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Local Polynomial Modeling and Variable Bandwidth
Selection for Time-Varying Linear Systems

S. C. Chan, Member, IEEE, and Z. G. Zhang, Member, IEEE

Abstract—This paper proposes a local polynomial modeling
(LPM) approach and variable bandwidth selection (VBS) al-
gorithm for identifying time-varying linear systems (TVLSs).
The proposed method models the time-varying coefficients of
a TVLS locally by polynomials, which can be estimated by
least squares estimation with a kernel having a certain band-
width. The asymptotic behavior of the proposed LPM estima-
tor is studied, and the existence of an optimal local bandwidth
which minimizes the local mean-square error is established. A
new data-driven VBS algorithm is then proposed to estimate
this optimal variable bandwidth adaptively and locally. An in-
dividual bandwidth is assigned for each coefficient instead of
the whole coefficient vector so as to improve the accuracy in
fast-varying systems encountered in fault detection and other
applications. Important practical issues such as online imple-
mentation are also discussed. Simulation results show that the
LPM-VBS method outperforms conventional TVLS identification
methods, such as the recursive least squares algorithm and gen-
eralized random walk Kalman filter/smoother, in a wide variety
of testing conditions, in particular, at moderate to high signal-
to-noise ratio. Using local linearization, the LPM method is further
extended to identify time-varying systems with mild nonlinearities.
Simulation results show that the proposed LPM-VBS method can
achieve a satisfactory performance for mildly nonlinear systems
based on appropriate linearization. Finally, the proposed method
is applied to a practical problem of voltage-flicker-tracking prob-
lem in power systems. The usefulness of the proposed approach
is demonstrated by its improved performance over other conven-
tional methods.

Index Terms—Bandwidth selection, least squares (LS), local
polynomial modeling (LPM), maximum-likelihood estimation, sys-
tem identification, time-varying linear systems (TVLSs).

I. INTRODUCTION

DYNAMIC systems with time-varying behaviors, such
as time-varying impedances in coaxial resonators [1],

time-varying channels in wireless-communication systems [2],
nonstationary mechanisms of physiological systems [3], fluc-
tuations in power distribution systems [4], etc., are frequently
encountered in various engineering applications. Given a dy-
namic system with known input and output measurements,
it is crucial to accurately identify the underlying dynamics
of the system for predicting future measurements and detect-
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ing system variations, for example, for fault detection, etc.
The discrete-time time-varying linear system (TVLS) is a sim-
ple yet efficient model to characterize such a dynamic sys-
tem [2]–[6]. Let x(t) = [x(1, t), x(2, t), . . . , x(L, t)]T be the
known input vector to the TVLS. The measured output y(t) of
the system can be written as

y(t) =
L∑

k=1

a(k, t)x(k, t) + σ(t)ε(t) (1)

or, in the matrix form

y(t) = aT (t)x(t) + σ(t)ε(t) (2)

where a(t)= [a(1, t), a(2, t), . . . , a(L, t)]T is the time-varying
coefficient vector of the system, which is assumed to be a
function of discrete-time instant t, L is the order of the system,
σ2(t0) is the conditional variance of additive noise at t = t0,
and ε(t) is an additive noise, which is frequently modeled as a
zero-mean white Gaussian process with unit variance. The input
vector x(t) may contain a regression on y(t), and it can also
contain exogenous signals. For instance, if the input is x(k, t) =
y(t − k), the TVLS will be reduced to an autoregressive (AR)
model. Similarly, if the input contains both past samples of y(t)
and exogenous signals, the AR with exogenous input model
can also be regarded as a TVLS. For an AR moving average
model (ARMA) or an ARMA with exogenous input (ARMAX)
model, the system is driven by a zero-mean white Gaussian
process. If the excitation is estimated at each time instant, then
the past approximated excitation can be included in the input
vector x(t), and both ARMA and ARMAX models can also
be rewritten in the form of a TVLS. However, the estimated
coefficients may not always converge to the true coefficients,
and such application of the TVLS to ARMA and ARMAX
models still requires a more detailed analysis.

Numerous methods have been proposed to identify or es-
timate the time-varying coefficients a(t) of the TVLS in (1).
They can be broadly classified into three categories [5]: adap-
tive filtering/Kalman filtering (KF), basis expansion model-
ing (BEM), and weighted least square (LS) (WLS) methods.
Adaptive-filtering methods, such as the least mean squares and
recursive least squares (RLS) methods, estimate the coefficients
recursively from the input and measured output. They usually
offer efficient implementation with different performance/
complexity tradeoffs. Most adaptive-filtering methods make use
of past measurements for estimation, and the convergence speed
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is therefore limited [8], [9]. On the other hand, the KF method
employs a state-space model to describe the coefficient varia-
tions where the current coefficients are treated as the system
state and are obtained by a linear transformation of the previous
coefficients or state plus an excitation variable through the state-
space model. Given prior information of the coefficient varia-
tions in the form of the state-space model and the covariance
matrices of the Gaussian distributed excitation and measure-
ment noises, the KF is an optimal recursive state estimator in the
minimum mean-square-error (MSE) sense. However, such prior
knowledge is often vague in real-world applications. To ad-
dress this, a generalized random walk Kalman filter (GRWKF),
which uses a generalized random walk model to describe the
variation of the system state, is widely used in practice for
its simplicity and efficiency [5], while other KF variants aim
to adaptively estimate the model recursively [10], [11]. In the
BEM method, an explicit deterministic model of the coefficient
variations is assumed, and the time-varying coefficients are
approximated by a linear combination of known basis functions
of time [12], [13]. The performance of the BEM method is
greatly dependent on the basis functions used, and its optimal
selection is not always accessible. The WLS method is similar
to the conventional LS method, except that kernels or windows
are employed to assign larger weights to local data and smaller
weights to remote data. The time-varying coefficients are then
estimated by minimizing a weighted sum-of-square estimation
errors. The selection of the window size or kernel bandwidth is
critical to the performance of the WLS method so that an ap-
propriate compromise between estimation accuracy (variance)
and modeling error (bias) can be achieved [5]. Unfortunately,
automatic data-driven kernel-bandwidth selection for WLS is
a difficult and open problem, which hinders considerably its
practical implementation.

In this paper, a new local polynomial modeling (LPM) ap-
proach is proposed to estimate the time-varying coefficients of
TVLSs. The LPM technique is originally a flexible and efficient
nonparametric approach in statistics [14]–[16] and has been
widely applied in data smoothing, derivative estimation, density
estimation, etc. [17]–[20]. To deal with the TVLSs, the pro-
posed LPM method models each element of the time-varying
coefficient vector locally by a set of polynomials with a kernel
having a certain bandwidth. Consequently, the estimation of
time-varying coefficients is reduced to the estimation of the
local polynomial coefficients, which can be easily performed
using the LS method.

To establish the asymptotic behaviors of the proposed LPM
estimator for TVLS, new asymptotic expressions for the estima-
tion bias and variance are derived. The asymptotic expressions
show that both the bias and variance are functions of the kernel
bandwidth, and there exists an optimal local bandwidth which
minimizes the MSE of each element in the coefficient vector at
each time instant. While the analytical formulas derived are use-
ful for theoretical work, it involves quantities which may not be
easily estimated in practice. Therefore, a “data-driven” variable
bandwidth selection (VBS) scheme is proposed for selecting
the local bandwidth in the LPM method. The basic idea of the
data-driven or empirical scheme is to approximate the bias and
variance of the LPM for a given bandwidth. Hence, an estimate

of the optimal bandwidth can be obtained by minimizing the
approximate MSE over a bandwidth set, which consists of a
finite set of candidate bandwidth values. Following the classical
approach in [16], a novel algorithm to approximate the MSE
is proposed. It employs a “pilot” LPM of the system with a
slightly higher polynomial order to estimate the bias and vari-
ance required in the approximated MSE from which the optimal
candidate bandwidth from the bandwidth set can be determined.
Since this “pilot fit” also requires a pilot bandwidth, we propose
to adopt the intersection of confidence interval (ICI) method
[18]–[21] for choosing this pilot bandwidth because of its good
performance and simple implementation. The ICI method is
an empirical adaptive bandwidth-selection method proposed by
Goldenshluger and Nemirovski [21]. It has been successfully
employed in various areas, including local polynomial regres-
sion, image processing, and time–frequency analysis [18]–[20].
Interested readers are referred to [18]–[20] for more details.
To further improve the estimation accuracy of the proposed
LPM method with VBS (LPM-VBS), each coefficient in the
coefficient vector of the LPM model is assigned a separate
bandwidth, instead of using a global bandwidth for the whole
coefficient vector. This facilitates the estimation and change de-
tection of individual coefficient in the coefficient vector, which
is very useful in fault detection and other applications. The
performance of the proposed LPM-VBS method was evaluated
using various types of simulated TVLSs, and the results show
that the proposed method yields more accurate estimates than
conventional TVLS identification methods such as the RLS,
GRWKF, and generalized random walker Kalman smoother
(GRWKS) algorithms in testing scenarios with moderate to
high signal-to-noise ratio (SNR). At low coefficient variation,
the GRWKS with smoothness-prior-constrained parameter es-
timation may perform slightly better than the proposed LPM
method. At fast coefficient variation and low SNR, GRWKS
with recursive parameter estimation may perform slightly better
than LPM. Therefore, their good performance is considerably
dependent on the appropriate selection or estimation of the
model parameters, which is somewhat difficult to achieve.

Furthermore, we extend the proposed LPM method to han-
dle time-varying systems with mild nonlinearity by means of
linearization. A time-varying quadratic system was tested to
demonstrate the usefulness of the LPM method for mildly
nonlinear systems. Lastly, we applied the LPM-VBS method
to track the instantaneous voltage flicker in power distribu-
tion systems. Voltage flickers may cause serious power-quality
problems, and they need to be estimated accurately. Simula-
tion results show that the proposed LPM-VBS method has
better performance than conventional methods in tracking the
envelope of voltage flickers. These results suggest that the
proposed LBM-VBS method can be a valuable tool in modeling
time-varying systems for various engineering and industrial
applications.

It should be noted that the TVLS considered in the engi-
neering field is closely related to the varying-coefficient model
(VCM) [22] in the statistical community. As LPM is a powerful
nonparametric modeling technique, it has received much atten-
tion and success in various branches of statistics [16]. Recently,
local-polynomial-based estimators for VCM have been studied
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in [23]–[26] by researchers in the statistical community. They
were mainly concerned with the algorithmic aspects of the
method, and a theoretically supported bandwidth selector has
not been fully developed. Moreover, their performance for
identifying TVLSs has not been tested and compared with other
identification methods in the engineering literature. This paper
is the first attempt to tackle the VBS problem for LPM with the
following contributions: 1) An asymptotic analysis of the LPM
estimator is developed, and the existence of the optimal band-
width for each coefficient at each time instant is established;
2) a fully data-driven bandwidth selector is proposed, and
related issues in practical implementation, particularly online,
are addressed; 3) each coefficient in the coefficient vector of the
LPM model is assigned a separate bandwidth, instead of using
a global bandwidth for the whole coefficient vector, to improve
the estimation accuracy, for example, for fault detection and
location, etc.; 4) a detailed performance evaluation of the
proposed method and other conventional methods for system
identification in a variety of testing scenarios is carried out;
5) the LPM method is extended to the identification of time-
varying systems with known and mild nonlinearity; and 6) it
was applied to the tracking problem of voltage flickers in power
delivery systems with improved performance over conventional
methods.

The rest of this paper is organized as follows. In Section II,
the LPM for TVLSs is introduced. Section III is devoted to the
asymptotic analysis of the LPM estimator. The adaptive VBS
method for LPM is developed in Section IV. The LPM-VBS
method is further extended to time-varying and mildly nonlin-
ear systems in Section V. Simulation results and comparisons
to conventional methods are presented in Section VI. Finally,
conclusions are drawn in Section VII.

II. LPM OF TVLS

In the proposed LPM method, the kth coefficient a(k, t) of
the TVLS in (1) is modeled locally at time t = t0 as a pth-order
polynomial [14], [15]

a(k, t) ≈
p∑

j=0

1
j!

α(j)(k, t0)(t − t0)j (3)

where α(j)(k, t0) are the associated polynomial coefficients.
These polynomial coefficients can be estimated locally by

maximum-likelihood estimation. Since the additive noise is
zero mean and white Gaussian distributed, maximizing the
likelihood is equivalent to minimizing a locally weighted LS
criterion between the observations and the desired local poly-
nomials as follows:

min
β

n∑
i=1

⎡⎣yi−
L∑

k=1

p∑
j=0

β(j)(k, t0)(ti−t0)jx(k, ti)

⎤⎦2

Kh(ti − t0)

(4)

where yi = y(ti), n is the data length, β(j)(k, t0) =
α(j)(k, t0)/j!, and Kh(ti − t0) = (1/h)K((1/h)(ti − t0)) is
a weighting function which controls the bandwidth h and,
hence, the number of neighboring measurements around t0 used
to estimate β(j)(k, t0). It can be seen that the weight function
or kernel Kh(·) is obtained by scaling a basis kernel function
K(·) in time by a factor of h.

Next, we rewrite (4) more compactly in a matrix form as

min
β

(
y − X(t0)B(t0))T W (t0)(y − X(t0)B(t0)

)
(5)

where the definitions are shown at the bottom of the page,
with β(j)(t0) = [β(j)(1, t0), . . . , β(j)(L, t0)]T . It can be seen
that B(t0), X(t0), and W (t0) are all functions of t0, but for
notation simplicity, we have dropped this dependence in the
subsequent text.

The LS solution to (5) is given by

B̂ = (XT WX)
−1

XT Wy (6)

and the kth coefficient at time instant t0 is obtained as
â(k, t0) = α̂(0)(k, t0) = B̂(k, t0). By estimating â(k, t0) at
each time instant, we obtain a smooth function of the time-
varying coefficients from the input x and the noisy output y.

The LPM method can be viewed as a combination of WLS
and BEM with polynomial basis functions. It extends the BEM
method by employing a kernel function to put more emphasis
on local information, and it extends the WLS method by em-
ploying a high-order polynomial expansion in the regression.
When p = 0, LPM is reduced to the conventional WLS method.
The Taylor series expansion, which grounds the LPM method,
is the most fundamental and commonly used technique to

y = [y1, y2, . . . , yn]T ∈ Rn

W (t0) = diag {Kh(ti − t0); i = 1, . . . , n} ∈ Rn×n

X(t0) =

⎛⎜⎜⎝
xT (t1) (t1 − t0)xT (t1) · · · (t1 − t0)pxT (t1)
xT (t2) (t2 − t0)xT (t2) · · · (t2 − t0)pxT (t2)

...
...

. . .
...

xT (tn) (tn − t0)xT (tn) · · · (tn − t0)pxT (tn)

⎞⎟⎟⎠ ∈ Rn×(p+1)L

B(t0) =
{[

β(0)(t0)
]T

, . . . ,
[
β(p)(t0)

]T
}T

∈ R(p+1)L
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approximate a smooth function when the underlying structure
of the function is unknown. An important advantage of the
proposed LPM method is that the bias and variance can be ana-
lytically derived, which paves the way to the solution of the key
problem of automatic data-driven VBS. For the KF and BEM
methods, the performance will heavily rely on a specified sto-
chastic or deterministic model of the system. When an explicit
model of the system is unavailable, the generalized random
walk model in the GRWKF aims to stabilize the state update by
restricting the variation by the simple state equation. This can
be viewed as a regularization term and helps to reduce the vari-
ance of the state estimates. On the other hand, the LPM method
aims to build a nonparametric model using local polynomial
representation from the available data so that all available
measurements may be taken into account during coefficient
estimation.

Moreover, due to the analytical simplicity of local polyno-
mial, both asymptotic and practical methods for estimating the
bandwidth can be obtained, as illustrated in this paper. In short,
the BEM and KF methods rely more on “explicit” models,
while the LPM estimator relies more on “data-dependent”
models. Therefore, the LPM method is a good alternative to
conventional approaches for identifying TVLSs, particularly
when the underlying coefficient model is unavailable and the
measurement is reliable, i.e., the SNR is large. Finally, it is
noted that it is possible to develop a novel state-space model
which employs the LPM-estimated priors at each time instant
as the state equation while having a variable number of mea-
surement equations. This will be useful at low SNR because
of the additional prior state information. However, since the
number of measurements is variable at each time instant and
the complexity to estimate the model parameters such as noise
covariance will increase, we have not pursued such direction
in this paper. Simulation results show that the performance
of the proposed method is very satisfactory at moderate to
high SNR.

In the next section, we shall derive new expressions for the
asymptotic bias and variance of the LS estimator in (6), aiming
to validate the existence of the optimal bandwidth parameters
and to establish its asymptotic expressions. The data-driven
or empirical method for approximating this optimal bandwidth
parameter h will then be discussed in Section IV.

III. ASYMPTOTIC ANALYSIS OF LPM ESTIMATOR

The conditional bias based on Ξ = {X,y} can be obtained
by taking the expectation of (6) as

E(B̂|Ξ) = (XT WX)
−1

XT Wm

= (XT WX)
−1

XT W (m − XB) + B

= (XT WX)
−1

XT Wr + B (7)

where m = E(y|Ξ) = [m(t1), . . . , m(tn)]T , B is the true pa-
rameter, and r = m − XB is the residual vector of the local
polynomial approximation. Thus, the conditional bias is

Bias(B̂|Ξ) = (XT WX)
−1

XT Wr. (8)

From definition, the conditional covariance of (6) var(B̂|Ξ)
is given by

E

({
B̂ − E(B̂)

}{
B̂ − E(B̂)

}T
∣∣∣∣Ξ)

= (XT WX)
−1

XT W

× E
(
(y − m)(y − m)T |Ξ

)
WX(XT WX)

−1

= (XT WX)
−1

(XT ΣX)(XT WX)
−1

(9)

where Σ = WE((y − m)(y − m)T |Ξ)W = diag{K2
h(ti −

t0)σ2(ti), i = 1, . . . , n}. We are interested in the asymptotic
expressions of the bias in (8) and variance in (9) as functions
of the bandwidth h when the number of measurements is large.
To this end, we allow h to tend to zero so that we can employ
the Taylor series expansion to reveal their order of dependence
as h → 0. However, n is still assumed to be large so that the
central limit theorem (CLT) [27] can be applied to derive the
asymptotic results. Therefore, we assume that nh → ∞.

First of all, we define below two key quantities found in (8)
and (9), namely, Sn and S∗

n.

Sn = XT WX (10)

where the (jL + q, lL + m)th element in the matrix Sn ∈
R(p+1)L×(p+1)L, (Sn)jL+q,lL+m, is given by sn,j+l,q,m (0 ≤
j, l ≤ p and 1 ≤ q, m ≤ L) with

sn,ς,q,m =
n∑

i=1

x(q, ti)x(m, ti)Kh(ti − t0)(ti − t0)ς

with ς = j + l. (11)

S∗
n = XT ΣX (12)

where the (jL + q, lL + m)th element in the matrix S∗
n ∈

R(p+1)L×(p+1)L, (S∗
n)jL+q,lL+m, (0 ≤ j, l ≤ p and 1 ≤ q,

m ≤ L) is given by

s∗n,ς,q,m =
n∑

i=1

x(q, ti)x(m, ti)K2
h(ti − t0)(ti − t0)ςσ2(t0),

with ς = j + l. (13)

The conditional variance is thus given by S−1
n S∗

nS−1
n . Next, we

shall evaluate the asymptotic expressions of Sn and S∗
n. Then,

we shall make use of them to evaluate the asymptotic bias and
variance of B̂. We shall also make the following assumptions
for derivation of the asymptotic results: 1) The input vector
x(t) is a random vector with finite second-order statistics;
2) the system is persistently excited (i.e., the correlation matrix
of x(t) is invertible); 3) the sampling density f(t0 + hτ) and
the correlation coefficient E[x(q, t0 + hτ)x(m, t0 + hτ)] are
continuous functions of h as h → 0; and 4) the additional noise
is white Gaussian distributed with zero mean and is independent
of x(t) and a(t).
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Assuming that the observations are independent and identi-
cally distributed, by CLT, we have

√
n

(
1
n

n∑
i=1

x(q, ti)x(m, ti)Kh(ti − t0)(ti − t0)ς − μS

)
D−→ ℵ

(
0, σ2

S

)
(14)

where μS = E[x(q, ti)x(m, ti)Kh(ti − t0)(ti − t0)ς ]
and σ2

S = var[x(q, ti)x(m, ti)Kh(ti − t0)(ti − t0)ς ] are,
respectively, the sample mean and variance and ℵ(0, σ2

S) is the
normal distribution with zero mean and variance σ2

S . By the
definition of μS , the independence of x(q, t) and the density of
the samples, one gets

μS = h−1

∫
E [x(q, t)x(m, t)]K

(
1
h

(t − t0)
)

(t − t0)ςf(t)dt

(15)

where f(t) is the sampling density function at t. Using the
substitution t − t0 = hτ , (15) becomes

μS = hς

∫
E [x(q, t0 + hτ)x(m, t0 + hτ)]

· K(τ)τ ςf(t0 + hτ)dτ. (16)

As mentioned earlier, we are interested in a Taylor series
expansion in terms of the bandwidth parameter h. Hence, we
assume that h → 0, while nh → ∞, i.e., the number of mea-
surements is still very large that CLT is applicable. To proceed
further, we assume that E[x(q, t0 + hτ)x(m, t0 + hτ)] and
f(t0 + hτ) are continuous in h such that

E[x(q, t0+ hτ)x(m, t0 + hτ)]= E[x(q, t0)x(m, t0)]+ O(h)τ

f(t0 + hτ) = f(t0) + O(h)τ. (17)

This is equivalent to saying that x(q, t) is nonstationary but
is still smooth in the time domain. Accordingly, (16) becomes

μS = hς

∫
{E [x(q, t0)x(m, t0)] + O(h)}

× K(τ)τ ς (f(t0) + O(h)τ) dτ

= hςf(t0)rx,q,m(t0)μs {1 + o(1)} (18)

where rx,q,m(t0) = E[x(q, t0)x(m, t0)] is the correlation of
the inputs x(q, t0) and x(m, t0), and μς =

∫
τ ςK(τ)dτ . The

notation χ(ζ) = O(δ(ζ)) means that a real-valued χ(ζ) is less
than some constant multiple of |δ(ζ)|, and the notation χ(ζ) =
o(δ(ζ)) means that the quantity χ(ζ)/δ(ζ) tends to zero as
ζ → ζ0, where ζ0 is a real-valued constant or infinity [27].
Thus, o(1) in (18) denotes one real-valued quantity tending to
zero as h → 0.

The variance σ2
S can be derived similarly as

σ2
S =E

[
x2(q, t)x2(m, t)K2

h(t − t0)(t − t0)2ς
]

=h2ς−1

∫
r∗x,q,m(t0)K2(τ)τ2ς {f(t0) [1 + o(1)]} dτ

=h2ς−1f(t0)r∗x,q,m(t0)νς {1 + o(1)} (19)

where r∗x,q,m(t0) = E[x2(q, t0)x2(m, t0)] and νς =∫
τ ςK2(τ)dτ . Combining (14), (18), and (19) gives

sn,ς,q,m

= nμS +
√

nOP

(√
σ2

S

)
= nhς

{
f(t0)rx,q,m(t0)μς [1 + o(1)]

+ OP

(√
(nh)−1νςf(t0)r∗x,q,m(t0) [1 + o(1)]

)}
= nhς

{
f(t0)rx,q,m(t0)μς [1 + o(1)] + OP

(√
(nh)−1

)}
= nhςf(t0)rx,q,m(t0)μς {1 + oP (1)} . (20)

Here, the stochastic order symbols OP (·) and oP (·) are used
since sn,ς,q,m is a random variable. The notation χ(ζ) =
Op(δ(ζ)) means that the random variable χ(ζ) is stochastically
bounded by some constant multiple of |δ(ζ)|, and the notation
χ(ζ) = op(δ(ζ)) means that χ(ζ)/δ(ζ) converges to zero in
probability [27].

Using (20) and (11), one gets

(Sn)jL+q,lL+m = sn,j+l,q,m

= nf(t0)h(j+l)rx,q,m(t0)μj+l {1 + oP (1)}
(21)

Sn = nf(t0)Q ⊗ RX {1 + oP (1)} (22)

where Q = HUH , H = diag(1, h, . . . , hp), (U)0≤j,l≤p =
μj+l, and (RX)1≤q,m≤L = rx,q,m(t0). Note that
U ∈ R(p+1)×(p+1), H ∈ R(p+1)×(p+1), Q ∈ R(p+1)×(p+1),
and RX ∈ RL×L.

Using similar arguments, we have

S∗
n = nf(t0)h−1σ2(t0)Q∗ ⊗ RX {1 + oP (1)} (23)

where Q∗ = HU ∗H and (U ∗)0≤j,l≤p = νj+l. Likewise,
U ∗ ∈ R(p+1)×(p+1), and Q∗ ∈ R(p+1)×(p+1). Equations (22)
and (23) can be substituted back to (8) and (9) to obtain the
asymptotic expressions for the bias and variance, respectively.

More precisely, from (22) and (23) and using the Slutsky’s
theorem, we get the variance of B̂ in (9) as

Var(B̂|Ξ) =S−1
n S∗

nS−1
n

=
σ2(t0)

nf(t0)h
(Q ⊗ RX)−1(Q∗ ⊗ RX)

× (Q ⊗ RX)−1 {1 + oP (1)}

=
σ2(t0)

nf(t0)h
(Q−1Q∗Q−1)

⊗
(
R−1

X RXR−1
X

)
{1 + oP (1)}

=
σ2(t0)

nf(t0)h
(H−1U−1U ∗U−1H−1)

⊗ R−1
X {1 + oP (1)} . (24)
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For the asymptotic bias in (8), we first employ the Taylor
series expansion of the residual r = m − XB at B̂ to obtain

Bias(B̂|Ξ) = (XT WX)−1XT Wr = S−1
n XT Wr

=S−1
n XT W

{
Xp+1β

(p+1) + oP (Xp+1)
}

=S−1
n

{
cnβ(p+1) + oP (nhp+1)

}
(25)

where xp+1=[(t1−t0)p+1x(t1), (t2−t0)p+1x(t2), . . . , (tn−
t0)p+1x(tn)]T ∈ Rn×L, cn ∈ R(p+1)L×L = XT Wxp+1 =
nf(t0)q ⊗ RX{1 + oP (1)} with q = [hp+1μp+1, h

p+2μp+2,

. . . , h2p+1μ2p+1]T ∈ Rp+1, and β(p+1) = [β(p+1)(1, t0),

. . . , β(p+1)(L, t0)]T ∈ RL is the (p + 1)th derivative of β.
Using the asymptotic expressions of Sn and S∗

n in (21) and
(22), the asymptotic conditional bias of B̂ in (25) becomes

Bias(B̂|Ξ) = (Q ⊗ RX)−1(Q ⊗ RX)β(p+1) {1 + oP (1)}
=
[
(H−1U−1U) ⊗ IL

]
β(p+1)hp+1{1 + oP (1)}

(26)

where u = (μp+1, . . . , μ2p+1)T ∈ Rp+1.
Since the polynomial coefficients and the regression coef-

ficients are related by α(j)(k, t0) = j!β(j)(k, t0) = j!B(jL +
k, t0), the asymptotic conditional bias and variance of the local
polynomial coefficients α̂(j)(k, t0) are, respectively

Bias
(
α̂(j)(k, t0)|Ξ

)
=

{
eT
v

[
H−1U−1u⊗IL

]
α(p+1)(t0)

}
j!hp+1

(p+1)!
{1+oP (1)}

=

{
eT
v

[
U−1u⊗IL

]
α(p+1)(t0)

}
j!hp+1−j

(p+1)!
+oP (hp+1−j)

(27)

Var
(
α̂(j)(k, t0)|Ξ

)
=

{
eT
v

[
H−1U−1U ∗U−1H−1⊗R−1

X (t0)
]
ev

}
j!2σ2(t0)

nf(t0)h

+ {1 + oP (1)}

=

{
eT
v

[
U−1U ∗U−1⊗R−1

X (t0)
]
ev

}
j!2σ2(t0)

nf(t0)h2j+1

+ oP

(
1

nh2j+1

)
(28)

where v = jL + k and ev = (0, . . . , 0, 1, 0, . . . , 0)T with a
value one on the vth position and zero elsewhere.

It can be seen from (27) and (28) that as h increases, the
squared bias will increase while the variance will decrease.
Hence, there exists a locally optimal bandwidth hopt(k, t0) for
estimating α̂(j)(k, t0), which minimizes the MSE as follows:

MSE
(
α̂(j)(k, t0)|Ξ

)
=
[
Bias

(
α̂(j)(k, t0)|Ξ

)]2
+ Var

(
α̂(j)(k, t0)|Ξ

)
. (29)

By setting the derivative of (29) with respect to h to zero, the
following asymptotic optimal bandwidth is obtained:

hopt(k, t0) =

{
eT
v

[
U−1U ∗U−1 ⊗ R−1

X (t0)
]
ev{

eT
v [U−1u ⊗ IL]α(p+1)(t0)

}2

× {(p + 1)!}2 (2j + 1)
2(p + 1 − j)

σ2(t0)
nf(t0)

}1/(2p+3)

. (30)

Now, we have already established the asymptotic expressions
of the bias and variance of the proposed LPM approach and
the existence of an optimal bandwidth. These results, although
useful in analytical work, cannot be used directly in practice.
It is because some quantities in (30), mainly α(p+1)(t0), are
difficult to be calculated, which makes the optimal band-
width difficult to be estimated accurately. Instead of computing
an optimal bandwidth in an analytical form, we adopt the
“data-driven” approach and propose an empirical method to
select the optimal bandwidth from a finite set of possible
bandwidths.

IV. DATA-DRIVEN VBS FOR LPM

In the empirical bandwidth-selection methods to be intro-
duced, an approximate optimal bandwidth can be obtained by
minimizing an approximated MSE over a set of possible band-
widths. Toward this end, we need the following approximation
methods to determine the bias, variance, and MSE.

A. Approximated Bias and Variance

Although the bias and variance cannot be directly computed
because of the unknown quantities, good finite sample approx-
imations of the bias and variance can still be derived, as in the
local polynomial regression [16]. For instance, the conditional
bias, which contains the unknown residual r = m − XB, can
be estimated using a Taylor series expansion with an order
p + pex

b
(
B̂(t0)

)
= (XT WX)−1XT Wτ (31)

where τ is an n × 1 vector with∑pex

υ=1

∑L
k=1 β(p+υ)(k, t0)(ti − t0)p+υx(k, ti) as its ith

(i = 1, 2, . . . , n) element and the quantities β(p+υ)(k, t0) can
be estimated by fitting a polynomial of degree p + pex. The
basic idea is that the observations can be better fitted by a
higher order polynomial, and hence, the model provided by
this higher order polynomial can be used to estimate the bias
for a local polynomial model with lower order. The excess or
extra order pex is generally chosen as pex = 2 because this
selection would reduce the computational costs and lead to a
bandwidth selector which is not far from being

√
n-consistent

[16]. Since the higher order model is still based on LPM, we
still need a bandwidth h∗ in this (p + pex)th-order LPM. This
bandwidth h∗ is usually referred to as the “pilot bandwidth,”
which will be discussed later in Section IV-B.
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Next, suppose local homoscedasticity; the conditional vari-
ance can be estimated as

V
(
B̂(t0)

)
= (XT WX)−1XT W 2X(XT WX)−1σ2(t0).

(32)

The noise variance σ2(t0) is estimated as the normalized
weighted residual sum of squares [16]

σ̂2(t0) =
∑n

i=1(yi − ŷi)2Kh∗(ti − t0)
tr
{
W ∗ − W ∗X∗(X∗T W ∗X∗)−1X∗T W ∗}

(33)

where X∗ and W ∗ are, respectively, the design matrix and
weighting matrix in the (p + pex)th-order LPM using the pilot
bandwidth h∗.

The MSE of the vth entry of B̂(t0) at a given point t0 is
given by

MSEv

(
B̂(t0)

)
= b2

v

(
B̂(t0)

)
+ Vv

(
B̂(t0)

)
(34)

where b̂v(B̂(t0)) is the vth element of b(B̂(t0)) and Vv(B̂(t0))
is the vth diagonal element of V (B̂(t0)). Note that we
only focus on the estimation of the coefficients â(k, t0) =
α̂(0)(k, t0) = B(k, t0), and thus, it is only required to approx-
imate MSE(â(k, t0)) = MSEk(B̂(t0)) by the approximated
bias and variance from (31)–(33). Their derivatives can also be
estimated in a similar manner. We now propose an ICI-method-
based algorithm for finding the pilot bandwidth h∗ and, hence,
estimate the quantities X∗, W ∗, and the higher derivatives
β(p+υ)(k, t0), as required by (33).

B. Pilot Bandwidth Selection (the ICI Method)

The ICI method is an empirical adaptive bandwidth-selection
method proposed by Goldenshluger and Nemirovski [16], and
it has been successfully applied to various areas, including local
polynomial regression, image processing, and time–frequency
analysis, for selecting the variable bandwidth [18]–[20]. The
theoretical background of the ICI method is omitted to save
space, and more details can be found in [18]–[20]. We now
briefly review the basic concept and the algorithm of the ICI
method.

Given a set of bandwidth parameters in an ascending order,
generally, in a form of an exponential series

H̃ = {hm|hm = h0(ha)m, m = 0, . . . ,M − 1} (35)

where ha > 1 is a step factor, h0 > 0 is the base bandwidth,
and M is the number of possible bandwidths, the ICI method
determines the optimal bandwidth by comparing the confidence
intervals of the estimates with different bandwidths in the
bandwidth set.

Consider a series of confidence intervals Dm = [Lm, Um]
obtained from the estimated â(k, t0) with different values of
bandwidth hm in the set H̃

Um = â(k, t0hm) + κ · SD (â(k, t0hm)) (36)

Lm = â(k, t0hm) − κ · SD (â(k, t0hm)) (37)

where the standard deviation SD(â(k, t0;hm)) is the square
root of Vk(B̂(t0;hm)); κ is a threshold parameter used to
adjust the width of the confidence interval, and it can be cho-
sen as the one that minimizes the generalized cross-validation
criterion [18].

For a small value of h, we expect that the bias is small and
the confidence interval will gradually decrease with increasing
value of h, while the center of the interval remains more or less
fixed. When h is increased to a point where the observations
cannot be satisfactorily modeled, a large bias will be observed,
and the center of the interval will change significantly with
respect to the others, while the length of the interval will still
be small. As a result, the confidence interval will no longer
intersect those with smaller values of h.

Motivated by this observation, the ICI bandwidth-selection
method computes and examines the following quantities from
the confidence intervals in order to detect this sudden change:

Lm = max[Lm−1, Lm], for m = 1, 2, . . . ,M − 1

Um = min[Um−1, Um], for m = 1, 2, . . . ,M − 1

L0 =U0 = 0. (38)

It can be seen that Lm is the largest upper bound of the
confidence interval for bandwidth evaluated up to hm, while
Um is the corresponding lower bound. The largest value of
these m’s for which Um ≥ Lm gives the desirable bandwidth
hICI(k, t0) because the confidence intervals no longer intersect
with each other above the bandwidth hICI(k, t0).

In this paper, we employ the ICI method to determine the pi-
lot bandwidth and then generate a relatively smooth bandwidth
using the method described in Section IV-A. The latter is based
on the Fan and Gijbels’ method for local polynomial regression
[16]. Note that the ICI method is an effective adaptive VBS
method, and therefore, it can also be used to find the data-driven
bandwidth of our LPM model. It has the advantages of lower
arithmetic complexity and better performance in systems with
jump discontinuities than the Fan and Gijbels’ method [20].
On the other hand, the Fan and Gijbels’ method usually gives
a smoother bandwidth estimate and yields better performance
for smooth time-varying signals and at low SNR. For a more
detailed comparison, the readers are referred to [20]. It should
be noted that variations of these basic schemes exist, and the
proposed method is chosen for its good performance.

C. Data-Driven VBS

Suppose that we have used the ICI method to obtain the
variable bandwidths hICI(k, t0) for the kth coefficient at each
time instant t0. Then, hICI(k, t0) will be used as pilot band-
widths h∗(k, t0) to compute X∗, W ∗, and β̂(p+υ)(k, t0) in
(31)–(33). Next, with the pilot estimates, we can calculate a
series of bias, variance, and MSE values of the LPM estimators
using each bandwidth in the set H̃ . Finally, the optimal data-
driven bandwidth is the bandwidth having the minimum esti-
mated MSE.

As observed in [16], the estimated MSE usually exhibit
considerable variation. Hence, it is better to estimate an optimal
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bandwidth for a small subinterval instead of at each time instant
t0. In other words, a constant bandwidth will be used within the
subinterval. To this end, the whole measurement is first split up
into a set of nonoverlapping subintervals, for example, Il. The
bandwidth function h̃MMSE(k, t) in the lth subinterval Il can
be determined by minimizing the integrated MSE

h̃MMSE(k, t|t ∈ Il) = arg min
h

∫
Il

MSE (â(k, th)) dt. (39)

The main difference in using (39) with (34) is that, the estimated
MSE for each sample inside the subinterval Il are summed up
together to form the integrated MSE:

∫
Il

MSE(â(k, t;h))dt.
The proposed bandwidth-selection method can then be
invoked to determine the optimal data-driven bandwidth
h̃MMSE(k, t|t ∈ Il) for this subinterval. The averaging opera-
tion reduces the sensitivities of the algorithm to additive noise.

Since a rapidly fluctuating bandwidth is generally less de-
sirable, h̃MMSE(k, t) is usually smoothed (averaged) with a
length of Il to yield the final local bandwidth hMMSE(k, t),
i.e., hMMSE(k, t) =

∫ t+Il/2

t−Il/2 h̃MMSE(k, τ)dτ . Lastly, the LPM-
based WLS proposed in Section II with the computed local
bandwidth hMMSE(k, t) is used to compute the final estimate
â(k, t;hMMSE(k, t)). As suggested in [16], the length of the
subinterval Il can be selected around 10 log10(n), where n
is the size of the data. For online application, it is usually
chosen as the interval where the system will remain somewhat
stationary.

We now summarize the proposed LPM-VBS method as
follows.

Step 1) For each bandwidth h in H̃ of (35), an estimate of
the coefficient â(k, t;h) is calculated by a pth-order
LPM with the constant bandwidth h at every time
instant using (6).

Step 2) A pilot bandwidth hICI(k, t) is estimated using
the ICI method (36)–(38) based on the estimates
â(k, t;h).

Step 3) For each bandwidth h in H̃ , a (p + pex)th-order
LPM with the pilot bandwidth hICI(k, t) is carried
out to approximate the MSE MSE(â(k, t;h)) using
(31)–(34).

Step 4) In the lth subinterval, the optimal bandwidth
h̃MMSE(k, t|t ∈ Il) is approximated as the band-
width having the minimum integrated MSE (39),
and the desired variable bandwidth hMMSE(k, t) is
obtained by smoothing h̃MMSE(k, t) with the length
of subinterval Il.

Step 5) A pth-order LPM with hMMSE(k, t) is finally
performed to obtain the final estimates of the
time-varying coefficient â(k, t;hMMSE(k, t)), k =
1, . . . , L, using (6).

D. Practical Issues

1) Computational Complexity: First, we consider the arith-
metic complexity of the LPM estimator in (6): B̂ =
(XT WX)−1XT Wy, where X is an n × (p + 1)L matrix,

y is an n × 1 vector, and W is an n × n diagonal matrix.
The complexities of computing XT WX and XT Wy are
O{n(p + 1)2L2} and O{n(p + 1)L}, respectively, and the
matrix inversion needs a complexity of O{[(p + 1)L]3}. If
n � (p + 1)L, the complexity of the LPM solution at each
time point can be regarded as O(n). Since the approximations
of bias and variance require a (p + pex)th fitting and the ICI
bandwidth selector needs to calculate LPM solutions using a
series of bandwidth parameters, the actual complexity of the
LPM estimator is higher than the adaptive filtering and BEM
methods. The RLS and KF methods have a complexity of
O{[(p + 1)L]3} at each time instant, while the complexity of
BEM is around O(n) for all time instants if n � (pBEM + 1)L,
where pBEM is the numbers of basis functions used in BEM.

The computational complexity of the basic LPM algorithm
can be further simplified. If the kernel has a limited support,
such as the Epanechnikov kernel used in this paper, then the
number of actual time points included in the kernel is finite. Let
us denote it as nK . Hence, the corresponding complexity of the
LPM solution will decrease considerably to O(nK) if nK �
(p + 1)L. Since nK increases with the bandwidth parameter h,
a large bandwidth will increase the computational complexity.

2) Selection of Kernel: As mentioned earlier, a kernel with
compact support is desirable because it can reduce the complex-
ity significantly. In this paper, following the recommendation
of literature [16] and [24], the following basis Epanechnikov
kernel is employed:

K(u) =
{

3
4

(
1 − |u|2

)
, |u| < 1

0, |u| ≥ 1.
(40)

Consequently, for an Epanechnikov kernel with bandwidth
h, Kh(u) = (1/h)K(u/h), only the time points included in
interval (t0 − h, t0 + h) are required for local estimation, and
thus, the effective length of the kernel is 2h. Other types of
kernels, such as Gaussian kernels and biweight kernels, can also
be used without much performance difference [16].

3) Selection of Bandwidth Set: The next problem is how to
select the bandwidth set H̃ used in the empirical bandwidth-
selection method. The bandwidth parameter h0 should be
selected as the minimum bandwidth that makes the LPM es-
timators solvable. More precisely, the number of measurements
nK included in the interval (t0 − h0, t0 + h0) should be equal
to or larger than (p + pex + 1)L because a (p + pex)-order
LPM will be employed to approximate the MSE. If the data
are uniformly distributed at a sampling frequency of fs, we
get the following condition for the minimum bandwidth: h0 ≥
(p + pex + 1)L/(2fs). On the other hand, the largest element
in the bandwidth set h0h

M−1
a should be large enough so that

the corresponding local kernel can include all data points.
However, as mentioned before, too large a kernel will result in
high computational complexity. As a compromise, the largest
bandwidth used in this paper enables the largest kernel to cover
at least 1/8 of the whole data set.

The step factor ha determines the distances between two ad-
jacent bandwidth parameters in the bandwidth set and, thus, the
total number of bandwidth parameters in the set. A small step
factor ha implies more bandwidth parameters in H̃ , which may
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lead to more refined estimation results but will also increase the
complexity. To achieve a good tradeoff between performance
and complexity, the parameters ha is chosen to make sure that
the number of bandwidths M is larger than or equal to four.
From simulation results, it was found that the proposed band-
width setting given earlier gave satisfactory results in practice.
In real-time and online applications, the bandwidth set can be
determined experimentally from the variation of the system
responses, for example, through a small and fixed bandwidth.

4) Selection of Polynomial Order: As seen from the asymp-
totic expression of the bias in (27), the estimation bias is a func-
tion of polynomial order p, and a larger p can lead to a smaller
bias, in theory. However, it does not imply that the order p can
be arbitrarily large due to two reasons. First, (p + 1)L should
be smaller than the number of measurements nK in the smallest
kernel to ensure that the LPM solution in (6) is well posed.
Second, a higher order increases the variability of the LPM
estimator because it implies more parameters (i.e., with the di-
mension of (p + 1)L) to be estimated. Although the asymptotic
expression of variance in (28) does not include the polynomial
order p, the constant term S′−1S′∗S′−1 will generally increase
with p. More details about the influence of p on the variance
and the selection of p can be found in the comprehensive
book by Fan and Gijbels [16]. They also recommended a local
linear estimator (p = 1) because, compared with local constant
estimator (p = 0), the linear estimator will not suffer from any
loss in variance and can reduce the bias effectively. Therefore,
in this paper, the polynomial order is chosen as p = 1.

5) Online Implementation: Adaptive filtering and KF make
use of past measurements for current estimates, and thus, they
are suitable for tracking purposes. The proposed LPM method
can be easily extended for the purpose of online tracking
by employing a one-sided kernel. For example, the one-sided
Epanechnikov kernel is given by

K(u) =
{

3
4 (1 − u2), −1 < u ≤ 0
0, u ≤ −1 or u > 0.

(41)

Because the one-sided kernel only has a support of (t0 − h, t0),
its effective length is h. As a result, the minimum bandwidth in
the bandwidth set H̃ should satisfy h0 ≥ (p + pex + 1)L/fs

when the observations are uniformly distributed at a sampling
frequency of fs. In addition, to obtain a smooth bandwidth
function, the optimal bandwidth h(k, t) can be smoothed re-
cursively as

h(k, t) = λhh(k, t)

+ (1 − λh)median
(
h̄(k, t − 1), . . . , h̄(k, t − Il)

)
(42)

where h(k, t) is the raw bandwidth estimated by the ICI method
or the minimum MSE criterion, λh is the forgetting factor,
which should be close to one to ensure the smoothness of
the resultant bandwidth function, and Il is the length of the
smoothing window. The use of the median operation avoids
possible large variations in h(k, t) from affecting significantly
the smoothed bandwidth h(k, t). No other modification is nec-
essary when the proposed VBS scheme is extended for LPM
using one-sided kernel.

V. LPM FOR TIME-VARYING NONLINEAR SYSTEMS

Let us now consider the extension of the proposed LPM
method to identify a weakly nonlinear time-varying system
with a known structure as follows:

y(t) = φ
(
xT (t)a(t)

)
+ σ(t)ε(t) (43)

where φ(u) is a nonlinear scalar-valued function of u =
xT (t)a(t) and the other variables follow the definitions in (2).
Generally, the time-varying parameters a(t) can be estimated
by nonlinear estimation methods, such as the extended KF
(EKF), which linearizes the nonlinear function at the current
state. The LPM approach has the advantage of using a variable
bandwidth to cater to nonstationary parameter vector. To extend
the LPM approach to (43), the nonlinear function φ(xT a) can
be approximated as a first-order Taylor series expansion at a
given point a0

φ(xT a) = φ(xT a0) + dφ/du|u=xT a0
· xT (a − a0) (44)

where dφ/du is the derivative of φ evaluated at xT a0. Provided
that the nonlinearity of φ is mild and the expansion points
are appropriately chosen, the nonlinear function around the
expansion points can be well approximated by a first-order
Taylor series expansion of (44), which is a linear function of a.
Using the expansion of (44), the nonlinear system (43) becomes

y(t) ≈ φ
(
xT (t)a0(t)

)
+ dφ/du|u=xT (t)a0(t)

· xT (t) (a(t) − a0(t)) + σ(t)ε(t). (45)

For convenience, we can absorb the linearization error into the
noise term and replace the approximate sign by the equality
sign. Consequently, (45) can be written as a linear system of
a(t) as follows:

yφ(t) = dφ/du|u=xT (t)a0(t)x
T (t)a(t) + σ(t)ε(t) (46)

where

yφ(t) = y(t) − φ(xT (t)a0(t))
+ dφ/du|u=xT (t)a0(t)x

T (t)a0(t).

We can see that, through the linearization process, the time-
varying nonlinear system can be approximated by a TVLS,
which can be solved by the proposed LPM method. Although
bias may be introduced by the linearization process, its contri-
bution is small if the expansion point is close to the true value
of the coefficient, and the nonlinearity is mild. To this end, the
expansion points are selected by the following two procedures:
1) In the ICI method, expansion points can be assigned recur-
sively as the coefficient estimates at previous time instant, i.e.,
a0(t) = â(t − 1), and 2) during the approximation of MSE,
the expansion points are selected as the coefficients estimated
by the ICI method at the same time point. Simulation results
showed that the proposed scheme for selecting expansion points
can achieve satisfactory results.

Before presenting the simulation results, let us clarify the two
Taylor expansions used in the LPM method for time-varying
nonlinear system. The Taylor series expansion mentioned in
this section is employed to linearize the nonlinear system, and
its order is one, i.e., linear. On the other hand, the Taylor series
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Fig. 1. LPM for identification of a jumping-coefficient linear system: (a) True coefficients. (b) LPM estimates with a constant small kernel (h = 1/64). (c) LPM
estimates with a constant large kernel (h = 1/8). (d) LPM-VBS estimates (dashed lines: estimates with hICI; solid lines: estimates with hMMSE). (e) Adaptive
variable bandwidths (dashed lines: hICI; solid lines: hMMSE).

expansion discussed in Section II is used to approximate the
variations of the coefficient vector, and the expansion order p
can be any possible integers including one. The latter reduces
to a local linear approximation (p = 1) and is used in the
simulation in this paper. The estimation bias considered in
this paper results from the finite expansion order of the latter
Taylor series expansion. However, the linearization error of the
nonlinearity is somewhat difficult to characterize.

VI. SIMULATION RESULTS

A. Jumping-Coefficient Linear Systems

We first test the proposed LPM-VBS method using a TVLS
with both jumping and static coefficients, as shown in Fig. 1(a).
These types of situations occur, for example, in fault detection
of dynamic systems and other related applications. The input
data x was generated from a Gaussian process with zero mean
and unit variance. The order of the TVLS was L = 4. The
sampling rate was 512 Hz, and the number of measurements
was n = 512. The length of Il was set to 32 to produce a total
of 16 subintervals. A zero-mean white Gaussian noise with
variance σ2 = 0.1 was added to the test signal so that the SNR
was around 10 dB. The polynomial order used in LPM was p =
1, and the excess order for approximating the bias was pex = 2.
Epanechnikov kernels were employed, and the bandwidth set
for ICI was chosen as H̃ = {1/64, 1/32, 1/16, 1/8}, i.e., h0 =
1/64, ha = 2, and M = 4.

The LPM-VBS with variable local bandwidth (hICI and
hMMSE) was compared with LPM with a constant bandwidth,
which used one bandwidth for the whole data. It can be seen

clearly from Fig. 1 that, in LPM 1) A small bandwidth can
detect fast change of coefficients, but it may lead to large
variations for slow-varying coefficients, as shown in Fig. 1(b);
2) a large bandwidth can obtain smooth estimates when the
coefficients varied slowly, but it cannot accurately estimate fast-
varying coefficients, as shown in Fig. 1(c); and 3) local variable
bandwidth can obtain satisfactory results for the whole data set
by employing small bandwidths for jumping coefficients and
large bandwidths for slowly varying coefficients, as shown in
Fig. 1(d) and (e).

The estimation bias, variance, and MSE for each coefficient
can be estimated by means of Monte Carlo simulations. Sup-
pose that we perform Γ independent Monte Carlo realizations
of the simulated TVLS and denote the average of the esti-
mated coefficients as a(k, t) = (1/Γ)

∑Γ
γ=1 â(k, t; γ), where

â(k, t; γ) is the estimated coefficient of the γth realization.
The estimation bias, variance, and MSE were computed anal-
ogously as

Bias [â(k, t)] = ā(k, t) − a(k, t) (47)

Var [â(k, t)] =
1
Γ

Γ∑
γ=1

[â(k, tγ) − ā(k, t)]2 (48)

MSE [â(k, t)] =
1
Γ

Γ∑
γ=1

[â(k, tγ) − a(k, t)]2 . (49)

The estimation bias, variance, and MSE of a(1, t) in the
jumping-coefficient system are shown in Fig. 2. It can be seen
that the estimation bias for small h is much smaller than that
for large h around the jump discontinuity, while at flat areas,
the estimation bias is rather small. On the other hand, the
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Fig. 2. Estimation bias, variance, and MSE of a(1, t) in the jumping-coefficient linear system. (a) Squared bias. (b) Variance. (c) MSE. Dashed lines: LPM
estimates with a constant small kernel (h = 1/64); dotted lines: LPM estimates with a constant large kernel (h = 1/8); solid lines: LPM-VBS estimates with
hMMSE.

TABLE I
EMSD COMPARISONS BETWEEN LPM WITH DIFFERENT

BANDWIDTH-SELECTION SCHEMES FOR JUMPING-COEFFICIENT

LINEAR SYSTEMS (UNIT: DECIBELS)

estimation variance for large h is obviously smaller than that
for small h. As for the MSE, we can see that a small h achieves
a smaller MSE around the jump discontinuity, while a large h
has a smaller MSE at flat areas. The proposed local variable
bandwidths, which are small around the jump discontinuity and
large at flat areas, can obtain satisfactory results for the whole
period.

Next, the ensemble mean-squared deviation (EMSD) from
the true coefficients was calculated and used as the performance
measure for the whole time period

EMSD = 10 log10

{
1
n

n∑
i=1

L∑
k=1

[a(k, ti) − â(k, ti)]
2

}
. (50)

Table I shows the averaged EMSD values over Γ = 100 inde-
pendent runs. It can be seen that the LPM-VBS with variable
bandwidth (hICI and hMMSE) generally had better perfor-
mances than those with constant bandwidths, and the LPM
with hMMSE slightly outperformed the LPM with hICI. At
high noise level, for example, SNR = 0, a larger constant
bandwidth may achieve a slightly better result than adaptive
variable bandwidth. This may be due to the large variance of the
estimated quantities which degrade slightly the performance of
the VBS method.

B. Smooth-Coefficient Linear Systems

The aforementioned jumping-coefficient system contains
two extreme types of coefficient variations so that it can effec-
tively illustrate the results of VBS. In order to check whether
the optimal variable bandwidths obtained by the proposed
method are in high accordance with the asymptotic optimal
variable bandwidths derived in (30), a smooth-coefficient linear

Fig. 3. LPM for identification of a smooth-coefficient linear system: (a) True
coefficients a(1, t). (b) True coefficients a(2, t). (c) (Dashed line) Asymptotic
optimal variable bandwidth hasy(1, t) and (solid line) adaptive variable band-
width hMMSE(1, t). (d) (Dashed line: those too large values over 1.28 were
not shown) Asymptotic optimal variable bandwidth hasy(2, t) and (solid line)
adaptive variable bandwidth hMMSE(2, t).

system with time-varying coefficients a(1, t) = cos(3t) and
a(2, t) = 2 exp(−16t2) was also tested, as the coefficients con-
tain different extents of variations and their derivatives can be
easily calculated. The previous jump-coefficient system, whose
coefficient derivatives are mostly zero, is unsuitable because
most of the asymptotic optimal bandwidth will be infinity.
In total, n = 200 samples were uniformly distributed in the
time interval [−2, 2] so that the sampling density f(t) is
1/4. The input vector x(1, t) and x(2, t) were independently
generated from the Gaussian distribution with zero mean and
unit variance. As a result, the correlation matrix of the input
was given as Rx = I2. A zero-mean white Gaussian noise was
added with an SNR of 5 dB. The bandwidth set was chosen
as H̃ = {0.08, 0.16, 0.32, 0.64, 1.28}. The other parameters
for the LPM were the same as those in previous simulations.
Thus, all the quantities in the expression of asymptotic optimal
variable bandwidth (30) can be computed, and the resultant
asymptotic optimal variable bandwidth hasy is shown as dashed
lines in Fig. 3(c) and (d). The estimated optimal bandwidth
in Fig. 3(c) and (d) were averaged from 100 independent
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Fig. 4. Comparisons between various TVLS identification methods for a random-coefficient linear system (fc = 0.02, SNR = 5 dB). Dashed lines denote the
true coefficients, and solid lines are the estimates.

Monte Carlo runs. It can be seen that, overall, the consistency
between the theoretically derived asymptotic optimal band-
width and the estimated optimal bandwidth is good, particularly
when the theoretical bandwidth is small (because one of the
asymptotic assumptions is h → 0). When the derivative is
small, the estimated bandwidth hMMSE is not as large as the
theoretical asymptotic bandwidth hasy. It is due to the fact that
the asymptotic bandwidth hasy is based on the assumption that
n → ∞, while the estimated bandwidth hMMSE is obtained
from a finite number of samples. In addition, the bandwidth-
selection results were not as good at the beginning and the end
of the finite-sample data because of the zero-padded points on
the left and right sides of the samples, respectively.

C. Random-Coefficient Linear Systems

We further test the performance of the proposed LPM-VBS
method in a more general random-coefficient system under
different noise situations. In the stimulated TVLSs, the time-
varying coefficients were generated by filtering white Gaussian
signals with zero mean and unit variance using low-pass filters.
The resultant TVLS has a coefficient function varying consid-
erably over time, and the extent of variations is determined
by the cutoff frequency of the low-pass filter. Four cutoff
frequencies fc (normalized by the sampling rate fs = 512 Hz):
0.01, 0.02, 0.05, and 0.1, were used to simulate different extents
of coefficient variations. Zero-mean white Gaussian noises with
different SNRs: 20, 10, 5, and 0 dB, were added to simulate
different noise conditions. These examples can be used to
demonstrate the effectiveness of the proposed method in detect-
ing rapid system change, which is a problem extensively studied
with various practical applications [5], [29]. Conventionally,

the change-detection problem is addressed by various adaptive
filtering and KF approaches. Here, we compare the proposed
LPM-VBS method with other conventional TVLS identification
or change-detection methods, including the RLS, the KF, and
the BEM methods. We also considered the LPM-VBS with
one-sided kernel so that the online performances of various
identification methods can be fairly compared. In the BEM
method, polynomial basis functions were employed, and a set of
expansion orders pBEM = [1, 5, 10, 15, 20] was tested to deter-
mine the one with the best EMSD value for further comparison
with other TVLS methods. For RLS, a set of forgetting factors
λ = [0.8, 0.85, 0.9, 0.95, 0.99] was tested, and the results with
the best EMSD performance were selected for further compar-
ison. As for the KF, since it is difficult and outside the scope
of this paper to compare the proposed LPM method with all
KF variants, we shall compare the proposed method with the
conventional GRWKF and the fixed-interval GRWKS methods.
The fixed-interval GRWKS is also tested because it can take
advantage of future measurements to effectively avoid the
tracking-lag problem of the GRWKF [10]. For a fair compar-
ison with LPM using order p = 1, the order of the generalized
random walk model in GRWKF and GRWKS is set as p = 2,
which implies that coefficients can be presented as a first-
order polynomial plus a white-noise process. Two parameter-
estimation schemes for the GRWKF were considered, and they
were the smoothness-priors-constrained approach in [6] and
the recursive updating approach in [28]. Hereinafter, the GR-
WKF with smoothness-prior-constrained parameter estimation
is denoted as GRWKF-s, while the GRWKF with recursive
parameter estimation is denoted as GRWKF-r. For LPM us-
ing two-sided kernels, H̃ = {1/64, 1/32, 1/16, 1/8}, while for
LPM using one-sided kernels, H̃ = {1/32, 1/16, 1/8, 1/4}.
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TABLE II
EMSD COMPARISONS BETWEEN VARIOUS TVLS

IDENTIFICATION METHODS FOR RANDOM-COEFFICIENT

LINEAR SYSTEMS (UNIT: DECIBELS)

The other parameters for the LPM were the same as those in
previous simulations.

Fig. 4 shows the estimation results of one coefficient of a
sample four-order TVLS (fc = 0.02 Hz and SNR = 5 dB),
which have both slowly changing and rapid-changing coeffi-
cients. It can be seen clearly that BEM gives a very smooth
estimation, but the rapid change around 0.4 s is smoothed out
at the same time. The RLS, GRWKF, and GRWKS have better
tracking abilities than BEM, but it is still difficult for them to
track rapid changes accurately. Overall, the LPM-VBS methods
are seen to offer a better adaptability than other methods tested
for both rapid changes and slow-varying parts.

For quantitative comparison, Table II lists the EMSD values
averaged over 200 independent runs, and these values are
shown graphically in Fig. 5. We can conclude from Table II
and Fig. 5 the following: 1) The proposed LPM-VBS method
has a better performance than other methods tested for TVLSs
having various degrees of coefficient variations and different
noise levels; 2) the BEM method can provide a result com-
parable with the proposed LPM-VBS method if the system
coefficients are very smooth (fc is small); 3) the LPM using

Fig. 5. EMSD comparisons between various TVLS identification methods for
random-coefficient linear systems.

one-sided kernel method has relatively lower EMSD values
than other tracking methods when the noise is small and the
variability of the system is not large, but the performances of all
tracking methods are comparable under heavy noise and large
system variability; and 4) the GRWKF-s method has a slightly
better performance than LPM-VBS and GRWKF-r when the
coefficient variation is small (fc = 0.01 Hz) (top left panel in
Fig. 5), while the GRWKF-r method outperformed LPM-VBS
and GRWKF-s if the coefficient variation is large (fc = 0.1 Hz)
with low SNR (lower right panel in Fig. 5). The performance
difference between GRWKF-r and GRWKF-s is due to the facts
that the smoothness-constrained parameter selection adapts
better to smooth coefficient variations, while the recursive
updating can respond better to fast coefficient variations. In
most testing scenarios, the proposed LPM-VBS method (in
particular, LPM-VBS with two-sided kernel supports) achieves
better performance than the GRWKF/GRWKS methods except
for the two situations mentioned previously. In conclusion,
the LPM method, which is more “data-based,” has an evident
advantage over the BEM/GRWKF/GRWKS methods, which
are more “model-based” when a prior model is not precisely
given, and the measurements are trustable (i.e., SNR is high).
When the amount of noise is large (i.e., the data are not so
reliable) or the prior model knowledge is correctly given or
estimated, it is possible for the model-based methods such as
GRWKS to outperform the proposed LPM method.

D. Random-Coefficient Quadratic Systems

In this experiment, we evaluate the performances of the pro-
posed LPM-VBS method for time-varying and mildly nonlinear
systems. Such systems are frequently encountered in linear
systems with output passing through memoryless nonlinear-
ities such as the sigmoidal function for modeling amplitude
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Fig. 6. Comparisons between various nonlinear identification methods for random-coefficient quadratic systems (fc = 0.02 Hz, SNR = 10 dB): (a) True
coefficients (b) EKF. (c) LPM-VBS estimates with variable bandwidths hMMSE. (d) Variable bandwidths hMMSE. Dashed lines in (b) and (c) denote the true
coefficients, and solid lines are the estimates.

saturation [30]. For illustrative purposes, the following non-
linear quadratic system y(t) = [xT (t)a(t)]2 + σ(t)ε(t) is con-
sidered in this paper. The order of the quadratic system is
L = 2, and the two channels of coefficients a(1, t) and a(2, t)
were, respectively, generated by filtering Gaussian processes
ℵ(2, 1) and ℵ(2, 1) using low-pass filters. Similar to previous
experiments, different cutoff frequencies fc: 0.01, 0.02, 0.05,
and 0.1 Hz, and different amount of noise with SNRs: 20, 10,
5, and 0 dB, were used to simulate a wide variety of testing
conditions. The input data x was generated from a uniform
distribution on [0, 1]. The sampling rate was 512 Hz, and
the number of measurements used was n = 512. The length
of Il was set to 32. The other parameters were the same as
those used in previous simulations. The EKF was tested for
comparison with the proposed LPM-VBS (two-sided kernel,
variable bandwidth hMMSE) method.

One representative example when fc = 0.02 Hz and SNR =
10 dB was shown in Fig. 6. We can see that the LPM-VBS
method has a reduced estimation variability than EKF. More-
over, the LPM-VBS method can accurately estimate the rapid
changes in the system coefficients. The EMSD values listed
in Table III were averages of 100 Monte Carlo runs, and they
further substantiated the usefulness of the proposed LPM-VBS
method quantitatively.

E. Tracking of Voltage Flicker in Power Distribution Systems

In power distribution systems, voltage flicker or fluctuation
is often produced by high electricity load alternations, such as
arc-furnace operations and resistance wielding, and it will cause
serious quality problems to the power systems and consumers

TABLE III
EMSD COMPARISONS BETWEEN VARIOUS NONLINEAR

IDENTIFICATION METHODS FOR RANDOM-COEFFICIENT

QUADRATIC SYSTEMS (UNIT: DECIBELS)

[4]. Accurate envelope tracking of the voltage measurements
is therefore important not only for evaluating the flicker level
but also for compensating the flicker and regulating the voltage.
Usually, the measured voltage v(t) can be modeled as a sinu-
soidal waveform with time-varying amplitudes as follows [4]:

v(t) =A(t) sin(ωt + φ) + ev(t)

=A(t)[sin ωt cos φ + cos ωt sinφ] + ev(t)

= [sin ωt, cos ωt]
[

A(t) cos φ
A(t) sin φ

]
+ ev(t)

= ΩT (t)Φ(t) + ev(t) (51)

where A(t) is the voltage amplitude, ω is the supply angular
frequency, φ is the phase angle, and ev(t) is the additive
measurement noise. The voltage envelope is obtained as the L2

norm of the estimated Φ(t). We can see that the voltage model
(51) is in the form of a TVLS with v(t) as the measured output,
Ω(t) as the known input, Φ(t) as the time-varying coefficient,
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Fig. 7. Comparisons between various methods for tracking envelope of volt-
age flicker: (a) Measured voltage (b) RLS. (c) GRWKF. (d) LPM-VBS. Dashed
lines in (b)–(d) denote the true envelope, and solid lines are the estimates.

and the system order L is equal to two. We now evaluate the per-
formance of the proposed LPM-VBS method in tracking the en-
velope of the flicker and compare it with conventional RLS and
GRWKF methods [4]. The measured voltage is assumed to be

v(t) =
{

(2 + cos 20πt) cos(100πt + π/3), 0 < t ≤ 0.15s
(4 + cos 20πt) cos(100πt + π/3), t > 0.15s.

(52)

The envelope of the voltage, which was modulated by a
sinusoid, fluctuated periodically and mildly, while a rapid
change occurred at time 0.15 s. The sampling rate was set at
1600 Hz (32 samples per cycle). A zero-mean white Gaussian
noise component with SNR = 30 dB was added. The forgetting
factor for the RLS algorithm was 0.7, as recommended in [4].
In the GRWKF method, the order of generalized random
walk model is set as two, and the covariance matrices of
state and observation noises were estimated recursively for
online tracking as in [28]. For tracking purposes, LPM-VBS
with one-sided kernel was tested, and the bandwidth set was
H̃ = {1/200, 1/100, 1/50, 1/25}. The other parameters for
the LPM were the same as those in previous simulations.

We can see from Fig. 7 that the proposed LPM-VBS method
achieved a good envelope-tracking performance for both rapid
voltage change and slow voltage fluctuations. On the other
hand, the RLS and GRWKF methods showed a slow response
to rapid change and a slow convergence rate. By comparing the
EMSD values (after 0.05 s when RLS and GRWKF converge)
of the three methods (RLS: −11.93 dB, GRWKF: −14.16 dB,
LPM-VBS: −17.67 dB), we can conclude that the LPM-VBS

had a better envelope-tracking performance than the RLS and
GRWKF methods.

VII. CONCLUSION

A novel LPM method for identification of TVLSs and its
asymptotic performance analysis have been presented. A new
data-driven VBS scheme was also developed to minimize the
local MSE. Simulation results showed that the performance of
the LPM-VBS method was better than the conventional RLS-,
GRWKF-, and GRWKS-based TVLS identification methods in
most testing scenarios, particularly when the SNR is moderate
to high. Moreover, the LPM-VBS method was further extended
for identification of time-varying systems with mild nonlinear-
ity. An application of proposed LPM-VBS method for track-
ing of voltage flicker was presented with better performance
over conventional RLS and GRWKF methods. The LPM-VBS
method is expected to find various other applications like
change detection and model identification in communications,
biosignal processing, instrument testing, power systems and
delivery, etc.
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