are illustrated briefly in simple examples (see
section III-A).

In this paper we assume that Δ is affinely parameterized
by ε (ε ≥ 0), Δ(ε) is strictly positive when ε > 0, and
ε = 0 corresponds to the weak Black Hole case. Namely
the stochastic matrix Δ can be written as Δ0 + εΔ1, where
Δ0 and Δ1 are non-negative matrices independent of ε, Δ0

corresponds to a weak Black Hole, and whenever some entry
of Δ0 is zero, the corresponding entry of Δ1 is strictly
positive. We use the standard notation: by α = Θ(β), we
mean there exist positive constants C1, C2 such that C1|β| ≤
|α| ≤ C2|β|, while by α = O(β), we mean there exists a
positive constant C such that |α| ≤ C|β|.

Proposition 2.4: For any fixed sequence z−1
−n ∈ An, p(z−1

−n)
is the quotient of two polynomials of ε. Moreover p(z−1

−n) is
analytic around ε = 0.

Proof:
When ε > 0, Δ(ε) is strictly positive. By Perron-Frobenius

theory [17], Δ(ε) has a unique positive stationary vector, say
π(ε). Since

adj (I − Δ(ε))(I − Δ(ε)) = det(I − Δ(ε))I = 0

(here adj (·) denotes the adjugate operator on matrices), one
can choose π(ε) to be any normalized row vector of adj (I −
Δ(ε)). So π(ε) can be written as

(π1(ε), π2(ε), · · · , πB(ε))
π1(ε) + π2(ε) + · · · + πB(ε)

,

where πi(ε)’s are polynomials of ε and the first non-zero term
of every πi(ε) has a positive coefficient (we assume terms in
the polynomails are increasingly ordered by the degree of ε
unless otherwise specified). Let mdeg (·) denote the degree of
the first non-zero term of a polynomial, then we conclude that
for each i

mdeg (πi(ε)) ≥ mdeg (π1(ε) + · · · + πB(ε)),

and thus π(ε), which is uniquely defined on ε > 0, can
be continuously extended to ε = 0 via setting π(0) =
limε→0 π(ε).

Now
p(z−1

−n) = π(ε)Δz−n
· · ·Δz−11

=
(π1(ε), π2(ε), · · · , πB(ε))Δz−n

· · ·Δz−11
π1(ε) + π2(ε) + · · · + πB(ε)

=:
f(ε)
g(ε)

, (2)

here mdeg (f(ε)) ≥ mdeg (g(ε)). It then follows that p(z−1
−n)

is analytic around ε = 0.

Remark 2.5: It immediately follows from Proposition 2.4
that there exists k ≥ 0 such that p(z−1

−n) = Θ(εk).
Proposition 2.6: For any fixed sequence z0

−n ∈ An+1,

p(z0|z−1
−n) is the quotient of two polynomials of ε. Moreover

p(z0|z−1
−n) is analytic around ε = 0, furthermore either

p(z0|z−1
−n) = Θ(1) or p(z0|z−1

−n) = Θ(ε).
Proof:

Let xi,−n = xi,−n(zi
−n) = p(yi = · |zi

−n), where · denotes
the possible states of Markov chain Y . Then one checks that

p(z0|z−1
−n) = x−1,−nΔz01 (3)

and

xi,−n =
xi−1,−nΔzi

xi−1,−nΔzi ,1
, −n ≤ i ≤ −1. (4)

Because Δ is affinely parameterized by ε (ε ≥ 0) and Δ(ε)
is strictly positive when ε > 0, inductively we can prove (the
proof is similar to the proof of Proposition 2.4) that for any
i, xi,−n can be written as follows:

xi,−n =
(f1(ε), f2(ε), · · · , fB(ε))

f1(ε) + f2(ε) + · · · + fB(ε)
,

where fi(ε)’s are certain polynomials of ε such that for each
i

mdeg (fi(ε)) ≥ mdeg (f1(ε) + f2(ε) + · · · + fB(ε)).

The existence of the Taylor series expansion of xi,−n around
ε = 0 (for any i) then follows. Together with (3), we conclude
that p(z0|z−1

−n) is analytic around ε = 0.

Now consider the Taylor series expansion of x−1,−n around
ε = 0,

x−1,−n = a0(z−1
−n) + a1(z−1

−n)ε + a2(z−1
−n)ε2 + · · · .

Since for any ε, x−1,−n ∈ W , we conclude that a0(z−1
−n) ≥ 0,

but a0(z−1
−n) �≡ 0.

In the following we write for each i

Δzi = Δ0
zi

+ εΔ1
zi

,

here Δ0
zi

and Δ1
zi

are non-negative matrices independent of ε.

If a0(z−1
−n)Δ0

z0
1 > 0, then

p(z0|z−1
−n) = x−1,−nΔz01 = a0(z−1

−n)Δ0
z0

1 + O(ε) = Θ(1).

Now consider the case when a0(z−1
−n)Δ0

z0
1 = 0. Because

Δ0
z0

+ εΔ1
z0

is strictly positive for ε > 0,

a0(z−1
−n)(Δ0

z0
+ εΔ1

z0
)1 > 0,

which implies a0(z−1
−n)Δ1

z0
1 > 0. On the other hand, for ε > 0

x−1,−nΔ0
z0

1 = (a0(z−1
−n) + a1(z−1

−n)ε + · · ·)Δ0
z0

1 > 0,

which implies a1(z−1
−n)Δ0

z0
1 > 0. So in this case,

p(z0|z−1
−n) = (a0(z−1

−n)Δ1
z0

1 + a1(z−1
−n)Δ0

z0
1)ε + O(ε2).

It then follows that p(z0|z−1
−n) = Θ(ε), since the coefficient of

ε has been proven to be strictly positive.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2630



Lemma 2.7: Consider two formal series expansion
f(x), g(x) ∈ R[[x]] such that f(x) =

∑∞
i=0 fix

i and
g(x) =

∑∞
i=0 gix

i, where g0 �= 0. Let h(x) ∈ R[[x]] be the
quotient of f(x) and g(x) with h(x) =

∑∞
i=0 hix

i. Then hi

is a function only dependent on f0, · · · , fi and g0, · · · , gi.

Proof:
Comparing the coefficients of all the terms in the following

identity: ( ∞∑
i=0

hix
i

)( ∞∑
i=0

gix
i

)
=

∞∑
i=0

fix
i,

we obtain that for any i,

h0gi + h1gi−1 + · · · + hig0 = fi.

The lemma then follows from an induction (on i) argument.

Let i be a fixed non-positive integer and let s be a function
defined on all hidden Markov strings zi

−m for −m ≤ i. We
say that s stabilizes at a particular string zi

−n if for all m ≥ n
and hidden Markov strings ẑi

−m such that ẑi
−n = zi

−n, we
have

s(ẑi
−m) = s(zi

−n).

By Proposition 2.6, for any hidden Markov string z0
−m, the

Taylor series expansion of p(z0|z−1
−m) around ε = 0 exists. We

use bj(z0
−m) to represent the coefficient of εj in the expansion,

namely

p(z0|z−1
−m) = b0(z0

−m) + b1(z0
−m)ε + b2(z0

−m)ε2 + · · · . (5)

Lemma 2.8: Consider a hidden Markov chain Z at a weak
Black Hole corresponding to ε = 0. Suppose that for a fixed
sequence z0

−n, p(z−1
−n) = Θ(εk) for some k ≥ 0. Then the

first n − 2k coefficients of p(z0|z−1
−m) are stabilized at z0

−n,
namely, for j with 0 ≤ j ≤ n−2k−1, the coefficient bj(z0

−m)
is stabilized at z0

−n.

Proof: Recall that xi,−m = xi,−m(zi
−m) = p(yi =

· |zi
−m), where · denotes the possible states of Markov chain

Y . Consider the Taylor series expansion of xi,−n around
ε = 0,

xi,−m = a0(zi
−m) + a1(zi

−m)ε + a2(zi
−m)ε2 + · · · (6)

Assume that p(zi
−n) = Θ(εki) (0 ≤ ki ≤ k), we shall show

that xi,−m has the first n + i + 1− 2ki coefficients stabilized
at zi

−n, namely for j with 0 ≤ j ≤ n + i − 2ki, aj(zi
−m) is

stabilized at zi
−n.

We proceed by induction on i (from −n to −1). The case
when i = −n is straightforward. Now we consider i ≥ −n and
we suppose that aj(zi

−m) (0 ≤ j ≤ n + i − 2ki) is stabilized
at zi

−n. Recall that for each i

Δzi = Δ0
zi

+ εΔ1
zi

,

where Δ0
zi

and Δ1
zi

are non-negative matrices independent of
ε. Note that with this notation, we have

xi+1,−m =
xi,−mΔzi+1

xi,−mΔzi+11
, (7)

=
(a0(zi

−m) + a1(zi
−m)ε + · · ·)(Δ0

zi+1
+ εΔ1

zi+1
)

(a0(zi−m) + a1(zi−m)ε + · · ·)(Δ0
zi+1

+ εΔ1
zi+1

)1
. (8)

It follows from Proposition 2.6 that either ki+1 = ki +1 or
ki+1 = ki. If ki+1 = ki + 1, necessarily we have for m ≥ n

a0(zi
−m)Δ0

zi+1
= a0(zi

−n)Δ0
zi+1

= 0.

Applying Lemma 2.7 to expression (8), we conclude that for
all j, aj(zi+1

−m) depends only on

a1(zi
−m), a2(zi

−m), · · · , aj+1(zi
−m), Δ0

zi+1
,Δ1

zi+1
.

Thus for j with 0 ≤ j ≤ n+ i−1−2ki, aj(zi+1
−m) is stabilized

at zi+1
−n . This implies that the first n+i−2ki = n+(i+1)+1−

2ki+1 coefficients of xi+1,−m are stabilized at zi+1
−n , namely

for j with 0 ≤ j ≤ n+(i+1)−2ki+1, the coefficient aj(zi+1
−m)

is stabilized at zi+1
−n .

If ki+1 = ki, necessarily we have

a0(zi
−n)Δ0

zi+1
1 �= 0.

Again by Lemma 2.7 applied to expression (8), for any j,
aj(zi+1

−m) depends only on

a0(zi
−m), a1(zi

−m), · · · , aj(zi
−m), Δ0

zi+1
, Δ1

zi+1
.

Thus, for any j with 0 ≤ j ≤ n + i − 2ki+1 = n + i − 2ki,
aj(zi+1

−m) stabilizes at zi+1
−n . Now, let j = n + i + 1 − 2ki+1,

then we have

aj(zi+1
−m) =

∗
(a0(zi−m)Δ0

zi+1
1)2

+ other terms ,

here
∗ = an+i−2ki

(zi
−m)Δ0

zi+1
a0(zi

−m)Δ0
zi+1

1

−a0(zi
−m)Δ0

zi+1
an+i−2ki(z

i
−m)Δ0

zi+1
1.

Since Δ0
zi+1

is a rank one matrix, we find ∗ = 0 and “other
terms” are functions of

a0(zi
−m), a1(zi

−m), · · · , an+i−1−2ki
(zi

−m), Δ0
zi+1

, Δ1
zi+1

.

So we conclude aj(zi+1
−m) is also stabilized at zi+1

−n , and thus
xi+1,−m has the first n+ i+2−2ki = n+(i+1)+1−2ki+1

coefficients stabilized at zi+1
−n .

The lemma then immediately follows from (3) and the
proven fact that x−1,−m has the first n − 2k−1 = n − 2k
coefficients stabilized at z−1

−n.
Remark 2.9: Using the same iterative expression (7) and

a completely parallel argument as in Lemma 2.8, one can
show that the first n − 2k coefficients of p(z0|z−1

−my−m−1)
are independent of y−m−1 and stabilized at z0

−n as well.
Consider expression (5). In the following, we use

p<l>(z0|z−1
−n) to denote the truncated (up to the (l + 1)-st

term) Taylor series expansion of p(z0|z−1
−n), i.e.,

p<l>(z0|z−1
−n) = b0(z0

−n)+b1(z0
−n)ε+b2(z0

−n)ε2+· · ·+bl(z0
−n)εl.

Theorem 2.10: For a hidden Markov chain Z around a
weak Black Hole corresponding to ε = 0, we have for any
k ≥ 0,

H(Z) = H(Z)|ε=0+
k∑

j=1

fjε
j+

k+1∑
j=1

gjε
j log ε+O(εk+1), (9)
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where fj’s and gj’s are functions only dependent on Δ, the
transition probability matrix of the underlying Markov chain
Y .

Proof:
First we fix a large n and consider the Birch upper bound

on H(Z)

Hn(Z) = H(Z0|Z−1
−n) = −

∑
z0
−n

p(z0
−n) log p(z0|z−1

−n).

Note that for j ≥ k + 1,∣∣∣∣∣∣∣
∑

p(z−1
−n)=O(εj),

p(z0
−n) log p(z0|z−1

−n)

∣∣∣∣∣∣∣ = O(εk+1).

So, in the following we only consider the sequences z0
−n with

p(z−1
−n) = Θ(εj), j ≤ k. For such sequences, by Lemma 2.8,

as long as n is large enough, p(z0|z−1
−m) will have sufficiently

many initial coefficients stabilized at z0
−n. Moreover, for any

sequence z0
−n with n ≥ 3k+1, p(z−1

−n) = Θ(εj), p(z0|z−1
−n) =

Θ(1), we have

| log p(z0|z−1
−n) − log p<k>(z0|z−1

−n)| = O(εk+1); (10)

for any sequence z0
−n with n ≥ 3k + 2, p(z−1

−n) = Θ(εj),
p(z0|z−1

−n) = Θ(ε), we have

| log p(z0|z−1
−n) − log p<k+1>(z0|z−1

−n)| = O(εk+1). (11)

Now fix n0 ≥ 3k +2. For any n ≥ n0, using (10) and (11),
we can show

Hn(Z) = −
∑

p(z−1
−n)=Θ(εj),j≤k

p(z0
−n) log p(z0|z−1

−n)+O(εk+1)

= H(Z)|ε=0 +
k∑

j=1

fjε
j +

k+1∑
j=1

gjε
j log ε + O(εk+1), (12)

where fj and gj are functions dependent only on Y .

Using Remark 2.9, one can apply similar analysis to the
Birch lower bound

H̃n(Z) = H(Z0|Z−1
−nY−n−1).

For the same n0, one can show that H̃n(Z) takes the same
form as Hn(Z) as in (12) with exactly the same coefficients
of εj for j ≤ k and of εj log ε for j ≤ k + 1 when n is
sufficiently large. We thus prove the theorem.

Remark 2.11: Note that at a Black Hole, gj = 0 for all j’s.
So Formula (9) is consistent with the Taylor series expansion
of H(Z) around a Black Hole.

III. APPLICATIONS TO CERTAIN CHANNELS

A. Binary Markov Chains Corrupted by BSC(ε)

Consider a binary symmetric channel with crossover prob-
ability ε. At time n the channel can be characterized by the
following equation

Zn = Xn ⊕ En,

where Xn denotes the input process, ⊕ denotes binary addi-
tion, En denotes the i.i.d. binary noise with pE(0) = 1 − ε
and pE(1) = ε, and Zn denotes the corrupted output.

Now, suppose X = {Xn} is a first order Markov chain with
the transition probability matrix

Π =
[

π00 π01

π10 π11

]
.

Then Y = {Yn} = {(Xn, En)} is jointly Markov with
transition probability matrix:

Δ =

⎡
⎢⎢⎣

π00(1 − ε) π00ε π01(1 − ε) π01ε
π00(1 − ε) π00ε π01(1 − ε) π01ε
π10(1 − ε) π10ε π11(1 − ε) π11ε
π10(1 − ε) π10ε π11(1 − ε) π11ε

⎤
⎥⎥⎦ ,

and Z = Φ(Y ) is a hidden Markov chain with Φ(0, 0) =
Φ(1, 1) = 0, Φ(0, 1) = Φ(1, 0) = 1. When ε = 0, one checks
that both Δ0 and Δ1 have rank one. If πij’s are all positive,
then we have a Black Hole case, for which one can derive
the Taylor series expansion of H(Z) around ε = 0 [19], [8];
if some πij’s are zeros, then this is a weak Black hole case,
for which Theorem 2.10 can be applied and an asymptotic
formula for H(Z) can be derived.

For instance, consider a first order Markov chain X with
the following transition probability matrix[

1 − p p
1 0

]
,

where 0 ≤ p ≤ 1. It has been shown [15] that

H(Z) = H(X) − p(2 − p)
1 + p

ε log ε + O(ε)

as ε → 0. This result has been further generalized [9], [13] to
the following formula:

H(Z) = H(X) + f(X)ε log(1/ε) + g(X)ε + O(ε2 log ε),

where X is the input Markov chain of any order, Z is the
output process obtained by passing X through a BSC(ε), and
f(X) and g(X) can be explicity computed.

Theorem 2.10 claims that higher order asymptotic terms
together with their coefficients can be derived as well. Now
suppose the input is an m-th order Markov chain X defined
by the transition probabilities P (Xt = a0|Xt−1

t−m = a−1
−m),

a0
−m ∈ Xm, where X = {0, 1}. For i = 0, 1, · · ·, let

X̂i = X−im
−(i+1)m+1, Êi = E−im

−(i+1)m+1, Ẑi = Z−im
−(i+1)m+1.

Then X̂ is a first order Markov chain with state space Xm,
whose transition probability from state x̂ ∈ Xm to ŷ ∈ Xm

(denoted by Px̂ŷ) can be easily computed. Obviously (X̂, Ê)
is jointly Markov with state space Xm×Xm, and the transition
probability from state (x̂, d̂) to state (ŷ, ê) is

Δ̂(x̂,d̂)(ŷ,ê) = Px̂ŷ

m∏
i=1

δ(êi, ε),

where Δ̂ denotes the transition probability matrix of (X̂, Ê)
and

δ(0, ε) = 1 − ε, δ(1, ε) = ε.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2632



It is easy to check that when ε = 0, Δ̂ẑ is a rank one matrix
for every ẑ ∈ Xm. In particular, when P (Xt = a0|Xt−1

t−m =
a−1
−m) > 0 for a0

−m ∈ Xm+1, we have a Black Hole. In this

case, the derivatives of the entropy rate H(Ẑ) at ε = 0 can
be exactly computed. Then together with

H(Z) = H(Ẑ)/m,

we conclude that the derivatives of the entropy rate H(Z)
at ε = 0 can be exactly computed as well. When P (Xt =
a0|Xt−1

t−m = a−1
−m) = 0 for some a0

−m ∈ Xm+1, we have a
weak Black Hole. In this case, Theorem 2.10 can be applied
and an asymptotical formula for H(Z) around ε = 0 can be
obtained.

B. Binary Markov Chains Corrupted by BEC(δ)
Consider a binary erasure channel with fixed erasure rate δ

(denoted by BEC(δ)). We say the channel is in state 1 if the
input digit is erased after passing through the channel (e will
be used to denoted a erasure), otherwise we say the channel
is in state 0. Let C denote the channel state, and let X denote
the first order input Markov chain with transition probability
matrix

Π =
[

π00 π01

π10 π11

]
,

and let Z denote the output process. Then Y = (X, C) is
jointly Markov with

Δ =

⎡
⎢⎢⎣

π00(1 − δ) π00δ π01(1 − δ) π01δ
π00(1 − δ) π00δ π01(1 − δ) π01δ
π10(1 − δ) π10δ π11(1 − δ) π11δ
π10(1 − δ) π10δ π11(1 − δ) π11δ

⎤
⎥⎥⎦ ,

and Z = Φ(Y ) is hidden Markov with Φ(0, 1) = Φ(1, 1) = e,
Φ(0, 0) = 0 and Φ(1, 0) = 1.

Now one checks that if Π is a rank one matrix, Δ0,Δ1, Δe

will all be rank one matrices, then we have a Black Hole
case. In particular, if we use the following parameterization:
π00 = k/(k+1)+ε, π10 = k/(k+1)−ε, π01 = 1/(k+1)−ε,
π11 = 1/(k+1)+ε, where k ≥ 0, then we have a Black Hole
case corresponding to ε = 0.

C. Binary Markov Chains Corrupted by Gilbert-Elliot Chan-
nel

Consider a binary Gilbert-Elliot channel. The channel is said
to be in state 0 if it behaves like a BSC(ε0) and state 1 if it
behaves like a BSC(ε1). The channel state varies as a Markov
chain with transition probability matrix:

C =
[

c00 c01

c10 c11

]
.

Let X denote the first order input Markov chain with transition
probability matrix

Π =
[

π00 π01

π10 π11

]
,

and let Z denote the output process. Then Y = (X, C,E) is
jointly Markov with a 8 × 8 transition probability matrix Δ
and Z = Φ(X,C, E) is hidden Markov with

Φ(0, 0, 0) = Φ(0, 1, 0) = Φ(1, 0, 1) = Φ(1, 1, 1) = 0,

Φ(0, 0, 1) = Φ(0, 1, 1) = Φ(1, 1, 0) = Φ(1, 1, 0) = 1.

If ε0 = ε1 = 0 and C is a rank one matrix, both Δ0 and Δ1

will be rank one matrices and we have a weak Black Hole. In
particular, if we use the following parameterization: (ε0, ε1) =
(k1ε, ε) and c00 = k2/(k2 + 1) + ε, c10 = k2/(k2 + 1) − ε,
c01 = 1/(k2 +1)−ε, c11 = 1/(k2 +1)+ε, where k1, k2 ≥ 0,
then we have a Black Hole case corresponding to ε = 0.
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