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Abstract This paper studies the mean and mean square
convergence behaviors of the normalized least mean square
(NLMS) algorithm with Gaussian inputs and additive white
Gaussian noise. Using the Price’s theorem and the
framework proposed by Bershad in IEEE Transactions on
Acoustics, Speech, and Signal Processing (1986, 1987),
new expressions for the excess mean square error, stability
bound and decoupled difference equations describing the
mean and mean square convergence behaviors of the
NLMS algorithm using the generalized Abelian integral
functions are derived. These new expressions which closely
resemble those of the LMS algorithm allow us to interpret
the convergence performance of the NLMS algorithm in
Gaussian environment. The theoretical analysis is in good
agreement with the computer simulation results and it also
gives new insight into step size selection.

Keywords Normalized least mean square . Convergence

1 Introduction

Adaptive filters are frequently employed to handle
filtering problems in which the statistics of the under-
lying signals are either unknown a priori, or in some
cases slowly-varying. Many adaptive filtering algorithms
have been proposed and they are usually variants of the
well known least mean square (LMS) [1] and the recursive
least squares (RLS) [2] algorithms. An important variant
of LMS algorithm is the normalized least mean square
(NLMS) algorithm [3, 4], where the step size is
normalized with respect to the energy of the input
vector. Due to the numerical stability and computational
simplicity of the LMS and the NLMS algorithms, they
have been widely used in various applications [5]. Their
convergence performance analyses are also long standing
research problems. The convergence behavior of the
LMS algorithm for Gaussian input was thoroughly
studied in the classical work of Widrow et al. [1], in
which the concept of independence assumption was
introduced. Other related studies of the LMS algorithm
with independent Gaussian inputs include [6–8]. On the
other hand, the NLMS algorithm generally possesses an
improved convergence speed over the LMS algorithm, but
its analysis is more complicated due to the step size
normalization. In [9] and [10], the mean and mean square
behaviors of the NLMS algorithm for Gaussian inputs
were studied. Analysis for independent Gaussian inputs
in [11] also revealed the advantage of the NLMS
algorithm over the LMS algorithm. Due to the difficulties
in evaluating the expectations involved in the difference
equations for the mean weight-error vector and its
covariance matrix, general closed-form expressions for
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these equations and the excess mean square error (EMSE)
are in general unavailable. Consequently, the works in [9,
10] only concentrated on certain special cases of
eigenvalue distribution of the input autocorrelation
matrix. In [12, 13], particular or simplified input data
model was introduced to facilitate the performance
analysis so that useful analytical expressions can still be
derived. In [14], the averaging principle was invoked to
simplify the expectations involved in the difference
equations. Basically, the normalization term is assumed
to vary slowly with respect to the input correlation term
and the power of the input vector is assumed to have a
chi-square distribution with L degrees of freedom. In
[15], the difference equation was converted to a stochas-
tic differential equation to simplify the analysis assuming
a small step size. In [16], the normalization term
mentioned above was recognized as an Abelian integral
[17], which was explicitly integrated using a transfor-
mation approach into elementary functions.1 Recently,
Sayed et al. [18] proposed a unified framework for
analyzing the convergence of adaptive filtering algo-
rithms. It has been applied to different adaptive filtering
algorithms with satisfactory results [19].

In this paper, the convergence behaviors of the NLMS
algorithm with Gaussian input and additive noise are
studied. Using the Price’s theorem [20] and the frame-
work in [9, 10], new decoupled difference equations
describing the mean and mean square convergence
behaviors of the NLMS algorithm using the generalized
Abelian integral functions are derived. The final results
closely resemble the classical results for LMS in [1].
Moreover, it is found that the normalization process will
always increase the maximum convergence rate of the
NLMS algorithms over their LMS counterparts if the
eigenvalues of the input autocorrelation matrix are
unequal. Using the new solution for the EMSE, the step
size parameters are optimized for white inputs which
agrees with the approach previously proposed in [21]
using calculus of variations. The theoretical analysis and
some new bounds for step size selection are validated
using Monte Carlo simulations.

The rest of this paper is organized as follows: In
Section 2, the NLMS algorithm is briefly reviewed. In
Section 3, the proposed convergence performance analysis
is presented. Simulation results are given in Section 4 and
conclusions are drawn in Section 5.

2 NLMS Algorithm

Consider the adaptive system identification problem in
Fig. 1 where an adaptive filter with coefficient or weight
vector of order L, WðnÞ ¼ w1ðnÞ;w2ðnÞ; . . . ;wLðnÞ½ �T , is
used to model an unknown system with impulse response
W� ¼ w1;w2; � � � ;wL½ �T . Here, (∙)T denotes the transpose of
a vector or a matrix. The unknown system and the adaptive
filter are simultaneously excited by the same input x(n). The
output of the unknown system d0(n) is assumed to be
corrupted by a measurement noise η(n) to form the desired
signal d(n) for the adaptive filter. The estimation error is
given by e(n)=d(n)–y(n). The NLMS algorithm under
consideration assumes the following form:

W nþ 1ð Þ ¼ WðnÞ þ meðnÞXðnÞ
"þ aXT ðnÞXðnÞ ; ð1Þ

where XðnÞ ¼ xðnÞ; x n� 1ð Þ; � � � ; x n� Lþ 1ð Þ½ �T is the
input vector at time instant n, μ is a positive step size
constant to ensure convergence of the algorithm, and ε and
α are positive constants. In the ε -NLMS algorithm [10], ε
is a small positive value used to avoid division by zero
and α=1. In the conventional LMS algorithm, ε=1 and
α=0. The above model can also be used to model the
effect of prior knowledge of noise power by choosing ε to
be 1� að Þbs2

x , where bs2
x is some prior estimate of

E XT ðnÞXðnÞ� �
and α becomes a positive forgetting factor

smaller than one.

3 Mean and Mean Square Convergence Analysis

To simplify the analysis, we assume that A1) the input
signal x(n) is a stationary ergodic process which is Gaussian
distributed with zero mean and autocorrelation matrix
RXX ¼ E XðnÞXT ðnÞ� �

, A2) η(n) is white Gaussian distrib-
uted with zero mean and variance s2

g , and A3) the well-
known independent assumption [1] where W(n), x(n) and
η(n) are considered statistically independent. Moreover, we
denote W� ¼ R�1

XXPdX as the optimal Wiener solution,
where PdX ¼ E dðnÞXðnÞ½ � is the ensemble-averaged cross-
correlation vector between X(n) and d(n).

1 To our best knowledge, the Abelian integrals which are also related
to the exponential and elliptical integrals generally cannot be
expressed in terms of a finite number of elementary functions. The
approach in [16] seems to be an approximation.
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Figure 1 Adaptive system identification.
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3.1 Mean Behavior

From (1), the update equation for the weight-error vector v
(n)=W*−W(n) is given by:

v nþ 1ð Þ ¼ vðnÞ � meðnÞXðnÞ
"þ aXT ðnÞXðnÞ : ð2Þ

Taking expectation on both sides of (2), we get

E v nþ 1ð Þ½ � ¼ E vðnÞ½ � � mH1; ð3Þ
where H1 ¼ E eðnÞXðnÞ= "þ aXT ðnÞXðnÞ� �� �

and E[∙]
denotes the expectation over {v(n),X(n), η(n)} and is
written more clearly as E v;X ;hf g �½ �. Since X(n) and η(n) are
stationary, we can drop the time index n in the expectation
to get H1 ¼ E eX= "þ aXTX

� �� �
. Using the independence

assumption A3, we further have H1 ¼ E vf g H½ �, where
H ¼ E X ;hf g eX= ð"þ aXT XÞ vj ��

.
In the conventional NLMS algorithm studied in [9] and

[10] with α=1, similar difference equation for the mean
weight-error vector (c.f. [10, Eq. 11])2 was obtained:

E v nþ 1ð Þ½ � ¼ I� mF"ð ÞE vðnÞ½ �; ð4Þ

where F" ¼ E XðnÞXT ðnÞ= "þ XT ðnÞXðnÞ� �� �
and I is the

identity matrix. Moreover, Fε was further diagonalized into
Hε whose i-th element is H"½ �i;i¼

R1
0

exp �b"ð Þ
Iþ2bRXXj j1=2

li
1þ2bli

db
(c. f. [10, Eq. 14]), where 1i is the i-th eigenvalue of RXX. It
was evaluated analytically in [9] for three important cases
with different eigenvalue distributions (in [10], only the first
case was elaborated): (1) white input signal with 11=...=1L;
(2) two signal subspaces with equal powers 11=...=1K=a
and lKþ1 ¼ . . . ¼ lL ¼ b; (3) distinct pairs, l1 ¼ l2,
l3 ¼ l4, …, lL�1 ¼ lL (Assume L even). Besides these
three special cases, no general solution to Hε was provided.
Therefore, general closed-form formulas for modeling the
mean and mean square behaviors of the NLMS algorithm
were unavailable in [9] and [10].

Here, we pursue another direction by treating some of
these integrals as special functions and carry them
throughout the analysis. The final formulas containing
these special integral functions still allow us to clearly
interpret the convergence behavior of the NLMS algorithm
and determine appropriate step size parameters. More
precisely, using Price’s theorem [20] and the approach in
[9, 10], it is shown in Appendix A that:

H1 ¼ UΛDΛU
TE vðnÞ½ � ð5Þ

where RXX ¼ UΛUT is the eigenvalue decomposition of
RXX and Λ ¼ diag l1; l2; � � � ; lLð Þ contains the corresponding

eigenvalues. DΛ is a diagonal matrix with the i-th diagonal
entry given by (A-6):

DΛ½ �i;i¼ Ii Λð Þ ¼ R10 exp �b"ð Þ QL
k¼1

2ablk þ 1ð Þ�1=2
� �

2abli þ 1ð Þ�1db,

which is a generalized Abelian integral function where the
conventional Abelian integral has the form IaðxÞ ¼R x
0 q bð Þ½ ��1=2db with q(β) being a polynomial in β. It is
also similar to H"½ �i;i in [10].

Substituting (5) into (3), the following difference
equation for the mean weight-error vectors E[v(n+1)] and
E[v(n)] is obtained

E v nþ 1ð Þ½ � ¼ I� mUΛDΛU
T

� �
E vðnÞ½ � ð6Þ

(6) can also be written in the natural coordinate VðnÞ ¼
UTvðnÞ as
E V nþ 1ð Þ½ � ¼ I� mΛDΛð ÞE VðnÞ½ �; ð7Þ
which is equivalent to L scalar first order finite difference
equations as follows:

E V nþ 1ð Þ½ �i¼ 1� mliIi Λð Þð ÞE VðnÞ½ �i; ð8Þ
where E[V(n)]i is the i-th element of the vector E[V(n)] for
i=1,2,∙∙∙,L.

For conventional LMS and NLMS algorithms, the above
result agrees with the mean convergence result of the
conventional NLMS algorithm in [10, Eq. 13], except that
the effect of normalization is now more apparent. If all
Ii(Λ)’s are equal to one, the analysis reduces to its un-
normalized, conventional LMS counterpart. Therefore, the
mean weight vector of the NLMS algorithm will converge
if 1� mliIi Λð Þj j < 1, for all i, and the corresponding step
size satisfies m < 2= liIi Λð Þð Þ, for all i. To determine the
maximum possible step size μmax, we need to examine the
maximum of the product 1iIi(Λ):

liIi Λð Þ ¼ li

Z 1

0
exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2abli þ 1ð Þ�1db

¼
Z 1

0
exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2ab þ lið Þ�1
h i�1

db :

ð9Þ
Since the factor exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
is common

for all the products and it is positive, the maximum value in
(9) also occurs at the largest eigenvalue 1max with the
corresponding value of Ii(Λ) given by Ii lmax Λð Þ. Therefore,

m < 2= lmaxIi lmax Λð Þð Þ ¼ mmax ð10Þ

As a result, compared with the LMS algorithm, the
maximum step size of the NLMS algorithm is scaled by a
factor 1=Ii lmaxðΛÞ. The fastest convergence rate of the
algorithm occurs when μ = μmax and it is limited by the
mode corresponding to the smallest eigenvalue 1min with

2 For convenience, the variables are renamed according to the notation
in this paper.
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the corresponding value of Ii(Λ) given by Ii lmin Λð Þ, that is
1� lminIi lmin Λð Þ= lmaxIi lmax Λð Þð Þ. The smaller this value,
the faster the convergence rate will be. From the definition of
Ii(Λ) , it can be shown that Ii lmin Λð Þ=Ii lmax Λð Þ � 1. In other
words, the eigenvalue spread lmax=lmin is reduced by a
factor Ii lmax Λð Þ=Ii lmin Λð Þ after the normalization. There-
fore, under the stated assumptions, the maximum conver-
gence rate of the NLMS algorithm will always be faster than
the LMS algorithm if the eigenvalues are unequal.

3.2 Mean Square Behavior

Post-multiplying (2) by its transpose and taking expectation
gives

Ξ nþ 1ð Þ ¼ ΞðnÞ �M1 �M2 þM3; ð11Þ

where ΞðnÞ ¼ E vðnÞvT ðnÞ½ �,M1 ¼ mUΛDΛUTΞðnÞ, M2 ¼
mΞðnÞUDΛΛUT , M3 ¼ m2E e2XXT

�
"þ aXTX
� �2h i

¼ E vf g s3½ �,
where s3 ¼ E X;hf g e2XXT

�
"þ aXTX
� �2

vj
h i

. Here, we
have used the previous result in (5) to evaluate M1 and
M2.M3 is evaluated in Appendix B to be

M3 ¼ 2m2U Λ UTΞðnÞU� � � I Λð Þ� �
Λ

� 	
UT þ m2UD2U

T

þ m2s2
gUΛI

0 Λð ÞUT
; ð12Þ

where the diagonal matrix D2 results from (B-7) and its i-th
element D2

� �
i;i
¼ Σ

k
lkliIki Λð Þ UTΞðnÞU� �

k;k
, � denotes

element-wise product of two matrices (Hadamard product),
I(Λ) and I′(Λ) are defined in (B-5) and (B-8) and their
elements are also generalized Abelian integral functions.
Substituting (12) into (11) gives

Ξ nþ 1ð Þ ¼ ΞðnÞ � mUΛDΛU
TΞðnÞ � mΞðnÞUDΛΛU

T

þ2m2U Λ UTΞðnÞU� � � I Λð Þ� �
Λ

� 	
UT þ m2UD2U

T

þm2s2
gUΛI

0 Λð ÞUT :

ð13Þ

(13) can be further simplified in the natural coordinate by
pre- and post-multiplying Ξ(n) by UT and U to give:

Φ nþ 1ð Þ ¼ ΦðnÞ � mΛDΛΦðnÞ � mΦðnÞDΛΛ

þ2m2 Λ ΦðnÞ � I Λð Þð ÞΛ½ � þ m2eD2 þ m2s2
gΛI

0 Λð Þ
ð14Þ

where ΦðnÞ ¼ UTΞðnÞU and eD2

h i
i;i
¼ Σ

k
lkliIki Λð Þ ΦðnÞ½ �k;k .

From (14), we can get the i-th diagonal value of Φ(n) as
follows

Φi;i nþ 1ð Þ ¼ Φi;iðnÞ � 2mIi Λð ÞliΦi;iðnÞ
þ2m2l2i Iii Λð ÞΦi;iðnÞ þ m2 Σ

k
lkliIki Λð ÞΦk;kðnÞ

þm2s2
gliI

0
i Λð Þ :

ð15Þ

From numerical results, the term m2 Σ
k
lkliIki Λð ÞΦk;kðnÞ is

very small for small EMSE and (15) can be approximated as

Φi;i nþ 1ð Þ � 1� 2mIi Λð Þli þ 2m2Iii Λð Þl2i
� �

Φi;iðnÞ þ m2s2
gliI

0
i Λð Þ:
ð16Þ

To study the step size for mean squares convergence of
the algorithm, we first assume that the algorithm converges
and then determine an upper bound of the EMSE at the
steady state. From this expression, we are able to find the
step size bound for a finite EMSE and hence mean square
convergence. As we shall see below, this step size bound
depends weakly on the signals. Alternatively, we can find
an approximate signal independent upper bound for small
EMSE by ignoring the term m2 Σ

k
lkliIki Λð ÞΦk;kðnÞ since it

is very small for small EMSE. Consequently, (16) suggests
that the algorithm will converge in the mean squares
sense when j1� 2mIiðΛÞli þ 2m2IiiðΛÞl2i j < 1.This gives
m < Ii Λð Þ= liIii Λð Þð Þ for all i. From the definitions of Ii(Λ)
and Iii(Λ), we have Ii Λð Þ= liIii Λð Þð Þ ¼ 2= 1� I ¶¶

ii
Λð Þ=Ii Λð Þ


 �
> 2

for α=1, where I
0 0
i Λð Þ ¼ R1

0 exp �b"ð Þ Π
L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�2db.

Therefore, a conservative signal independent stability bound
for small EMSE is μ<2.

For a more precise upper bound, we first note that
the EMSE at time instant n is given by EMSEðnÞ ¼
Tr ΞðnÞRXXð Þ ¼ Tr ΦðnÞΛð Þ. Assuming that algorithm con-
verges, it is shown in Appendix B that the last two terms
on the right hand side of (15) is upper bounded by
m2s2

e 1ð ÞliI 0i Λð Þ at the steady state. Hence, the steady state
EMSE of the NLMS algorithm is approximately given by

xNLMS 1ð Þ ¼ Tr Φ 1ð ÞΛð Þ � 1
2ms

2
e 1ð ÞfNLMS; ð17Þ

where fNLMS ¼PL
i¼1

li I
0
i Λð Þ

Ii Λð Þ�mliIii Λð Þ. Using the fact that s2
e 1ð Þ ¼

xNLMS 1ð Þ þ s2
g , one gets

xNLMS 1ð Þ �
1
2ms

2
gfNLMS

1� 1
2mfNLMS

: ð18Þ

It can be seen that xNLMS 1ð Þ is unbounded when either its
denominator becomes zero or when φNLMS becomes
unbound when any of the denominators of its partial sum
becomes zero. This gives respectively the following two
conditions:

m < 2=fNLMS; ð19aÞ

0 < m < Ii Λð Þ=liIii Λð Þ: ð19bÞ
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For the LMS case, Iii Λð Þ ¼ Ii Λð Þ ¼ I
0
i Λð Þ ¼ 1 and the

corresponding conditions are:

m < 2=fLMS; ð20aÞ

0 < m < 1=li; ð20bÞ

where fLMS ¼PL
i¼1

li
1�mli

. (20a) and (20b) are identical to the

necessary and sufficient conditions for the mean square
convergence of the LMS algorithm previously obtained in
[6]. Similar results are obtained in [7] by solving the
difference equation in Φ(n) and in [8] by a matrix analysis
technique.

In [7], a lower bound of the maximum step size is also
obtained. Using a similar approach, we now derive a step
size bound for the NLMS algorithm. First we rewrite (19a) as:

XL
i¼1

mlici
1� mlidi

< 2; ð21Þ

where ci ¼ I
0
i Λð Þ�Ii Λð Þ and di ¼ Iii Λð Þ=Ii Λð Þ. Let u=2 μ−1

and rewrite (21) as

‘ðuÞ �
XL
i¼1

liciliðuÞ ¼
YL
i¼1

u� uið Þ ¼
XL
i¼0

�1ð ÞL�ibL�iu
i ¼ 0;

ð22Þ
where, ‘ðuÞ ¼ QL

i¼1
u� 2lidið Þ, liðuÞ ¼ ‘ðuÞ= u� 2lidið Þ, and

u�1
i are the roots of (22). The largest root of (22) (smallest

root of (21)) is upper bounded (lower bounded) by [26]

uN max � 1

L
s1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 1ð Þ Ls2 � s21

� �q �
ð23Þ

where s1 ¼
PL
i¼1

ui ¼ b1 and s2 ¼
PL
i¼1

u2i ¼ b21 � 2b2. By com-

paring the coefficients on different sides of (22), one also gets

b1 ¼
XL
i¼1

li 2di þ cið Þ

and

b2 ¼ 4
X

1�i6¼j�L

liljdidj þ
XL
i¼1

lici 2
X

1�j 6¼i�L

ljdj

 !
: ð24Þ

From (23), a more convenient lower bound of μmax can be
obtained as follows

mmax� 2L

b1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1ð Þ2b21�2L L�1ð Þb2

p � 2L

b1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1ð Þ2b21

p
¼ 2

b1
¼ 2

Tr Λ I0 Λð Þþ2diag I Λð Þð Þð ÞD�1
Λð Þ:

ð25Þ

where diag(I(Λ)) is a diagonal matrix with the i-th diagonal
value equal to Iii(Λ).

From simulation results, we found that �NLMS is rather
close to one. Hence, μ<2 is a very useful rule of thumb
estimate of the step size bound, since it does not depend on
any prior knowledge of the Gaussian inputs.

Comparing (13) and the result in [10, Eq. 22], it can be
found that they are identical except that all the integrals in
[10] are coupled in their original forms. In contrast, the
decoupled forms in terms of the generalized Abelian
integral functions in (13)–(18) obtained with the proposed
approach are very similar to those of the LMS algorithm.
Moreover, we are also able to express the stability bound
and EMSE in terms of these special functions, which are
new to our best knowledge. When Ii(Λ), I

0
i ðΛÞ and Iii(Λ) are

equal to one, our analysis will reduce to the classical results
of the LMS algorithm. Next, we shall make use of these
analytical expressions for step size selection.

3.3 Step Size Selection

For white input, I(Λ) and I′(Λ) will reduce respectively to
exp "=2lð Þ

2al EL=2þ1
"

2al

� �
and exp "=2lð Þ

2alð Þ2 EL=2
"

2al

� �� EL=2þ1
"

2al

� �� �
,

where EnðxÞ ¼
R1
1 exp �xtð Þ=tnð Þdt is the generalized ex-

ponential integral function (E−n (x) is also known as the
Misra function). For small ε, one gets En "=2lð Þ �
1= n� 1ð Þ for n >1. In this case, the NLMS algorithm will
have the same convergence rate of the LMS algorithm if
mLMS ¼ mexp "=2lð Þ

2al EL=2þ1
"

2al

� � � m 1
2al L=2ð Þ, or equivalently

m � mLMSalL. For the maximum possible adaptation speed
of the LMS algorithm, mLMS;opt ¼ l

L�1ð Þ2þE x4½ � � 1= lLð Þ for
large L. As a result, μ≈α and one gets the following update

W nþ 1ð Þ ¼ WðnÞ þ eðnÞXðnÞ
"=að Þ þ XT ðnÞXðnÞ ; ð26Þ

which agrees with the optimum data nonlinearity for LMS
adaptation in white Gaussian input obtained in [21] using
calculus of variations. The MSE improvement of this
NLMS algorithm over the conventional LMS algorithm
was analyzed in detail in [21]. In general, one could set
α=1 and vary μ between 0 and 1 with a small ε to achieve
a given MSE or match a given convergence rate as above.
From simulation results, we found that the EMSE of
the NLMS algorithm varies slightly with the eigenvalues
for a given Tr(RXX). For small μ, (18) suggests that the
LMS algorithm is almost independent of the eigenvalue
spread for a given Tr(RXX) fLMS � ΣL

i¼1li
� �

. Therefore,
the relationship between μ and μLMS for the white input
case, i.e. m � mLMSTR RXXð Þ, can be used as a reason-
able approximation for the colored case and α = 1.
The corresponding EMSE is approximately

1
2mLMSs

2
gTr

ðRXX Þ ¼ 1
2ms

2
g. From (17), fNLMS �P L

i¼1liI
0
i Λð Þ�Ii Λð Þ,

which can be shown to be independent of scaling of input
for small ε. From simulation, we also found that the EMSE
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of the NLMS will increase slightly with the eigenvalue
spread. Hence, 1

2ms
2
g represents a useful lower bound for

estimating the EMSE of NLMS algorithm. It is very
attractive because it does not require the knowledge of the
eigenvalues or eigenvalue spread ofRXX. The corresponding
estimate of the misadjustment is then 1

2m. A similar upper
bound can be estimated empirically from simulation results
to be presented.

4 Simulation Results

In this section we shall conduct computer experiments
using both simulated and real world signals to verify the
analytical results obtained in Section 3.

(1) Simulated signals

These simulations are carried out using the system
identification model shown in Fig. 1. All the learning
curves are obtained by averaging the results of K=200
independent runs. The unknown system to be estimated is a
FIR filter with length L. Its weight vector W* is randomly
generated and normalized to unit energy. The input signal
x(n)=ax(n−1)+v(n) is a first order AR process, where v(n)
is a white Gaussian noise sequence with zero mean and
variance s2

v . 0<a<1 is the correlation coefficient. The
additive Gaussian noise η(n) has zero mean and variance
s2
g.
For the NLMS algorithm, we set α=1, ε=10−4 and vary

μ. The values of the special integral functions, Ii(Λ) in (A-
6), Iij(Λ) in (B-5), and I

0
i Λð Þ in (B-8) are evaluated

numerically using the method introduced in [22]. For the
mean convergence, the norm of the mean square weight-
error vector is used as the performance measure:

jjvAðnÞjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

L
i¼1

1
KΣ

K
j¼1v

ðjÞ
i ðnÞ

h i2r
; i ¼ 1; � � � ; L; j

¼ 1; � � � ;K;
where vðjÞi ðnÞ is the i-th component of v(n) at time n in the
j-th independent run. For the mean square convergence
results, EMSEðnÞ ¼ Tr ΦðnÞΛð Þ, or the misadjustment
MðnÞ ¼ EMSEðnÞ

.
s2
g, is used as the performance mea-

sure. The theoretical results are computed from (8) and
(16).

Two experiments are conducted. In the first experiment,
we compare our analytical results with those in [14]
(Eq. 14) and [16] (Eq. 25) for mean square convergence.
Two filter lengths with L=8 and L=24 are evaluated for two
cases: (1) μ=0.1, s2

g ¼ 10�5, and a less colored input with
a=0.5; (2) μ=0.1, s2

g ¼ 10�4, and a more colored input
with a=0.9. From Fig. 2 (a) and (b), it can be seen that
when the input is less colored, all the approaches show

good agreement with simulation results. When the input is
very colored, our approach gives more accurate results than
[14] and [16]. When L is small, there are considerable
discrepancies between the theoretical and simulation results
in [14] and [16]. The main reason is that both [14] and [16]
assume that the denominator in (2) is uncorrelated with the
numerator and an “average” but constant normalization for
all the eigen-modes results. When the input is very colored,
the scaling constants according to (8), Ii(Λ), are consider-
ably different for different modes. Hence, the averaging
principle is less accurate in describing the convergence
behavior.

In experiment 2, we conduct extensive experiments to
further verify our analytical results. The parameters are
summarized in Table 1. The results concerning mean and
mean square convergence are plotted in Fig. 3 (a), (b) and
Fig. 3 (c)–(f) respectively. From these figures, it can be
seen that the theoretical analysis agrees closely with the
simulation results for all cases tested. The estimated lower
bound 1

2m for misadjustment M obtained in Section 3.3 is

Figure 2 Comparison of the proposed analytical results with those in
[14] and [16]. a L=8, b L=24.
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L a(χ) �2g �2v μ CF Fig.

8 0(1), 0.3(3.2), 0.6(12.2), 0.9(113.4) 10−7 1/[3(1−a2)] 0.3 2.7 3(c)

10−5 1/(1−a)2 0.03 2.7 3(a), 3(d)

24 0(1), 0.3(3.4), 0.6(15.2), 0.9(232.7) 10−4 3/(1−a)2 0.2 1.7 3(b), 3(e)

10−6 1/(1−a2) 0.05 1.7 3(f)

Table 1 List of parameters in
experiment 2 (χ: eigenvalue
spread of RXX, CF: correction
factor).

Figure 3 Verification of the proposed analytical results with parameter settings given in Table 1, (a), (b) Mean convergence; (c)–(f) Mean square
convergence.
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also plotted. It is accurate for moderate filter lengths and
serves as a useful bound for short filter lengths. As
mentioned earlier, the steady state misadjustment M
increases slightly with the eigenvalue spread of the input
signal. Therefore, by introducing a correction factor CF, we
can empirically estimate an upper bound of M as CF � 12m.
This also serves as a reference for the selection of μ to
achieve at least a given misadjustment for moderate
eigenvalue spreads. This CF is found to decrease slightly
as L increases. Other simulation results (omitted here due to
page limitation) also give similar conclusion except when μ
is near to one, where slightly increased discrepancies
between theoretical and simulation results are observed
due to the limitation of the independent assumption A3. In
summary, the advantages of the NLMS algorithm over the
LMS algorithm are its good performance in colored inputs
and its ease in step size selection, which make it very
attractive in speech processing and other applications with
time-varying input signal level.

(2) Real speech signals

To illustrate further the properties of the LMS and
NLMS algorithms, real speech signals are employed to
evaluate their performances in an acoustic echo cancellation
application. The speech signals used for testing are obtained
with courtesy from the open source in [24]. Figure 4 (a)
represents the signal of a sentence articulated by a female
speaker “a little black plate on the floor” plus a white
Gaussian noise. The sampling rate is 8 kHz. The echo path
used has a length of 128 and is a real one given as m1(k) in
the ITU-T recommendation G.168 [25]. The background
noise η(n) has a power of s2

g ¼ 10�4. For simplicity, no
double talk is assumed in this experiment.

Two sets of step sizes for the LMS and NLMS
algorithms are employed: 1) μLMS=0.08, μNLMS = 0.5, and
2) μLMS = 0.02 and μNLMS = 0.1. These values are chosen
so that when the two algorithms are excited by the additive
noise (i.e. during nearly silent time period), both algorithms
will give a similar MSE. The residual errors after echo
cancellation are depicted in Fig. 4 (b) and (c), respectively.
From Fig. 4 (b), we can see that due to the nonstationary
nature of the speech signal and hence the unavailability a
priori knowledge of the input statistics, the LMS algorithm
with a fixed step size of 0.08 diverges and plots after time
index 10000 are omitted. In contrast, the performance of the
NLMS is rather satisfactory. At a smaller step size of 0.02,
it can be seen from Fig. 4 (c) that LMS algorithm converges
but its performance is severely degraded by the non-
stationarity of the speech signal, whereas the NLMS
algorithm again has a satisfactory performance. This is
due to the rapidly changing input level and the colored
nature of real speech signals.

Figure 4 a A real speech signal of the sentence “a little black plate on the
floor”. b, c The residual error in the acoustic echo cancellation application
using the LMS and NLMS algorithms with different step sizes.
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5 Conclusions

A new convergence analysis of the NLMS algorithm using
Price’s theorem and the framework proposed in [9, 10] in
Gaussian input and noise environment is presented. New
expressions are derived for stability bound, steady state
EMSE and decoupled difference equations describing the
mean and mean square convergence behaviors of the
NLMS algorithm using the generalized Abelian integral
functions. The theoretical models are in good agreement
with the simulation results and guidelines for step size
selection are discussed.

Appendix

Appendix A: Evaluation of H1

As η(n) and x(n) are assumed to be statistically indepen-
dent, and X are jointly Gaussian with autocorrelation matrix
RXX, one gets

H ¼ CR

ZZ
Lþ1fold

eX

"þ aXTX
exp � 1

2
XTR�1

XXX

 �
f hð ÞdhdX;

ðA� 1Þ
where CR ¼ 2pð Þ�L=2 RXXj j�1=2 and f (η) is the probability
density function (PDF) of the Gaussian noise η. |·| denotes
the determinant of a matrix. Similar to [9] and [10], let us
consider the integral

F bð Þ ¼ CR

ZZ
Lþ1 fold

eX exp �b "þ aXTX
� �� �

"þ aXTX
exp �1

2X
TR�1

XXX
� �

	 f hð ÞdhdX:

ðA� 2Þ

It can be seen that H=F(0). Differentiating (A-2) w.r.t. β,
one gets

dF bð Þ
db

¼ � exp �b"ð ÞCR

ZZ
Lþ1 fold

eXð Þ exp �1
2X

TB�1ðnÞX� �
	 f hð ÞdhdX;

ðA� 3Þ
where BðnÞ ¼ 2abIþ R�1

XX

� ��1
. For notation convenience,

we shall simply write B for B(n). To evaluate the integral, we
use the eigenvalue decomposition of RXX ¼ UΛUT , where
Λ is a diagonal matrix whose elements are the eigenvalues of
RXX and U is a orthogonal matrix. The matrix B−1 can be
written as B�1 ¼ U 2abIþ Λ�1� �

UT ¼ UD�1UT , where D
is a diagonal matrix with the i-th diagonal entry given by
diiðnÞ ¼ 2ab þ l�1

i

� ��1
. Noting that the determinants of U

and D are respectively 1 and Dj j�1=2¼ Π
L

i¼1
2ab þ l�1

i

� �1=2
,

one can rewrite (A-3) as dF bð Þ=db ¼ �g bð ÞL1, where
CB ¼ 2pð Þ�L=2 Bj j�1=2, L1 ¼ E X;hf g eX vj½ �jE XXT½ �¼B, and

g bð Þ ¼ exp �b"ð Þ Π
L

i¼1
2abli þ 1ð Þ�1=2. Using e ¼ XTvþ h, we

have rxie¼ E xie vj½ �jE XXT½ �¼B¼E xi XTvþh
� �

vj� ���
E XXT½ �¼B

¼Biv,
where Bi is the i-th row of B. Finally, we have L1=Bv(n).

Substituting it into (A-3) and integrating w.r.t. β yields

F bð Þ ¼ I bð ÞvðnÞ; ðA� 4Þ

where I bð Þ ¼ � R bg bð ÞBdb and the constant of integration
is equal to zero because of the boundary condition F(∞)=0.
To evaluate I(0) and hence H ¼ Fð0Þ ¼ Ið0ÞvðnÞ, we note
that B ¼ UDðnÞUT and thus

Ið0Þ ¼ U �
Z

0
g bð ÞDðnÞdb

 �
UT ¼ UΛDΛU

T ; ðA� 5Þ

where DΛ ¼ diag I1 Λð Þ; :::; IL Λð Þð Þ and

Ii Λð Þ ¼
Z 1

0
exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2abli þ 1ð Þ�1db;

i ¼ 1; 2; � � � ; L;
ðA� 6Þ

which can be numerically evaluated.
Finally, we have the desired result in (5)

H1 ¼ E vf g H½ � ¼ E vf g Fð0Þ½ � ¼ UΛDΛU
TE vðnÞ½ � ðA� 7Þ

For the LMS algorithm, B will be equal to RXX and
accordingly DΛ is equal to the identity matrix and
s2
e vð Þ ¼ vTRXX vþ s2

g.

Appendix B: Evaluation of s3 and M3

As in Appendix A, we write
s3 ¼ E X;hf g e2XXT

.
"þ aXTX
� �2

vj
h i

as:

s3 ¼ CR

ZZ
Lþ1 fold

e2XXT

"þ aXTX
� �2 exp �1

2X
TR�1

XXX
� �

f hð ÞdhdX:

ðB� 1Þ
Let us define

F bð Þ ¼ CR

ZZ
Lþ1 fold

e2XXT exp �b "þ aXTX
� �� �

"þ aXTX
� �2

� exp �1
2X

TR�1
XXX

� �
f hð ÞdhdX:

ðB� 2Þ

Comparing (B-2) with (B-1), it can be seen that s3 ¼ Fð0Þ.
To evaluate F bð Þ, we differentiate (B-2) twice w.r.t. β to
get d2F bð Þ�db2 ¼ g bð ÞL3, where L3 ¼ E X;hf g e2XXT vj� �
jE XXT½ �¼B, and γ(β), CB, and B have been defined in
Appendix A. Consider the (i, j)-th element of L3:
L3;i;j ¼ E X;hf g e2xixj vj

� �
Bj . Using Price’s theorem, we have

@L3;i;j

�
@rxixj ¼ E X;hf g e2 vj½ � Bj ¼ s2

e , where s2
e ¼ vTBvþ

s2
g. Integrating @L3;i;j

�
@rxixj w.r.t. r xixj gives L3;i;j ¼

s2
erxixj þ ci;j, where ci;j ¼ E e2xixj

� ���
rxixj¼0

is the integration
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constant. Using Price’s theorem again, we have @ci;j
�
@rxie ¼

E de2

de xj
h i

jrxixj¼0
¼ E d2e2

de2

h i
rxje ¼ 2rxje. Integrating once again, we

get ci;j ¼ 2rxjerxie. Combining, we have L3;i;j ¼ s2
erxixjþ

2rxjerxie, and hence L3 ¼ s2
eBþ 2BvvTB. Substituting it

into d2F bð Þ�db2 ¼ g bð ÞL3 gives

d2F bð Þ�db2 ¼ g bð Þs2
eBþ 2g bð ÞBvvTB: ðB� 3Þ

Integrating (B-3) w.r.t. β and using s2
e vð Þ ¼ vTBvþ s2

g

yields

s3 ¼ I1 þ I2 þ s2
gI3;

where I1¼2
R1
0

R1
b1

g b2ð ÞBvvTBdb2db1 ; I2¼
R1
0

R1
b1

g b2ð Þ
vTBvð ÞBdb2db1; and I3 ¼

R1
0

R1
b1

g b2ð ÞBdb2db1 with the
boundary conditions: F 1ð Þ ¼ 0 and @F bð Þ b¼1 ¼ 0

.
.

The evaluation of the integrals I1, I2, and I3 is detailed
below. Note, E vf g s2

e

� � ¼ E vf g vTBv½ � þ s2
g is upper bounded

by E vf g vTRXX v½ � þ s2
g ¼ s2

eðnÞ, which is the MSE at time
instant n. To simplify the derivation of the worse case
EMSE, the term I2 þ s2

gI3 can be approximated by
s2
e 1ð ÞI3.
Evaluation of I1:
Using the eigenvalue decomposition of B, one gets

I1 ¼ 2

Z 1

0

Z 1

b1

g b2ð ÞUDðnÞUTvvTUDðnÞUTdb2db1 ¼ UD1U
T ;

ðB� 4Þ

where D1 ¼ 2
R1
0

R1
b1

g b2ð ÞDðnÞVVTDðnÞdb2db1 and
V=UTv. The (i, j)-th element of D1 is ½D1�i;j ¼ 2 VVT

� �
i; jIi;j,

where Ii;j ¼
R1
0

R1
b1

g b2ð ÞdiiðnÞdjjðnÞdb2db1 ¼ liljIijðΛÞ,
and

Iij Λð Þ ¼
Z 1

0
b exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2abli þ 1ð Þ�1

	ð2ablj þ 1Þ�1db

: ðB� 5Þ

Hence I1 ¼ UD1UT , where D1 ¼ 2Λ VVT
� � � I Λð Þ� �

Λ,
I Λð Þ½ �i;j¼ Iij Λð Þ, and � denotes element-wise product of
two matrices. Iij(Λ) can be evaluated numerically.

Evaluation of I2:

I2 ¼
Z 1

0

Z 1

b1

g b2ð ÞTr vvTB
� �

Bdb2db1

¼ U
Z 1

0
b2g b2ð ÞTr UTvvTUD

� �
Ddb2

 �
UT

¼ U
Z 1

0
b2g b2ð ÞΣ

k
dkk UTvvTU
� �

k;kDdb2

 �
UT

¼ UD2U
T ;

ðB� 6Þ

where we have used B�1 ¼ UD�1UTand the property of
trace operation Tr(·). D2 is a diagonal matrix and its i-th
diagonal element is given by:

D2½ �i;i¼
Z 1

0
b2g b2ð ÞΣ

k
dkkdii U

TvvTU
� �

k;k
db2

¼ Σ
k

Z 1

0
b2g b2ð Þdkkdiidb2

 �
VVT
� �

k;k

¼ Σ
k
lkliIki Λð Þ VVT

� �
k;k

ðB� 7Þ

where Iki(Λ) has already been defined in (B-5).
Evaluation of I3:

Since I3 ¼
R1
0

R1
b1

g b2ð ÞUDðnÞUTdb2db1 ¼ UD3ðnÞUT ,
it suffices to evaluate the integral of the diagonal elements
of D3(n) as follows:

D3ðnÞ½ �i;i¼
Z 1

0

Z 1

b1

g b2ð ÞdiiðnÞdb2db1

¼
Z 1

0

Z b2

0
g b2ð ÞdiiðnÞdb1db2

¼ li

Z 1

0
b exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2abli þ 1ð Þ�1db:

Hence, D3ðnÞ ¼ ΛI0 Λð Þ, where I′(Λ) is a diagonal matrix
with its i-th diagonal element (also can be numerically
evaluated) given by

I
0
i Λð Þ ¼

Z 1

0
b exp �b"ð Þ Π

L

k¼1
2ablk þ 1ð Þ�1=2

� �
2abli þ 1ð Þ�1db:

ðB� 8Þ
Finally, we have

s3 ¼ UD1U
T þ UD2U

T þ s2
gUD3U

T

¼ 2U Λ VVT
� � � I Λð Þ� �

Λ
� 	

UT þ UD2U
T þ s2

gUΛI
0 Λð ÞUT

and

M3 ¼ E vf g s3½ � ¼ 2m2U Λ UTΞðnÞU� � � I Λð Þ� �
Λ

� 	
UT

þm2UD2U
T þ m2s2

gUΛI
0 Λð ÞUT :

ðB� 9Þ
From numerical results, I2 is close to zero if the EMSE is
small, and s3 � I1 þ s2

gI3. For the LMS algorithm, the
normalization term in (B-2) is missing and L3 can be
obtained by replacing B above by RXX.
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