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Data Recorded at Irregular Intervals  
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Abstract - As demand for proactive real-time transportation 

management systems has grown, major developments have 
been seen in short-time traffic forecasting methods. Recent 
studies have introduced time series theory, neural networks, 
genetic algorithms, etc., to short-time traffic forecasting to 
make forecasts more reliable, efficient and accurate. However, 
most of these methods can only deal with data recorded at 
regular time intervals, thereby restricting the range of data 
collection tools to loop detectors or other equipment that 
generate regular data. The study reported here represents an 
attempt to expand on several existing time series forecasting 
methods to accommodate data recorded at irregular time 
intervals, thus ensuring these methods can be used to obtain 
predicted traffic speeds through intermittent data sources such 
as the GPS. The study tested several methods using the GPS 
data from 480 Hong Kong taxis. The results show that the best 
performance is obtained using a neural network model with 
acceleration information predicted by ARIMA model. 

 

I. INTRODUCTION 

rregularly spaced or intermittent data is a problem 

commonly encountered in many research fields. Many 

researchers have already extended the classic time series 

methods in an attempt to deal with this problem. Croston [1] 

developed a method for providing a more accurate estimate 

of stock control in 1972. This method separately applies 

exponential smoothing to the intervals between non-zero 

demands and the magnitude of the non-zero demands by 

treating them as a continuous time series according to their 

index. Jones [2] tried to use the maximum likelihood fitting 

of autoregressive moving average (ARMA) models for time 

series with missing observations in 1980. However, this 

method is useful only when the number of missing 

observations is very small. In 1986, Wright [3] further 

developed the simple exponential smoothing method and 

Holt’s method by extending the use of weighted averages for 

irregularly spaced data. In 1995, Cipra et al. [4] expanded on 

Wright’s modification of Holt’s method by proposing an 

extended version of the  Holt-Winters method for data taken 

at irregular time intervals. In 2004, Carmo and Rodrigues [5] 

compared the methods of Wright and Croston to a neural 

network method to show how the neural network can be used 

for filtering and forecasts. Willemain et al. [6] suggested a 

bootstrap method for intermittent data on service parts 

inventories in 2004. In the following year, Velicer and Colby 

[7] compared four different data-missing methods (the 

deletion, mean substitution, mean of adjacent observations 

and maximum likelihood estimation methods) commonly 

used for autoregressive integrated moving average (ARIMA) 

models time series under 50 different data-missing 

conditions, their results showing that the maximum 

likelihood estimation method performed the best under all 

conditions tested. In 2006, Cipra and Praha [8] made a 

modification to the double smoothing method that was 

similar to that Wright made to Holt’s method and suggested 

that the modified double smoothing method performed better 

than the modified Holt method. However, this comparison 

may not be fair, because Cipra and Praha did not optimize 

the coefficients in these methods. Altay et al. [9] compared a 

modification of Croston’s method and Wright’s modified 

version of Holt’s method in 2008, suggesting that using 

Croston’s method to forecast demand will result in the 

minimization of inventory levels, whereas using the 

modified Holt method will result in superior customer 

service. Cipra and Hanzak [10] derived a method involving 

the exponential smoothing of order m for irregular time 

series in 2008.  

Many researchers have also used time series to forecast 

traffic flow in the transportation field. In 1997, Smith et al. 

[11] compared four methods – the time-series method and 

the historical average, neural network and nonparametric 

regression models – to estimate traffic flow 15 minutes 

ahead. The results indicated that the nonparametric 

regression model was the most accurate. However, in 2002 

Smith et al. [12] reached a different conclusion in showing 

that the seasonal autoregressive integrated moving average 

(SARIMA) model delivers results that are statistically 

superior to those of the nonparametric models. William et al. 

[13] proposed the SARIMA model as a theoretical basis for 

modeling traffic data. Szeto et al. [14] developed an 

integrated method incorporating both the SARIMA model 

and the cell transmission model. The forecasting results 

suggested that these methods are effective in predicting real-

time traffic flow data. Tan et al. [15] suggested an 

aggregation method in which the moving average (MA) and 

exponential smoothing (ES) methods and the ARIMA model 

are used to forecast three relevant time series and the 

predicted results are aggregated in a neural network model to 

output the final forecast. 

The studies outlined above have together resulted in 

significant progress in forecasting traffic flow by treating 

traffic condition data as time series. However, most existing 

methods can only deal with regularly spaced time series data 
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because they involve the use of loop detectors to obtain the 

data required. Given that it is not possible to have loop 

detectors installed in all links in a city, some alternative ways 

of providing information on traffic conditions have been 

developed, such as floating cars which upload GPS data. The 

study reported here was an attempt to address the problem 

whereby using GPS data may result in irregular time 

intervals in a time series. It sought to expand on the classic 

ways of dealing with intermittent time series to allow for 

traffic conditions to be forecast using irregularly spaced data. 

  

II. DATA 

The study used the GPS data of 480 Hong Kong taxis 

collected over the 14 weeks from 29 June 2009 to 4 October 

2009. The GPS equipment installed in the taxis uploaded 

their coordinates, speed, driving direction and the uploading 

time to the information centre approximately once every 30 

seconds. The study combined the use of a GIS technique to 

locate the taxis’ position according to their coordinates and 

on a road map. A 2-kilometer long section of Princess 

Margaret Road approaching the Cross Harbour Tunnel in 

Hong Kong was selected and separated into 20 100-meter 

long segments that were used as the 20 sample points. Data 

for the first 12 weeks were used for calibration and data for 

the last two weeks were used for validation. The data for the 

first 12 weeks comprised 181,952 observations. The 

maximum speed recorded was 120 kilometers per hour and 

the minimum speed recorded was 0 kilometers per hour, with 

a mean speed of 22.85 kilometers per hour and a standard 

deviation of 25.38. The data recorded in the last two weeks 

included 33,509 observations. The maximum speed recorded 

was 95 kilometers per hour and the minimum speed recorded 

was 0 kilometers per hour, with a mean speed of 20.58 

kilometers per hour and a standard deviation of 24.26. 

  

III. METHODS 

The study intends to modify several existing methods to 

forecast speeds using irregularly spaced data. They are the 

Naïve method, Wright’s modification of the simple 

exponential smoothing method, Wright’s modification of 

Holt’s method[3].  An extrapolation method using the latest 

observation and predicted acceleration was also used for 

comparison. Two neural network methods, neural network 

with and without acceleration information were also 

proposed to aggregate the result of the three existing 

methods. ARIMA model was used to predict the acceleration 

with a transformation to deal with the irregularity. The first 

three methods predicted the forecasts using speed data only; 

the following two methods used to import and combined the 

acceleration information. 

 

Existing Parametric Methods 

A.    The Naïve Method 

Under the Naïve method, the latest observation is used as 

the forecast for the next period. It serves as the worst-case 

scenario and can be considered a reference method to which 

more complex methods can be compared. It can be 

mathematically expressed as follows: 

 ˆ
t ty y=                                       (1) 

where ty  is the speed observed at time t and ˆ
ty  is the 

forecast made at time t. 

B. The Simple Exponential Smoothing Method with Wright’s 

Modification 

This method represents a compromise between two 

extreme prediction methods: the Naïve method, in which all 

the weight is placed on the latest observation, and the 

moving average method, in which all the observations are 

weighted equally to obtain the average. The exponential 

smoothing method gives the most weight to the latest 

observation and gives exponentially decreasing weight to 

distant observations. All exponential smoothing methods 

follow a basic principle of recursive form:  

 (1 )  

                                     

new estimate parameter previous estimate

parameter new observation

= − × +

×
  (2) 

The simple exponential smoothing method is the basic 

method that follows this recursive form. 

The mathematic expression of the simple exponential 

smoothing method is:  

 

2
1 2

3
3

ˆ (1 ) (1 )

                                   (1 ) ...
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t
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α α α α α

α α

− −

−

= + − + −

+ − +
   (3) 

where ty  is the speed observed at time t, ˆ
ty  is the forecast 

made at time t, and α  is a coefficient ranging from 0-1. 

The recursive form of the same method is: 

 1
ˆ ˆ(1 )t t ty y yα α−= − +                            (4) 

However, the form given above cannot be used for data 

sets with irregular time spacing. According to Wright’s 

modification, the extended form of this method for 

irregularly spaced data is: 

 ˆ
n n ny A V=                                     (5) 

where nA  is called the weighted average and α  is a 

coefficient ranging from 0-1, 

 (1 ) n i

i

n
t t

n t

i

A yα −
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= −∑                          (6) 

where nV  is called the normalizing factor, and 
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 The recursive form of Wright’s modification is 

 
1

ˆ ˆ(1 )
n n nt n t n ty V y V y

−
= − +                      (8) 

 1

1( )

n
n

n n

V
V

b V

−

−

=
+

                              (9) 

 1(1 ) n nt t
nb α −−= −                            (10) 

Given the extended weighted average, the simple 

exponential smoothing method can be used to make forecasts 

using irregularly spaced data. 
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C. Wright’s Modification of Holt’s Method 

Holt’s method was devised to deal with time series trends. 

It uses observations to provide estimates of both level and 

slope. The recursive form of this algorithm is 

 1 1(1 )( )t t t tL y L Tα α − −= + − +                  (11) 

 1 1( ) (1 )t t t tT L L Tβ β− −= − + −                   (12) 

where tL and tT  are estimates of level and slope at time t. 

The forecast for time t+k made at time t is 

 ˆ ( )t t ty t k L kT+ = +                           (13) 

One of the advantages of Holt’s method is the flexibility it 

gives due to its two parameters. However, the form given 

above cannot be used for a dataset with irregular time 

spacing. The same modification was made to Holt’s method: 

 ( )
nt n n ny t k L M k+ = +                       (14) 

 1 1 1(1 )( ( ) )
nn n n n n n n tL V L t t M V y− − −= − + − +     (15) 

 1 1 1(1 ) ( ) / ( )n n n n n n n nM U M U L L t t− − −= − + − −   (16) 

where 

 1
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n
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V
V

b V

−

−

=
+

                            (17) 

 1(1 ) n nt t
nb α −−= −                            (18) 

and 
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1( )
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n
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U
U

d U

−

−
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+

                          (19) 

 1(1 ) n nt t
nd β −−= −                            (20) 

nV  and nU  are the same as the normalizing factor nV  in 

the modified version of the simple exponential smoothing 

method. α  and β are coefficients ranging from 0-1. The 

modified version of Holt’s method still has two parameters 

and maintains its flexibility as a result. 

 

Usefulness of the Acceleration Information 

The ARIMA model was used to forecast the accelerations, 

so that the accelerations can be introduced for speed 

forecasting. Box and Jenkins introduced the use of ARIMA 

model and developed a methodology for data fitting  [16]. 

D. The ARIMA Model 

The ARIMA model of order (p, d, q) can be written using 

the back-shift operator notation: 

 ( )(1 ) ( ) ( )d
t tB B X Bϕ µ θ α− − =                (21) 

where 

 

 1( ) 1
p

pB B Bϕ ϕ ϕ= − − −⋯                   (22) 

 1( ) 1
q

qB B Bθ θ θ= − − −⋯                    (23) 

in which ϕ  is an autoregressive parameter, θ  is a moving 

average parameter, the back-shift operator is defined as 

follows: 

 1t tBX X −=                              (24) 

and tα  is white noise that can be defined as follows: 

 1 1( ) ( )t t tX Xα µ ϕ µ−= − − −                (25) 

While the ARIMA model is a general class of model, the 

autoregressive model and the moving average model can be 

viewed as special sub-classes of the ARIMA model.  

Box and Jenkins method was used to develop an ARIMA 

model. According to Box and Jenkins method, the sample 

autocorrelation and partial sample autocorrelation diagrams 

should be examined first to determine the orders (p, d, q) of 

the ARIMA model [16]. The maximum likelihood method or 

the conditional least squares method can then be used to fit 

the model. However, these methods cannot deal with 

intermittent GPS data in which second-by-second 

observations are largely missing. Hence, in this study, the 

ARIMA model was used to forecast the acceleration after a 

transformation. The transformation transfers speed data 

measured by time into acceleration data measured by an 

index. The ARIMA model can therefore be used to forecast 

the acceleration. 

 

Utilization of Acceleration Information in ARIMA 

models 

 Neural network was used to utilize the acceleration 

information to the speed prediction by aggregating the 

acceleration forecast from the ARIMA models and the speed 

forecast from the three existing parametric methods. To 

compare, a neural network without acceleration information 

and an extrapolation method using acceleration were also 

included. 

E. Neural Network with Accelerations 

The neural network can learn the relationship between the 

input and output by iteratively adjusting the weights in the 

network to minimize the difference between the observed 

input and observed output. The neural network used in this 

paper was a feedforward backpropagation network designed 

to have an input layer consisted of 4 neurons, a hidden layer 

with 12 neurons, and an output layer with one neuron. The 

number of neurons in the hidden layer was set to 12, which 

offers the best performance. The hyperbolic tangent sigmoid 

transfer function was used in the hidden layer, and the pure 

linear transfer function is used in the output layer. The 

Levenberg-Marquardt backpropagation learning algorithm 

was chosen to train the neural network. The maximum 

training epoch was set to be 1000. 

F. Extrapolation method with Accelerations 

The extrapolation method used the latest observed speed 

and the predicted acceleration to predict the next speed, 

which can be written as: 

 ˆ ( )t t ty t k y ka+ = +                              (26) 

where ty  is the speed observed at time t, ta  is the predicted 

acceleration. 

G. Neural Network without Accelerations 

This method intends to provide an aggregation of the 

result of naïve method, exponential smoothing method and 

Holt’s method using neural network, which is compared with 

the method of neural network with acceleration. Therefore, 

the structure of the neural network in this section is identical 

to the structure of the neural network method with 

acceleration, except that there is no acceleration information 

input to the network, i.e., only three neurons in the input 
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layer were considered. The number of neurons in the hidden 

layer was also set to 12. 

 

Measure of Effectiveness (MOE) 

H. MOE 

The mean absolute percentage error (MAPE) was used to 

measure the effectiveness of these methods. MAPE is a 

widely used standard to measure the effectiveness of 

forecasting methods by comparing the forecasting results to 

the observed values in terms of an absolute percentage. 

MAPE is defined as: 

 

1

1
MAPE

N
n n

nn

X X

N X
=

−
= ∑  (27) 

where nX  is the value observed at time n  and nX  is the 

forecast for time n . 

 

IV. RESULTS & DISCUSSION 

A. ARIMA Model Order 

 The autocorrelation diagram and partial autocorrelation 

diagram of acceleration was examined to define the order of 

the ARIMA model. 

 

 
STATA was used to calculate the autocorrelation diagram 

and the partial autocorrelation diagram for the sample 

acceleration. The diagrams are presented in Fig. 1 and Fig. 2.  

In Fig. 1, for high lags, the sample autocorrelations are all 

very small and do not follow a very smooth pattern, so there 

is no need for differencing. The first sample autocorrelation 

is very large and the second one is slightly bigger than the 

confidence band, while the reminders are quite small, 

suggesting an MA(2) model for the series. 

Similarly, in Fig. 2, the first three of the sample partial 

autocorrelations is moderately large, while the reminders are 

very small, suggesting an AR(3) model for the series. 

Taking these two parameters into consideration, it was 

determined that it may also be useful to include ARMA (1, 

1) and ARMA (2,1) in the analysis.  

The Schwartz Bayesian criterion (SBC), often called the 

Bayesian information criterion (BIC), was used to measure 

which model best fit the sample series in Table I. 

 

Table I 

THE SBC OF 3 ARIMA MODELS WITH DIFFERENT ORDERS 

 

As in Table I, the ARIMA (1, 0, 1) has the smallest SBC. 

This ARIMA (1, 0, 1) was thus selected to make forecasts. 

B. Comparison of Forecast Results 

The six forecast methods were used to give a second-by-

second forecast. The MAPE was calculated for time points at 

which there were observations. By comparing the MAPE of 

the results, the best performed method can be found, in 

which the MAPE indicates the extent to which the predicted 

value approaches the observed values. The comparison 

between different forecasting methods was shown in Table II. 

The extrapolation method outperforms the three 

parametric methods, which indicates the essence of 

acceleration information in the estimation. The neural 

network without acceleration produces the worst results, 

which demonstrates that a larger number of parameters do 

not necessarily produce better results. A carefully designed 

scheme that utilizes the important characteristics of the 

problem is important for the development of a forecasting 

scheme. The neural network with acceleration information 

outperforms all of the other 5 methods, which utilizes the use 

of acceleration information and the aggregation of the three 

existing parametric methods. The comparison between 

neural network method with and without acceleration 

information shows that with nearly the same parameters, the 

acceleration information can greatly increase the forecast 

precision. It is envisaged that the acceleration information 

offers a useful indication of the phase transition in the 

ARIMA 

(p,0,q) 

ARIMA 

(1,0,1) 

ARIMA 

(3,0,0) 

ARIMA 

(0,0,2) 

ARIMA 

(2,0,1) 

cons -.00675 -.00675 -.00675 -.00675 

ar1  .09435 -.06460   .33287 

ar2  -.00909   .01612 

ar3  -.00651   

ma1 -.15889  -.06464 -.39750 

ma2   -.00526  

SBC 445595.6 445602.8 445596.5 445605.5 
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evolution of traffic conditions, and thus helps to more 

accurately predict the change in speed. Table II also shows 

that there is no obvious pattern of the prediction error across 

different road segments, thus indicating that there is no 

significant spatial correlation between these road segments. 

 

 

V. CONCLUSION 

The study reported here employed several methods to 

forecast traffic speeds using irregularly spaced GPS data 

from taxis, most of which were located on a 2-kilometer long 

section of Princess Margaret Road approaching the Cross 

Harbour Tunnel in Hong Kong. Three existing methods, the 

naïve method, the simple exponential method and Holt’s 

method, were used to make forecasts from the irregularly 

spaced GPS data, while the ARIMA model was used to 

forecast acceleration. Three methods, neural network models 

with and without acceleration information and an 

extrapolation method, were proposed to aggregate the 

acceleration information into traffic speed forecasting and 

measure the usefulness of acceleration information. The 

MAPE was used to measure the forecasting performance of 

the methods. The results suggest that the neural network with 

the acceleration information outperforms all of the other 

methods. However, without the acceleration information, the 

neural network method performs the worst. The introduction 

of acceleration information can improve the neural network 

forecasting results, because the resulting neural network 

forecasting utilizes the information of irregular time intervals 

and captures the phase transition in the speed forecasting. In 

future works, we will consider the model-based or fuzzy-

neural approach to model the interaction between adjacent 

road segments (e.g., see [14], [17]). 
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