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ABSTRACT 

 

This article reviews the state-of-the-art of heterotrophic photo fermentative hydrogen 

production, an infantile technology for wastewater treatment. Five tables were 

compiled from data scattered in literature, including bacteria strain, substrate, reactor 

design, maximum volumetric and specific production rates (ml-H2/l/h and/or ml-H2/g-

VSS/h), yield as compared to stoichiometry (%), culture volume (ml), cell density (g-

VSS/l), light source and intensity (W/m2 or klux). Operational parameters discussed 

include light source and light intensity, pH, temperature, substrates, nitrogen source, 

trace metal elements, inhibitors, and reactor design, followed by a discussion on the 

outlook of this technology.  
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I.   INTRODUCTION 

 

Despite their detrimental effects on air pollution and global warming, fossil fuels are 

still the main source of energy supply for the world economy even though their 

reserves are depleting rapidly. This has led to the search for alternative energy sources, 

among which hydrogen has attracted much attention recently. Hydrogen has an 

energy yield of 122 kJ/g, about 2.75 times higher than those of hydrocarbons (Kapdan 

and Kargi, 2006), and may be used directly for combustion or generating electricity 

by fuel cells. It is an ideal fuel from the environment point of view, producing only 

water as by-product in the energy producing process. Many have predicted that 

hydrogen may become the main source of energy for the 21th century economy 

(Rifkin, 2002). 

 

Hydrogen is conventionally produced by either electrolysis of water or 

thermocatalytic reformation of hydrocarbons. Heterotrophic microbiological 

production of hydrogen has, however, attracted research interests due to its potential 

ability of degrading organic pollutants (Yetis et al., 2000; Li and Fang, 2007). 

Microbial production of hydrogen is often classified into two categories depending on 

whether light is required: dark fermentation and photo fermentation (Levin et al., 

2004). Dark fermentation may, due to thermodynamic limitation, convert no more 

than 40% of the chemical energy in the organic pollutants into hydrogen in the 

absence of light, producing organic acids, mainly acetate and butyrate, and alcohols as 

by-products. Photo-fermentation may, on the other hand, potentially be able to 

convert acids and alcohols, which are the by-products of dark fermentation, into 

hydrogen using light as energy source. The latter process produces little organic 
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residues and thus is potentially applicable for wastewater treatment (Das and 

Veziroğlu, 2001).  

 

Unlike methanogenic fermentation, which has been commercialized for wastewater 

treatment for two decades with thousands of full-scale installation worldwide (Fang 

and Liu, 2002), fermentation of wastewater for hydrogen production remains at the 

infantile stage. Most of related studies were conducted using dark fermentation, as 

summarized in a recent review article (Li and Fang, 2007). Studies of photo 

fermentative wastewater treatment were conducted mostly for suspended pure cultures 

using single substrates, with a few exceptions for mixed cultures and multi-substrate.   

 

This article aims to review the enzymatic reactions of heterotrophic photo 

fermentative hydrogen production and the state-of-the-art of this infantile technology 

for wastewater treatment. Five tables were at first compiled for photo fermentative 

hydrogen production data scattered in literature, including bacteria strain, substrate, 

reactor design (batch or continuous), maximum volumetric and specific production 

rates (ml-H2/l/h and/or ml-H2/g-VSS/h), yield as compared to stoichiometry (%), 

culture volume (ml), cell density (g-VSS/l), light source and intensity (W/m2 or klux). 

Table 1 was compiled for data on suspended growth of pure cultures, Table 2 for 

suspended growth of mixed cultures, Table 3 for combined photo-fermentative culture 

and others, Table 4 for immobilized cultures, and Table 5 for mutated cultures. 

 

II. ENZYMATIC REACTIONS OF PHOTO FERMENTATIVE HYDROGEN 

PRODUCTION 
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Heterotrophic photo fermentative hydrogen production by purple non-sulfur bacteria 

is catalyzed by nitrogenase (Das and Veziroğlu, 2001; Melis and Melnicki, 2006). In 

the presence of molecular nitrogen (N2), this enzyme which is composed of two 

proteins, i.e. dinitrogenase and dinitrogenase reductase (Burris, 1991; Orme-Johnson, 

1992), reduces N2 into ammonium (NH4
+), as follows (Peters et al., 1995): 

 

   N2 + 8 e- + 10 H+ +16 MgATP               2NH4
+ + H2 + 16 MgADP + 16 Pi   (1) 

 

where Pi represents orthophosphate. However, in the absence of N2, nitrogenase may 

catalyze the following reaction resulting in the production of hydrogen: 

  

        8 e- + 8 H+ +16 MgATP               4H2 + 16 MgADP + 16 Pi              (2) 

 

All phototrophic hydrogen-producing bacteria have a nitrogenase consisting of a 

cofactor (encoded by the gene nif) made of iron (Fe) and molybdenum (Mo) (Smith, 

2002), including Rhodobacter sphaeroides (Haaker et al., 1982), Rhodobacter 

capsulatus (Siemann et al., 2001), Rhodospirillum rubrum (Ludden and Burris, 1978) 

and Rhodopseudomonas palustris (Arp and Zumft, 1983). Three species, i.e. R. 

capsulatus (Schneider et al., 1991; Gollan et al., 1993; Siemann et al., 2002), R. 

rubrum (Lehman and Roberts, 1991) and R. palustris (Zumft and Gastillo, 1978; 

Larimer et al., 2003), have additional nitrogenases (Eady and Leigh, 1994) 

consisting of cofactors made of FeFe (encoded by gene anf; Chisnell et al., 1988) 

and/or FeV (encoded by the gene vnf; Hales et al., 1986). Genes vnf and anf are 

activated only under Mo-limiting condition.  
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III. HETEROTROPHIC PHOTO FERMENTATIVE HYDROGEN-

PRODUCING BACTERIA AND SLUDGE 

 

Phototrophic bacteria are mainly classified into two categories, i.e. purple bacteria and 

green bacteria, excluding several isolates without clear taxonomic position (Sasikala 

and Ramana, 1995). Each category may be further divided into sulfur and non-sulfur 

bacteria. Among the four groups, only the purple non-sulfur bacteria, which carry out 

anoxygenic photosynthesis using simple organic acids and sugars as substrate, are 

potentially useful for wastewater treatment. For the remaining groups, purple sulfur 

bacteria and green sulfur bacteria are autotrophic, using sulfide or elemental sulfur as 

electron donor, and thus are of little interest to environmental engineers for biological 

wastewater treatment. For the green non-sulfur bacteria, only one species, i.e. 

Chloroflexus aurantiacus (Gogotov et al., 1991), is known to be able to produce 

hydrogen. 

 

Purple non-sulfur bacteria are heterotrophic and thus may be useful for the removal of 

organic pollutants in water. Those capable of producing hydrogen from organic 

substrates include the fresh water species R. sphaeroides (Fascetti et al., 1998), R. 

capsulatus (Ooshima et al., 1998), R. palustris (Oh et al., 2004) and R. rubrum 

(Najafpour et al., 2004), and the marine species Rhodovulum sp. (Yamada et al., 1998; 

Matsunaga et al., 2000), Rhodovulum sulfidophilum (Maeda et al., 2003), and 

Rhodobacter marinus (Yamada et al., 1996).  
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III.A.  Pure Cultures  

Most studies of heterotrophic photo fermentative hydrogen production were 

conducted for pure cultures. Results compiled in Table 1 show that most studies were 

conducted using fresh water species, particularly R. sphaeroides and R. capsulatus. 

The rate of hydrogen production varied drastically, from 1.0 to 713.0 ml/l/h or 0.7 to 

250.0 ml/g/h, depending on the bacteria species, substrates, and operation conditions. 

The highest volumetric rate of 713 ml/l/h was achieved by Rhodovulum sp. using 

malate (Matsunaga et al., 2000), and the highest specific rate of 250 ml/l/h by R. 

sphaeroides from glucose (Zhu et al., 2001).  

 

For R. sphaeroides, the highest hydrogen production rate, 240.0 ml/l/h (171 ml/g/h) 

was achieved by strain RV using lactate in batch experiment (Nakada et al., 1995). 

Such a relatively high rate could be attributed to the high light intensity (720 W/m2), 

or the reactor design (flat with a thickness of 0.5 cm), or its small scale (30 ml). For 

comparison, using the same bacteria treating a wastewater from sugar refinery mixed 

with malate in a continuous reactor had a substantially lower hydrogen production 

rate (1.0 ml/l/h or 0.71 ml/g/h) (Yetis et al., 2000). 

 

For R. capsulatus, the hydrogen production rates varied from 12.5 to 75.0 ml/l/h or 

19.1 to 130.0 ml/g/h. In a continuous reactor, R. capsulatus produced hydrogen at the 

rates of 12.5-21.0 ml/l/h and 33.0-38.9 ml/g/h using mixed organic acids (Shi and Yu, 

2006). The highest volumetric and specific rates were from the degradation of lactate 

(Hillmer and Gest, 1977a; 1977b).  
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For R. palustris, the hydrogen production rates varied from 1.6 to 24.9 ml/l/h or 2.5 to 

82.7 ml/g/h. The highest volumetric rate of 24.9 ml/l/h was achieved using butyrate 

(Chen et al., 2007), and the specific rate of 82.7 ml/g/h from lactate (Barbosa et al., 

2001). R. palustris R1 was unable to produce hydrogen from butyrate (Barbosa et al., 

2001). 

 

R. rubrum was able to produce hydrogen from organic acids, such as lactate (Zürrer 

and Bachofen, 1979) and malate (Miyake et al., 1982), as well as CO (Klasson et al., 

1993; Najafpour et al., 2004). In addition to the aforementioned four bacteria, 

Rubrivivax gelatinosus (Maness and Weaver, 2002; Mérida et al., 2004) was also 

found able to produce hydrogen from CO and carbohydrates. Using starch as substrate, 

the phototrophic hydrogen production rates by R. gelatinosus were 7.8-11.3 ml/l/h and 

7.0-17.0 ml/g/h (Mahakhan et al., 2005).  

 

Table 1 also shows that several marine species are able to produce hydrogen from 

organic acids, sugars and PHB (poly-β-hydroxybutyrate). Among them, Rhodovulum 

sp. NKPB160471R had the highest hydrogen production rate up to 713.0 ml/l/h from 

malate using a high light intensity of 1800 W/m2 (Matsunaga et al. 2000). Other 

marine species produced hydrogen at rates ranging 3.0-68.6 ml/l/h (Ike et al., 1999; 

Kawaguchi et al., 2002; Maeda et al., 2003).  

 

III.B. Mixed Cultures 

Table 2 shows that very little information has been reported on hydrogen production 

by mixed cultures of phototrophic bacteria. Most of the hydrogen production rates 

ranged 4-10 ml/l/h, with a noticeable exception of 20.3 ml/l/h achieved using lactate 
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as substrate by a mixed sludge, in which only one phototrophic bacteria strain, R. 

marinum A-501 (99% similarity) was isolated (Ike et al., 1999). All cases in Table 2 

were conducted in batch reactors with only one exception using a continuous reactor, 

in which a high rate of 17.4 ml/l/h was achieved (Zhang et al., 2002).  

 

III.C. Co-cultures  

Most phototrophic hydrogen-producing (PHP) bacteria use simple organic acids and 

sugars as substrate. Producing hydrogen from complex organic pollutants in 

municipal, agricultural and industrial wastewaters may require co-cultures of dark and 

photo fermentative bacteria. The former converts complex organic pollutants into 

acids and sugars, which subsequently become substrates to the latter for hydrogen 

production. Some of these dark fermentative bacteria may either be hydrogen 

producers, such as Clostridium butyricum (Zhu et al., 2001), and non-hydrogen 

producers, such as Cellulomonas (Odom and Wall, 1983), Vibrio fluvialis (Ike et al., 

1999) and Lactobacillus amylovorus (Kawaguchi et al., 2001). Table 3 lists the 

parameters in hydrogen production by various co-cultures.  

 

Studies have also been conducted for other kinds of bacteria to form co-cultures with 

PHP bacteria. Halobacterium salinarum produces protons upon illumination for PHP 

bacteria, resulting in an increase of hydrogen production by 4-6 folds (Zabut et al., 

2006). Vibrio fluvialis T-522 was able to induce hydrogen production by R. marinum 

A-501 from acetic acid and ethanol via an unknown mechanism (Ike et al., 1999). 

Some co-culture may result in the increase of light conversion efficiency in hydrogen 

production (Kondo et al., 2002b)  
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III.D. Immobilized Cultures  

A number of studies were conducted for immobilized PHP bacteria which may have 

several advantages over suspended bacteria, such as increasing cell density in the 

reactor, reducing washout, improving effluent quality (Tsygankov, 2001) and 

protecting cells from toxicity, such as NH4
+ and heavy metals (Zhu et al., 2001). 

 

Table 4 summarizes parameters of hydrogen production by immobilized cultures of 

PHP bacteria as in Tables 1-3, plus additional information such as the media and 

maximum hydrogen production rate based on irradiation area (ml/cm2/h). Of all the 

tested media, agar and alginate gels were most common for cell entrapment. The 

hydrogen production rates ranged 0.14-0.35 ml/cm2/h, and the volumetric rates were 

50.0-127.0 ml/l/h. The specific rates of 140-696 ml/g/h for the immobilized cells by 

agar are much higher than the 0.7-250.0 ml/g/h reported for suspended cultures (Table 

1). Adding other ingredients into the media might produce various effects: cationic 

polymer alleviated the inhibitory effect of NH4
+ and chitosan increased hydrogen 

production rate by 20-30% (Zhu et al., 1999b). The main drawback of gels is that 

substrate needs to diffuse through the gel matrix, resulting in a decrease of the 

hydrogen production rate.  

 

Porous glass (Tsygankov et al., 1994) and polyurethane form (Fedorov et al. 1998) 

have also been used as the support media for PHP bacteria. They are in chemically 

stable, inert to microorganisms, and transparent to light. The hydrogen production 

rates of 210-310 ml/l/h by these media were much higher than the 1-75 ml/l/h for 

most of the suspended cultures (Table 1) and the 50-127 ml/l/h for the PHP bacteria 

immobilized by agar or alginate.   
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III.E. Genetically Modified Cultures  

A number of studies have been conducted for hydrogen production by genetically 

modified cultures. Results in Table 5 show that genetically removing uptake 

hydrogenase from R. capsulatus could increase its hydrogen production by 30-100% 

(Krahn et al., 1996; Ooshima et al., 1998; Kim et al., 2004), and mutating the light 

harvesting system of R. sphaeroides P3 might increase the hydrogen production rate 

by 50-150% (Vasilyeva et al., 1999; Kondo et al., 2002a). 

 

IV. SUBSTRATES  

 

Production of hydrogen from organic acids and sugars may be expressed as follows:  

 

        CaHbOc + (2a-c) H2O               a CO2 + (2a-c+0.5b) H2                        (3) 

 

The efficiency of such process is often expressed by the ratio between the actual 

amount of hydrogen produced and the stoichiometric amount determined from 

Equation (3).  

 

Results in Tables 1-5 show that most studies of photo-hydrogen production were 

conducted in batch reactors using organic acids as single substrate, including lactate, 

malate, acetate, butyrate, and even aromatic acids such as benzoate, cinnamate, 

mandelate, and benzoylformate (Fißler et al., 1995). Among the tested substrates, 

lactate and malate had better hydrogen yield than other acids. Using lactate as 

substrate, hydrogen yields of over 80% were achieved by suspended R. capsulatus 
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IR3 (He et al., 2005) and by R. sphaeroides GL-1 immobilized in polyurethane foam 

(Fedorov et al., 1998). Using malate as substrate, a yield of 68% was reported for R. 

capsulatus ST410 (Ooshima et al., 1998). Yields were generally lower using acetate 

and butyrate as substrate, likely due to the formation of intracellular PHB (Koku et al., 

2002) which competed with hydrogen for electrons (Khatipov et al., 1998). Most of 

the yields from acetate and butyrate by the suspended pure cultures ranged only 8-

20% (Table 1). R. palustris P4 (Oh et al., 2004) and Rhodopseudomonas sp. 

HCC2037 (Barbosa et al., 2001) had yields of about 70% from acetate, whereas R. 

palustris R1 could not produce hydrogen from butyrate (Barbosa et al., 2001). Yields 

of about 67% were also reported for acetate and butyrate by immobilized cultures 

(Mao et al., 1986).  

 

Results in Tables 1-5 show that carbohydrates, such as glucose, sucrose, starch and 

cellobiose, had yields in general below 10%.  

 

A few studies were conducted using mixed acids as substrate or treating the acids-rich 

effluent of dark fermentation. Using pure cultures, hydrogen yields ranging 33-46% 

were obtained by suspended cells with hydrogen production rates ranging 12.5-21.0 

ml/l/h (Shi and Yu, 2005 and 2006). Higher hydrogen yields (53-64%) and production 

rates (79-115 ml/l/h) were achieved using immobilized pure cultures (Mao et al., 

1986). Using mixed cultures, the yield ranged 12-22% (Zhang et al., 2002; 

Takabatake et al., 2004). 

 

Several attempts were made to produce hydrogen by photo fermentation from actual 

wastewaters. Rates of hydrogen production were low (1-6 ml/l/h) when tested against 
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sugar refinery wastewater (Yiğit et al., 1999; Yetis et al., 2000) and olive mill 

wastewater (Eroğlu et al., 2004). Higher rates were obtained (respectively, 14.9 and 

78.8 ml/l/h) treating a tofu wastewater by a suspended co-culture of R. sphaeroides 

and Clostridium butyricum (Zhu et al., 2002), and by immobilized R. sphaeroides 

(Zhu et al., 1999a).  

 

V. OPERATIONAL PARAMETERS  

 

Several operational parameters are crucial to the optimal production of hydrogen, 

including light source and light intensity, pH, temperature, substrates, nitrogen source, 

trace metal elements, and inhibitors.  

 

V.A. Light Source and Light Intensity 

Most of photo fermentative hydrogen production used light with a wavelength in the 

range of 400-950 nm (Akkerman et al., 2002). Various light sources have been used, 

including simulated sunlight (Wakayama et al., 1998), tungsten lamp (Nakada et al., 

1995; Fascetti et al., 1998; Zhu et al., 2001), halogen lamp (Barbosa et al., 2001; Kim 

et al., 2004), and fluorescent lamp (Matsunaga et al., 2000). Some used 

monochromatic light by specific filters (Takabatake et al., 2004).  

 

Light intensity may be measured by either W/m2 or lux. The conversion between the 

two units varies substantially, depending on the wavelength of light (Neumann et al., 

2003). Without knowing the specific wavelength, one may assume 1 W/m2 is 

equivalent to 30-100 lux (Nakada et al., 1995; Ooshima et al., 1998; Ko and Noike, 
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2002). Most of the studies in Tables 1-5 used light intensity in the range of 100-300 

W/m2 (or 6-10 klux).  

 

The reported optimum light intensity varied among species and even among strains of 

the same species. In general, the optimum light intensity was in the range of 30-100 

W/m2 or 5-8 klux. The reported optimum light intensities were 5 klux for R. 

sphaeroides O.U.001 (Sasikala et al., 1991), 28-32 W/m2 for R. sphaeroides KD131 

(Kim et al., 2006), 30 W/m2 or more for Rhodovulum sp. (Matsunaga et al., 2000), 3 

klux (35 W/m2 given by the author) for R. capsulatus ST410 (Ooshima et al., 1998), 

and 6-8 klux for R. palustris (Yang et al., 2002).  

 

High intensity of light may inhibit hydrogen production for some bacteria. The 

inhibitory intensities were reported as 400 W/m2 for R. sphaeroides KD131 (Kim et 

al., 2006), and 9 klux for R. palustris (Yang et al., 2002). However, light intensities as 

high as 1800 W/m2 did not cause any inhibitory effect for Rhodovulum sp. 

(Matsunaga et al., 2000), and 10 klux for R. sphaeroides O.U.001 (Sasikala et al., 

1991). 

 

The reported photo efficiency, which is percentage of photo energy radiated onto the 

reactor being utilized for the formation of hydrogen, was mostly below 10%. This is 

one of the drawbacks needs to be overcome for the further development of photo 

fermentative hydrogen production, unless the free sunlight is used. In a few 

exceptional cases, higher photo efficiencies (up to 35%) were achieved when using 

low intensity light (13-45 W/m2) (Akkerman et al. 2002). However, at such level of 

light intensity, hydrogen was produced at unrealistic rates about 90% lower than those 
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under the normal intensity of 1800 W/m2. 

 

In addition, the illumination pattern also affected hydrogen production by some PHP 

bacteria. Koku et al. (2003) found that more hydrogen was produced in reactors which 

were illuminated in on-off cycles, simulating the day-night pattern of solar radiation, 

than those under continuous illumination.   

 

V.B. pH 

The reported optimum pH varied among species: pH 7.2 for R. sphaeroides VM81 

(Margaritis and Vogrinetz, 1983), pH 7.0-7.5 for R. sphaeroides O.U.001 (Sasikala et 

al., 1991; Sasikala et al., 1995), pH 7.4-7.6 for R. sphaeroides KD131 (Kim et al., 

2004; Kim et al., 2006), and pH 8.5-9.0 for R. capsulatus, (Tsygankov and 

Laurinavichene, 1996). The reported optimal pH for mixed cultures were substrate 

dependent: pH 7.0-8.0 for acetate, and pH 8.0-9.0 for butyrate (Fang et al., 2005). 

 

V.C. Temperature 

Reported data showed that 30-40oC is in general the optimum range of temperature. 

The reported optimum ranges were 30-40oC for R. sphaeroides O.U.001 (Sasikala et 

al., 1991), 30-37oC for R. palustris (Yang et al., 2002), and 30oC for R. capsulatus 

(He et al., 2006).  

 

V.D. Substrates 

Effects of substrates concentration were studied mainly for organic acids. Using 

malate as substrate, the optimum concentrations were 30 mM for R. sphaeroides 

O.U.001 (Sasikala et al., 1991), and 60 mM for R. capsulatus ST410 (Ooshima et al., 
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1998). Using lactate, the hydrogen production rate increased with concentration up to 

50 mM for R. sphaeroides O.U.001 (Sasikala et al., 1991). Using acetate, the 

optimum concentrations were 30-50 mM for R. palustris (Yang et al., 2002) but 

hydrogen production was repressed completely at 100 mM of acetate. While another 

strain R. palustris P4 achieved similar rate and yield regardless of the acetate 

concentrations in the range of 12-55 mM (Oh et al., 2004). The optimum 

concentration of 11 mM was reported for a mixed phototrophic sludge using butyrate 

(Fang et al., 2005), and 39 mM of glucose for R. sphaeroides VM81 (Margaritis and 

Vogrinetz, 1983). Using benzoate as substrate, the optimum concentration was 3.0 

mM for immobilized R. palustris (Fißler et al., 1995).  

 

Substrates used for cell cultivation may also affect hydrogen production. Hillmer and 

Gest (1977b) found that R. capsulatus grown on C4 dicarboxylic acids (i.e. malate, 

fumarate, and succinate) were able to produce hydrogen from these acids as well as 

lactate and pyruvate, but those grown on lactate, pyruvate or glycerol could not 

produce hydrogen from C4 dicarboxylic acids.  

 

V.E. Trace Metal Elements 

Since photo heterotrophic hydrogen production is catalyzed by nitrogenase, which 

consists of a cofactor made of iron (Fe) and molybdenum (Mo), the availability of 

these two elements is of great significance. Hydrogenase in PHP bacteria is generally 

accepted as the metabolic antagonist of nitrogenase, assuming to function in the 

direction of hydrogen uptake (Koku et al., 2002). Nickel is necessary for the synthesis 

of hydrogenase (Doyle and Arp, 1988), implying that the presence of nickel may 

promote the hydrogenase synthesis and therefore inhibit hydrogen production.  
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Stimulation of phototrophic hydrogen production by the addition of Mo6+ and Fe2+ has 

been demonstrated by many studies (Kim et al., 1980; Krahn et al., 1996; Fascetti et 

al., 1998). The Mo6+ and Fe2+ concentrations commonly used for hydrogen production 

are 0.3 mg/l and 2.4 mg/l, respectively, as originally suggested by Ormerod et al. 

(1961) for R. rubrum. Studies on the concentration effect of Mo6+ and Fe2+ are still 

very limited. Kars et al. (2006) found that R. sphaeroides O.U.001 produced most 

hydrogen at 1.6 mg/l Mo6+ and 5.6 mg/l Fe2+, and yet Lee and Yu (2005) found 

hydrogen production by R. palustris WP3-5 was independent of Mo6+ concentration. 

Yang et al. (2002) found that Fe3+ at 2.8 mg/l was optimal for hydrogen production by 

R. palustris, but significantly inhibited hydrogen production at 6.7 mg/l. Yang et al. 

(2002) also found that Ni2+at 0.2-0.4 mg/l  repressed hydrogen production completely. 

 

V.F. Nitrogen Sources 

Although NH4
+ is the common N source for fermentation, it inhibits nitrogenase 

activity and thus cannot be used for phototrophic hydrogen production. An early study 

(Hillmer and Gest, 1977a) found that R. capsulatus favored glutamate, serine, and 

alanine among the 19 tested amino acids, as N source for hydrogen production. 

However, glutamate has remained as the most common source of N. Sasikala et al. 

(1995) found that high N/C ratios (2/3 or above) would completely inhibit hydrogen 

production due to the accumulation of NH4
+ released from deamination of amino 

acids. The N/C ratio in feed solution in most studies was kept below 0.18, as used by 

Hillmer and Gest (1977a). On the other hand, Eroğlu et al. (1999) compared the 

hydrogen production by R. sphaeroides using glutamate and malate as N and C 
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sources, and found the optimal N:C ratio was 0.03 (corresponding to a molar 

malate:glutamate ratio of 15:2). 

 

V.G. Inhibitors  

Molecular O2 and N2, as well as NH4
+, are known inhibiters to phototrophic hydrogen 

production. Molecular O2 adversely affects the nitrogenase activity and thus hydrogen 

production as found by Ooshima et al. (1998) for the Rhodovulum sp. and by 

Matsunaga et al. (2000) for R. capsulatus. The presence of 1-4% of O2 reduced 

hydrogen production by 50% for two strains of R. capsulatus (Krahn et al., 1996). 

However, Koku (2002) found that such effect was irreversible for R. sphaeroides, 

whereas Hochman and Burris (1981) and Goldberg et al. (1987) found the effect 

reversible for R. capsulatus and R. rubrum, and for R. sphaeroides, respectively.  

 

The presence of molecular N2 inhibits the hydrogen formation enzymatic activity of 

nitrogenase (Ooshima et al., 1998). However, such an inhibitory effect seems to be 

reversible.  Ormerod et al. (1961) found that hydrogen production by R. rubrum was 

completely inhibited by N2, but the activity was fully recovered once N2 was replaced 

by helium. 

 

Ionic NH4
+ may stimulate hydrogen production activity in trace amounts but may 

cause inhibition at higher concentrations. Hydrogen production by the suspended 

culture of Rhodopseudomonas sp. from acetate was stimulated by 1 mM NH4
+, but 

was inhibited by 50% with 5 mM NH4
+ and 100% with 15 mM NH4

+ (Hoekema et al., 

2002); however, such an inhibition effect appeared also to be reversible. Zhu et al. 

(2001) found that hydrogen production by the suspended culture of R. sphaeroides 
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RV using lactate was repressed 50% at 10 mM of  NH4
+, whereas the immobilized R. 

sphaeroides had the highest hydrogen production with 5 mM NH4
+ and was not 

inhibited by NH4
+ at 10 mM (Zhu et al., 1999b). This suggests that immobilized cells 

are more resistant to the toxicity of NH4
+. 

 

VI. REACTOR DESIGN 

 

The key design concern is to maximize the surface-volume ratio of the reactor for 

uniform illumination (Ogbonna and Tanaka, 2001). Most studies on photo hydrogen 

production were conducted in laboratory scale in batches using either tubes 

(Margaritis and Vogrinetz, 1983), serum bottles (Fang et al., 2005), flat flasks (Zhu et 

al., 2001), water-jacketed columns (Eroğlu et al., 1999), or plate reactors (Kondo et al., 

2002b; Kondo et al., 2006). A novel design using optical fibers to transmit light from 

an external source was demonstrated recently (Chen et al., 2006).  

 

Continuous photobioreactors in columned and spherical configurations have been 

used for hydrogen production. These reactors were generally equipped with a water 

jacket for temperature control and operated in the complete-mix mode (Yetis et al., 

2000; Zhang et al., 2002; Shi and Yu, 2006).  

 

VII. OUTLOOK   

 

Although the technical feasibility of producing hydrogen from organic substrates by 

photo fermentation has been demonstrated, the development of this technology is still 

at its infantile stage. Large scale production of hydrogen from wastewater using 
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sunlight as source of photo energy is still a remote target.  Based on the review for 

over 100 related papers, it is obvious that some aspects are crucial for the further 

development of this technology and warrant further studies. Firstly, further research 

should be carried out using mixed cultures from environmental samples treating 

mixed substrates.  Secondly, reactor designs should be improved for better capture of 

light, and operational parameters, such as the HRT, pH, and substrates concentration, 

should be further optimized. Thirdly, photo hydrogen production under daily on-off 

illumination of sunlight should be examined. And lastly, further studies should be 

conducted to combine dark and photo fermentations into a single package for 

hydrogen production from wastewater.   
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Table 1. Hydrogen production by suspended cells of the pure culture of PHP bacteria 
 

Light 
intensity  

Microorganisms Substrates Reactor 
type 

Max. H2 
rate (ml/l/h)

Max. H2 
rate 
(ml/g/h) 

Yield 
(%) 

Culture 
volume
 (ml) 

Cell 
density 
(g/l) 

Light source 

W/m2 klux 

Reference 

R. sphaeroides 
VM81 

Glucose  Batch  2.2 3.5 3.5 11 0.64 Incandescent   10 Margaritis 
and 
Vogrinetz, 
1983 

R. sphaeroides RV Lactate  Batch  240.0 171.0 19.6 30 1.30-
1.50 

Tungsten 720  40  Nakada et 
al., 1995 

R. sphaeroides RV Lactate  Batch  - - - 2 1.00 Halogen (800 
and 850 nm) 

80  Vasilyeva et 
al., 1999 

R. sphaeroides RV Glucose  Batch  75.0 250.0 17.0 200 0.30 Tungsten  8.5 Zhu et al., 
2001 

R. sphaeroides RV Lactate  Batch  30 65.2 26.1 165 0.46 Tungsten 300  Kondo et 
al., 2002a 

R. sphaeroides RV Lactate  Batch  19.1 31.9 - 800 0.60 Tungsten 300  Kondo et 
al., 2006 

R. sphaeroides RV Acetate +propionate 
+butyrate 

Batch  0.8 ml/h/ 
vial 

- - - - Incandescent 165 5 Ko and 
Noike, 2002 

R. sphaeroides RV VFAs from 
fermentation of fruit 
and vegetable 
wastes 

Continuous 
(HRT 25h) 
(8-10 d) 

48.0 100.0 - 1000 0.48 Tungsten  10 Fascetti et 
al., 1998 

R. sphaeroides 
O.U.001 

Malate  Batch  12.0 2.4 42.4 400 5.00 Tungsten 200   Eroğlu et 
al., 1999 

R. sphaeroides 
O.U.001 

Malate  Batch  8.0 10.0 36.0 400  Tungsten 150-
250  

 Koku et al., 
2003 

R. sphaeroides 
O.U.001 

Sugar refinery 
wastewater 

Batch  6.4 - - 50 - N.S. 200  Yiğit et al., 
1999 

R. sphaeroides 
O.U.001 

Sugar refinery 
wastewater 

Batch  3.8 0.9 - 150 4.40 N.S. 200  Yetis et al., 
2000 

 



R. sphaeroides 
O.U.001 

Sugar refinery 
wastewater +malate 

Continuous 
(HRT 80d) 

1.0 0.7 - 400 1.40 N.S. 200   Yetis et al., 
2000 

R. sphaeroides 
O.U.001 

Sugar refinery 
wastewater +malate 

Continuous 
(HRT 32d) 

3.0 3.1 - 400 0.97 N.S. 200   Yetis et al., 
2000 

R. sphaeroides 
O.U.001 

Olive mill 
wastewater 

Batch  4.0 9.8 - 400 0.41 Tungsten 200  Eroğlu et 
al., 2004 

R. sphaeroides 
KD131 

Malate  Batch  33.8 - 36.7 50 3.1-3.4 
OD660

Halogen   8 Kim et al., 
2004 

R. sphaeroides 
KD131 

Lactate  Batch  16.7 - 18.1 50 2.8 
OD660

Halogen   8 Kim et al., 
2004 

R. sphaeroides 
KD131 

Acetate  Batch  4.9 - 8.0 50 3.1 
OD660

Halogen   8 Kim et al., 
2004 

R. sphaeroides 
KD131 

Glucose  Batch  7.6 - 4.1 50 3.64 
OD660

Halogen   8 Kim et al., 
2004 

R. capsulatus B10S N.S. Batch  74.0 - - 1 2 
OD600

N.S. - - Krahn et al., 
1996 

R. capsulatus B100 Malate Batch  37.7 - 25.0 5 - Tungsten   6 Ooshima et 
al., 1998 

R. capsulatus B100 Acetate Batch  26.2 - 53.0 5 - Tungsten   6 Ooshima et 
al., 1998 

R. capsulatus IR3 Lactate  Batch  19.4 29.8 84.8 3000 0.65 Incandescent  - - He et al., 
2005 

R. capsulatus IR3 Lactate Batch 52.5 105.0 68.2 1000 0.50 Incandescent  - - He et al., 
2006 

R. capsulatus JP91 Lactate  Batch  38.5 41.8 52.7 1000 0.92 Incandescent  - - He et al., 
2006 

R. capsulatus Z-1  
(Growing cells) 

Glucose  Batch - 88.0 32.0 60 0.4 
OD660

Incandescent   10.8  Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Growing cells) 

Fructose  Batch - 100.0 27.0 60 0.4 
OD660

Incandescent   10.8 Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Growing cells) 

Sucrose  Batch - 60.0 6.0 60 0.4 
OD660

Incandescent   10.8  Hillmer and 
Gest, 1977a 
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R. capsulatus Z-1  
(Growing cells) 

Lactate  Batch - 130.0 72.0 60 0.4 
OD660

Incandescent   10.8 Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Growing cells) 

Pyruvate  Batch - 130.0 68.0 60 0.4 
OD660

Incandescent   10.8  Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Growing cells) 

Malate  Batch - 90.0 56.0 60 0.4 
OD660

Incandescent   10.8  Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Growing cells) 

Succinate  Batch - 100.0 72.0 60 0.4 
OD660

Incandescent   10.8  Hillmer and 
Gest, 1977a 

R. capsulatus Z-1  
(Resting cells) 

Lactate Batch 75.0 75.0 - 2.5 1.0-1.2 Incandescent   10.8  Hillmer and 
Gest, 1977b 

R. capsulatus Z-1  
(Resting cells) 

Pyruvate Batch 41.0 41.0 - 2.5 1.0-1.2 Incandescent   10.8 Hillmer and 
Gest, 1977b 

R. capsulatus Z-1  
(Resting cells) 

Malate  Batch 58.0 58.0 - 2.5 1.0-1.2 Incandescent   10.8 Hillmer and 
Gest, 1977b 

R. capsulatus Z-1  
(Resting cells) 

Fumarate  Batch 25.0 25.0 - 2.5 1.0-1.2 Incandescent   10.8  Hillmer and 
Gest, 1977b 

R. capsulatus Z-1  
(Resting cells) 

Succinate  Batch 71.0 71.0 - 2.5 1.0-1.2 Incandescent   10.8  Hillmer and 
Gest, 1977b 

R. capsulatus Acetate +propionate 
+butyrate 

Batch  14.7 19.1 32.6 150 0.77 N.S. - - Shi and Yu, 
2005 

R. capsulatus 
 

Acetate +propionate Continuous 
(HRT 72 h)
(20 d) 

21.0 38.9 45.9 1500 0.54 N.S. - - Shi and Yu, 
2006 
 

R. capsulatus 
 

Acetate +propionate 
+butyrate 

Continuous 
(HRT 72 h)
(10 d) 

17.0 37.8 45.0 1500 0.45 N.S. - - Shi and Yu, 
2006 
 

R. capsulatus 
 

Effluent from 
acidogenic H2 
production reactor 

Continuous 
(HRT 72 h)
(10 d) 

12.5 33.0 40.0 1500 0.38 N.S. - - Shi and Yu, 
2006 
 

Rhodobacter strain 
8703 

Lactate  Batch  131.0 151.0 - 50 0.78-
0.96 

N.S.  10 Mao et al., 
1986 

R. palustris R1 Lactate  Batch  9.1 82.7 12.6 150 0.11 Halogen and 
tungsten  

102   Barbosa et 
al., 2001 
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R. palustris R1 Malate  Batch 5.8 52.7 36.0 150 0.11 Halogen and 
tungsten  

102   Barbosa et 
al., 2001 

R. palustris R1 Butyrate  Batch Nil  Nil  Nil  150 0.11 Halogen and 
tungsten  

102   Barbosa et 
al., 2001 

R. palustris R1 Acetate  Batch 2.2 20.0 14.8 150 0.11 Halogen and 
tungsten  

102   Barbosa et 
al., 2001 

R. palustris Acetate  Batch  22.1 - - - 1.23 
OD660

N.S.  6-8  Yang et al., 
2002 

R. palustris P4 Acetate  Batch  1.6 9.8 60.0-
70.0 

50 0.17 N.S.  2.5 Oh et al., 
2004 

R. palustris WP3-5 Acetate  Batch  8.7 3.0 25.0 500 2.90 halogen 95  Chen et al., 
2006 

R. palustris WP3-5 Acetate  Batch  6.8 2.5 20.8 500 2.70 Optical fiber 
and halogen 

95  Chen et al., 
2006 

R. palustris WP3-5 Acetate  Batch  17.1 9.5 49.5 500 1.80 Optical fiber 
and halogen 
and tungsten 

95  Chen et al., 
2006 

R. palustris WP3-5 Butyrate  Batch  24.9 28.4 57.4 100 0.88 Tungsten  10 Chen et al., 
2007 

R. rubrum Lactate  Continuous 
(HRT 74h) 

65.0 20.0 64.5 1000 3.0-3.5 Tungsten  300  Zürrer and 
Bachofen, 
1979 

R. rubrum Malate  Batch  48.0 - 10.2 180 - Tungsten   10 Miyake et 
al., 1982 

Rubrivivax 
gelatinosus SB24 

Starch  Batch  7.8-11.3 7.0-17.0 - 23 - - Nil  10 Mahakhan 
et al., 2005 

Rhodopseudomonas 
sp. HCC2037 

Lactate  Batch  10.7 23.8 9.6 150 0.45 Halogen and 
tungsten  

145   Barbosa et 
al., 2001 

Rhodopseudomonas 
sp. HCC2037 

Malate  Batch 1.1 2.4 6.6 150 0.45 Halogen and 
tungsten  

145   Barbosa et 
al., 2001 

Rhodopseudomonas 
sp. HCC2037 

Butyrate  Batch 7.6 16.9 8.4 150 0.45 Halogen and 
tungsten  

145   Barbosa et 
al., 2001 
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Rhodopseudomonas 
sp. HCC2037 

Acetate  Batch 25.2 56.0 72.8 150 0.45 Halogen and 
tungsten  

145   Barbosa et 
al., 2001 

Rhodobium 
marinum A-501 

Glucose  Batch  5.3 - 7.2 65 0.6 
OD660

Tungsten 330   Ike et al., 
1999 

Rhodobium 
marinum A-501 

Maltose  Batch 3.3 - 4.5 65 0.6 
OD660

Tungsten 330   Ike et al., 
1999 

Rhodobium 
marinum A-501 

Sucrose  Batch 3.0 - 4.1 65 0.6 
OD660

Tungsten 330   Ike et al., 
1999 

Rhodobium 
marinum A-501 

Lactate  Batch 9.1 - 12.4 65 0.6 
OD660

Tungsten 330   Ike et al., 
1999 

Rhodobium 
marinum A-501 

Malate  Batch 5.7 - 7.8 65 0.6 
OD660

Tungsten 330   Ike et al., 
1999 

Rhodobium 
marinum A-501 

Lactate +algal 
extract 

Batch  68.6 114.0 47.9 65 0.60 Tungsten 330  Kawaguchi 
et al., 2002 

Rhodobium 
marinum A-501 

Lactate  Batch  26.5 44.2 29.2 65 0.60 Tungsten 330   Kawaguchi 
et al., 2002 

Rhodovulum sp. 
NKPB160471R 

Malate  Batch  713.0 230.0 - 12 3.10 Fluorescent  1800  Matsunaga 
et al., 2000 

Rhodovulum sp. 
NKPB160471R 

Malate  Semi-batch 
(Micro-
aerobic) 
(150 h)  

26.7-31 8.6-10.0 - 500 3.10 Fluorescent  34.5   Matsunaga 
et al., 2000 

Rhodovulum 
sulfidophilum WT 

PHB Batch  33.0 - - 190 6.85 
OD660

Incandescent  190   Maeda et 
al., 2003 
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Table 2. Hydrogen production by suspended cells of the mixed culture of PHP bacteria 
 
Organisms Substrates Reactor 

type 
Max. H2 
rate (ml/l/h)

Max. H2 
rate 
(ml/g/h) 

Yield 
(%) 

Culture 
volume
 (ml) 

Cell 
density 
(g/l) 

Light 
source 

Light 
intensity 
(W/m2) 

Reference 

Mixed culture 
Sludge BC1 

Starch  Batch  9.6 - 13.0 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Glucose  Batch 4.9 - 6.6 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Maltose  Batch 4.3 - 5.9 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Cellobiose  Batch 5.3 - 7.2 65 0.6 OD660 Tungsten  330 Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Sucrose  Batch 4.5 - 6.1 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Acetate  Batch  13.7 - 18.7 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Lactate  Batch 20.3 - 27.6 65 0.6 OD660 Tungsten  330 Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Malate  Batch 6.5 - 8.8 65 0.6 OD660 Tungsten  330 Ike et al., 
1999 

Mixed culture 
Sludge BC1 

Glycerol  Batch 3.9 - 5.3 65 0.6 OD660 Tungsten  330  Ike et al., 
1999 

Mixed phototrophic 
sludge culture 

Synthetic 
wastewater  
(acetate +butyrate+ 
ethanol) 

Continuous 
(HRT 25h) 
(30d) 

17.4 5.6 12.0 450 3.10 Tungsten  90-150  Zhang et al., 
2002 

Mixed phototrophic 
sludge culture 

Acetate  Batch  6.7 16.8 62.5 100 0.40 Tungsten  200 Fang et al., 
2005 

Mixed phototrophic 
sludge culture 

Butyrate  Batch  5.3 13.2 37.0 100 0.40 Tungsten  200 Fang et al., 
2005 

Mixed culture of 
PSB 

Acetate +propionate 
+butyrate 

Batch  4.0 5.2 22.0 - 0.77 Blue light - Takabatake et 
al., 2004 
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Table 3. Hydrogen production by co-culture of PHP bacteria with other bacteria* 
 

Organisms Light 
intensity  

PSB Fermentative 
bacteria 

Substrates Max. 
H2 rate 
(ml/l/h)

Yield 
(%) 

Culture 
volume
 (ml) 

Cell density 
(g/l) 
(PHP/FB#) 

Light source 

W/m2 klux 

Reference 

R. capsulatus B100 Cellulomonas sp. 
ATCC 21399 

Cellulose  - 35.8 20 - Incandescent  - - Odom and Wall, 
1983 

R. capsulatus ST410 
(Hup- mutant) 

Cellulomonas sp. 
ATCC 21399 

Cellulose - 51.7 20 - Incandescent  - - Odom and Wall, 
1983 

R. sphaeroides RV 
(co-immobilization) 

Clostridium 
butyricum IFO 
3847 

Glucose  41.0 4.1 200 1.5/1.3 Tungsten   8.5 Zhu et al., 2001 

R. sphaeroides RV 
(co-immobilization) 

Clostridium 
butyricum IFO 
3847 

Tofu 
wastewater 

14.9 - 200 1.9/1.7 Tungsten   8.5 Zhu et al., 2002 

R. sphaeroides 
O.U.001 

Halobacterium 
salinarum S9 

Malate  27.0 - 400 - Tungsten  150  Zabut et al., 2006 

Rhodobium 
marinum A-501 

Vibrio fluvialis T-
522 

Algal starch 8.6 52.0 65 - Tungsten  330   Ike et al., 1999 

Rhodobium 
marinum A-501 

Lactobacillus 
amylovorus 

Algal starch in 
D. tertiolecta 

38.0 60.8 65 0.6/0.5 Tungsten  330   Kawaguchi et al., 
2001 

Rhodobium 
marinum A-501 

Lactobacillus 
amylovorus 

Algal starch in 
C. reinhardtii 

20.8 52.3 65 0.6/0.5 Tungsten  330   Kawaguchi et al., 
2001 

*All studies were in batch.  
# FB: Fermentative bacteria or other bacteria 
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Table 4. Hydrogen production by immobilized cultures of PHP bacteria 
 

Light 
intensity  

Organisms Support 
materials 

Substrates Reactor 
type 

Max. 
H2 rate 
(ml/ 
cm2/h)

Max. 
H2 rate 
(ml/l/h)

Max. H2 
rate 
(ml/g/h) 

Yield 
(%) 

Culture 
volume
 (ml) 

Cell 
density 
(g/l) W/m2 klux 

Reference 

Rhodopseudomonas 
strain 2604 

2% agar Butyrate  Batch 0.26 87.4 510 67.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodopseudomonas 
strain 2613 
 

2% agar Acetate  Batch 0.25 86.7 506 67.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodopseudomonas 
strain 2613 
 

2% agar Mixture of 
acetate, 
butyrate & 
lactate 

Batch 0.34 115.2 672 64.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodopseudomonas 
strain 2806 

2% agar Lactate  Batch 0.24 81.6 476 71.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodobacter strain 
8703 

2% agar Butyrate Batch 0.32 110.1 642 67.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodobacter strain 
8703 

2% agar Lactate` Batch 0.35 119.3 696 77.0 70 0.7-1.0  10 Mao et al., 
1986 

Rhodobacter strain 
8703 

2% agar Mixture of 
acetate, 
butyrate & 
lactate 

Batch 0.23 79.2 462 53.0 70 0.7-1.0  10 Mao et al., 
1986 

R. sphaeroides RV 2% agar  Tofu 
wastewater 

Batch  0.21 78.8 597 15.0 200 0.66  8 Zhu et al., 
1999 a 

R. sphaeroides RV 2% agar Glucose  Batch  0.14 50.0 167 13.6 200 1.5  8.5 Zhu et al., 
2001 

R. sphaeroides RV 2% agar Tofu 
wastewater 

Batch  0.20 74.7 393 - 200 1.9  8.5 Zhu et al., 
2002 

R. sphaeroides RV 1% chitosan 
+ 2% agar 

Lactate  Batch  0.24 90.0 180 36.0 200 2.5  8.5 Zhu et al., 
1999 b 

 



R. sphaeroides RV 0.5% 
chitosan + 
2% agar 

Lactate  Batch  0.23 85.0 170 34.0 200 2.5  8.5 Zhu et al., 
1999 b 

R. sphaeroides RV 2% agar Lactate  Batch  0.19 70.0 140 25.0 200 2.5  8.5 Zhu et al., 
1999 b 

R. sphaeroides RV Porous glass Succinate Continuous 0.065 310.0 - 55.0 - 11.2 300   Tsygankov 
et al., 1994 

R. sphaeroides  
GL-1 

Polyurethane 
foam 

Lactate  Continuous
(HRT 43.5 
h) (35 d) 

0.17  210.0 - 86.0 200 - 300   Fedorov et 
al., 1998 

R. palustris DSM 
131 

Sodium 
alginate (50 
μm bead) 

Benzoate  Batch  - 112.0 6.7 88.0 30 10.0  10 Fißler et al., 
1995 

R. palustris DSM 
131 

Sodium 
alginate (50 
μm bead) 

Cinnamate  Batch - 127.0 7.6 86.0 30 10.0  10 Fißler et al., 
1995 

R. palustris DSM 
131 

Sodium 
alginate (50 
μm bead) 

Mandelate  Batch - 71.7 4.3 60.0 30 10.0  10 Fißler et al., 
1995 

R. palustris DSM 
131 

Sodium 
alginate (50 
μm bead) 

Benzoylformate Batch - 65.0 3.9 57.0 30 10.0  10 Fißler et al., 
1995 
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Table 5. Hydrogen production by mutants of PHP bacteria* 
 

Light intensity  Organisms Substrates Max. H2 
rate 
(ml/l/h) 

Max. H2 
rate 
(ml/g/h) 

Yield 
(%) 

Culture 
volume (ml) 

Cell density 
(g/l) 

Light source 

W/m2 klux 

Reference 

R. sphaeroides P3 
(mutant of RV) 

Lactate  - - - 2 1.0 Halogen (800 
and 850 nm) 

80  Vasilyeva et al., 
1999 

R. sphaeroides MTP4 
(Reduced pigment 
mutant of RV) 

Lactate  46.0 100.0 40.0 165 0.46 Tungsten 300  Kondo et al., 
2002a 

R. sphaeroides MTP4 
(Reduced pigment 
mutant of RV) 

Lactate 21.2 35.4 - 800 0.60 Tungsten 300  Kondo et al., 2006 

R. sphaeroides KD131 
Hup-/Phb- mutant 

Malate  45.8 - 49.9 50 2.9 OD660 Halogen  8 Kim et al., 2004 

R. sphaeroides KD131 
Hup-/Phb- mutant 

Lactate  25.0 - 27.2 50 1.8 OD660 Halogen  8 Kim et al., 2004 

R. sphaeroides KD131 
Hup-/Phb- mutant 

Acetate  7.7 - 12.6 50 1.4 OD660 Halogen  8 Kim et al., 2004 

R. sphaeroides KD131 
Hup-/Phb- mutant 

Glucose  12.4 - 6.7 50 1.9 OD660 Halogen  8 Kim et al., 2004 

R. capsulatus B10S 
Hup- mutant 

N.S. 94.1 - - 1 2 OD600 N.S. - - Krahn et al., 1996 

R. capsulatus ST-410 
(Hup- mutant of B100) 

Malate 100.0 140.0 68.0 5 - Tungsten   6.6 Ooshima et al., 
1998 

R. capsulatus ST-410 
(Hup- mutant of B100) 

Acetate  41.0 - 84.0 5 - Tungsten   6 Ooshima et al., 
1998 

R. capsulatus ST-410 
(Hup- mutant) 

Malate  59.0 107.0 8.1 550 0.55 Tungsten  60   Katsuda et al., 
2000 

*All studies were in batch. 

 


