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Abstract This paper studies the three-dimensional (3-D) free vibration of uniform prisms with isosceles trian-
gular cross-section, based on the exact, linear and small strain elasticity theory. The actual triangular prismatic
domain is first mapped onto a basic cubic domain. Then the Ritz method is applied to derive the eigenfrequency
equation from the energy functional of the prism. A set of triplicate Chebyshev polynomial series, multiplied
by a boundary function chosen to, a priori, satisfy the geometric boundary conditions of the prism is developed
as the admissible functions of each displacement component. The convergence and comparison study demon-
strates the high accuracy and numerical robustness of the present method. The effect of length-thickness ratio
and apex angle on eigenfrequencies of the prisms is studied in detail and the results are compared with those
obtained from the classical one-dimensional theory and the 3-D finite element method. Sets of valuable data
known for the first time are reported, which can serve as benchmark values in applying various approximate
beam and rod theories.

Keywords Three-dimensional vibration · Elasticity solution · Prism · Triangular cross-section · Ritz method

1 Introduction

Uniform prisms with isosceles triangular cross-section can be found as basic structural elements in civil,
mechanical and bridge engineering. In many cases, they have to bear the dynamic loads, and therefore, to
understand their dynamic characteristics is very important for the safety and reliability of structures.

Various one-dimensional (1-D) models to describe the elastic deformation in a prism have been developed,
in which Euler–Bernoulli beam theory [1] and Timoshenko beam theory [2] are two of the most famous ones.
In the 1-D approximate theories, vibration modes of a prism can be divided into three distinct categories:
longitudinal vibration [3], torsional vibration [4] and flexural vibration [1,2,5], respectively, through consid-
ering the prisms as slender beams or rods. In general, the longitudinal vibration of a prism can be individually
modeled, and the torsional vibration and the flexural vibration is dependent of the locations of elastic axis and
inertial axis of the prism. When the elastic axis is coincident with the inertial axis, the torsional vibration and
the flexural vibration is uncoupled, otherwise coupling will occur.

Owing to some severe assumptions imposed on the deformations in a prism, the accuracy of the 1-D
approximate theories greatly depends on the length-thickness ratio of the prism, and its applicability is
also dependent of what accuracy would be required for the actual situation. Therefore, the accuracy of 1-D
theories should be checked by the solutions from the exact three-dimensional (3-D) elasticity theory where no
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artificial, kinematic constraints are placed on the deformations. A close scrutiny among the references reveals
that study on 3-D vibration of prisms has received little attention because of the difficulty of attaining accurate
solutions. The available references mainly focused on the prisms with circular or rectangular cross-section.
Hutchinson [6,7] studied the vibration of a completely free prism with circular cross-section and compared
his 3-D solutions with the approximate 1-D solutions [8]. Such a prism was also studied by Leissa and So
[9] using the Ritz method for the free-free and the fixed-free end conditions. Fromme and Leissa [10] used
the so-called Fourier associated-periodicity extension method to study the 3-D vibration of a completely free
prism with rectangular cross-section. The same problem was also studied by Hutchinson and Zillmer [11]
using the method of series solution. Furthermore, Leissa and Zhang [12] used the Ritz method to study the 3-D
vibration of a cantilevered prism with rectangular cross-section, while Leissa and Jacob [13] and McGree [14],
respectively, used the Ritz method to study the 3-D vibration of a cantilevered twisted prism with rectangular
cross-section. Recently, Liew et al. [15] used the Ritz method to study the 3-D free vibration of prisms with the
thick-walled, open sections of L, T, C and I shapes. Lim [16] investigated the effect of hypothetical assumption
of neglecting flexural normal stress in vibration analysis for a cantilevered prism with rectangular cross-section.
Up to now, most of the research work on 3-D vibration analysis of structural components is performed by the
Ritz method because of its simplicity in analysis [9,12–16], in which two types of polynomial functions are
commonly used as the basis of admissible functions: the simple algebraic polynomials [9,12–14,16] and the
orthogonal polynomials [15]. It is well known that the simple algebraic polynomials have the straightforward
and convenient characteristics in programming and computing. However, undesirable ill-conditioning occurs
generally so early that only a small part of the lower-order eigenfrequencies can be obtained with satisfactory
results. Especially, for a prism with noncircular or nonrectangular cross-section, the applicability of the simple
algebraic polynomials is greatly reduced, as demonstrated by the authors in a recent paper on vibration anal-
ysis of cantilevered skew thick plates [17]. The ill-conditioning situation can be improved by employing the
orthogonal polynomials instead of the natural ones. However, as So and Leissa [18] pointed out, this would
not only complicate the analysis but may yield inaccurate results due to the truncation errors which arise in
calculating orthogonal polynomials by the Gram-Schmidt process. In this paper, the Chebyshev polynomials
are suggested as the alternative basic functions to study the prisms with isosceles triangular cross-section
using the Ritz method. Not only high accuracy and numerical robustness can be obtained due to the excellent
properties of the Chebyshev polynomials in function approximation [19], but also simplicity in programming
and computing can be maintained because of the Chebyshev polynomials can be conveniently expressed as
cosine functions.

2 Formulation

Consider a prism with isosceles triangular cross-section of width a, length h and apex angle α as shown in
Fig. 1a. Based on the exact, linear and small-strain 3-D elasticity theory, the strain energy V and the kinetic
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Fig. 1 A prism with isosceles triangular cross-section: a sketch, coordinates and sizes; b domain transformation into a basic cube
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energy T of an elastic body undergoing free vibration are given by the volume integrals

V = (1/2)

∫∫∫
[λ(εx + εy + εz)

2 + 2G(ε2
x + ε2

y + ε2
z ) + G(γ 2

xy + γ 2
yz + γ 2

zx )]dxdydz,

T = (ρ/2)

∫∫∫
(u̇2 + v̇2 + ẇ2)dxdydz,

(1)

where ρ is the mass per unit volume; u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z) are displacement
components at a generic point in the x, y and z directions, respectively; u̇, v̇ and ẇ are the corresponding
velocity components. λ and G are the Lamè constants for a homogeneous and isotropic material. εi and
γi j (i, j = x, y, z) are the strain components.

For free vibrations, the displacement components of the 3-D elastic body may be expressed as

u = U (x, y, z)eiωt, v = V (x, y, z)eiωt, w = W (x, y, z)eiωt, (2)

where ω is the circular eigenfrequency of vibration.
Substituting Eq. (2) into Eq. (1), the maximum strain energy V max and the maximum kinetic energy T max

of the prism are, respectively, expressed as

V max = (1/2)

∫∫∫ [
λV 1 + G(V 2 + V 3)

]
dxdydz,

T max = (1/2)ρω2
∫∫∫

(U 2 + V 2 + W 2)dxdydz,
(3)

in which,

V 1 = (∂U/∂x + ∂V/∂y + ∂W/∂z)2,

V 2 = 2(∂U/∂x)2 + 2(∂V/∂y)2 + 2(∂W/∂z)2, (4)

V 3 = (∂U/∂y + ∂V/∂x)2 + (∂V/∂z + ∂W/∂y)2 + (∂W/∂x + ∂U/∂z)2.

The Lagrangian energy functional � is given as

� = T max − V max. (5)

For simplicity in constructing admissible functions, the actual triangular prismatic domain is mapped onto
a basic cubic domain, as shown in Fig. 1b, using the following co-ordinate transformation

x = aξ(1 − η)/4, y = a(1 + cos α)(1 + η)/(4 sin α), z = h(ζ + 1)/2. (6)

Applying the chain rule of differentiation, the relation of the first derivative between the original co-ordinate
system x − y − z and the new co-ordinate system ξ − η − ζ can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂()

∂x
∂()

∂y
∂()

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= J−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂()

∂ξ

∂()

∂η

∂()

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (7)

where J denotes the Jacobian matrix of the geometrical mapping as follows

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(1 − η)a/4 0 0

−ξa/4 (1 + cos α)a/(4 sin α) 0

0 0 h/2

⎤
⎥⎥⎦ . (8)
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Equations (7) and (8) will be used later to transform the x − y − z domain integrals in Eq. (3) into the
ξ − η − ζ domain integrals.

Following the above co-ordinate transformation, the displacement functions U (x, y, z) = U (ξ, η, ζ ),
V (x, y, z) = V (ξ, η, ζ ) and W (x, y, z) = W (ξ, η, ζ ) are approximately expressed in terms of a finite series
as

U (ξ, η, ζ ) = fu(ζ )

I∑
i=1

J∑
j=1

K∑
k=1

Ai jk Fi (ξ)Fj (η)Fk(ζ ),

V (ξ, η, ζ ) = fv(ζ )

L∑
l=1

M∑
m=1

N∑
n=1

Blmn Fl(ξ)Fm(η)Fn(ζ ), (9)

W (ξ, η, ζ ) = fw(ζ )

P∑
p=1

Q∑
q=1

R∑
r=1

C pqr Fp(ξ)Fq(η)Fr (ζ ),

where Ai jk, Blmn and C pqr are undetermined coefficients, fu(ζ ), fv(ζ ) and fw(ζ ) are the boundary functions
while all the series functions have an identical form of formulation: Fs(χ)(s = i, j, k, l, m, n, p, q, r and
χ = ξ, η, ζ ) which are a set of Chebyshev polynomials [19] defined in interval [−1, 1], and is expressed by

Fs(χ) = cos[(s − 1) arccos(χ)], s = 1, 2, 3, . . . (10)

It should be noted that Chebyshev polynomial functions Fs(χ)(s = 1, 2, 3, . . .) is a set of complete and
orthogonal series in the interval [−1, 1]. This ensures that the triplicate series Fi (ξ)Fj (η)Fk(ζ )(i, j, k =
1, 2, 3, . . .) is also a complete and orthogonal set in the cubic domain. Compared to results using other poly-
nomial series such as the Taylor series, more rapid convergence and robustness in numerical computation
can be expected. Moreover, the Chebyshev polynomials can be expressed in terms of cosine functions, which
provides a convenient way in programming.

In the Ritz method, the stress boundary conditions of the plates need not be satisfied in advance. However,
the geometric boundary conditions should be satisfied exactly. For a prism, the boundary functions in the
admissible functions should only relate with the ζ coordinate but not the ξ and η coordinates because there are
no displacement constraints on the lateral surface of the prism. Some common boundary functions are shown
in Table 1.

Substituting Eqs. (6–8) into Eqs. (3–5), the Lagrangian functional � can be expressed in terms of the
co-ordinate system ξ − η − ζ. Then substituting Eq. (9) into the functional expression, and upon minimizing
� with respect to the undetermined coefficients Ai jk, Blmn and C pqr , a set of eigenfrequency equations is
derived, which can be written in matrix form as

⎛
⎝

⎡
⎣ [Kuu] [Kuv] [Kuw]

[Kuv]T [Kvv] [Kvw]
[Kuw]T [Kvw]T [Kww]

⎤
⎦ − �2

⎡
⎣ [Muu] 0 0

0 [Mvv] 0
0 0 [Mww]

⎤
⎦

⎞
⎠

⎧⎨
⎩

{A}
{B}
{C}

⎫⎬
⎭ =

⎧⎨
⎩

{0}
{0}
{0}

⎫⎬
⎭ , (11)

Table 1 The boundary functions corresponding to common boundary conditions

B.C. fu(ζ ) fv(ζ ) fw(ζ )

F-F 1 1 1
C-F 1 + ζ 1 + ζ 1 + ζ

C-S 1 − ζ 2 1 − ζ 2 1 + ζ

C-C 1 − ζ 2 1 − ζ 2 1 − ζ 2

S-F 1 + ζ 1 + ζ 1
S-S 1 − ζ 2 1 − ζ 2 1

F, C and S mean free, clamped and simply-supported ends, respectively, and the first capital means the boundary condition at
z = 0 and the second one means that at z = h
B.C. boundary conditions
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in which � = ωh
√

ρ/E . [Ki j ] and [Mii ] (i, j = u, v, w) are the stiffness sub-matrices and the diagonal mass
sub-matrices and {A}, {B} and {C} are the column vectors of unknown coefficients, which are given as follows

{A} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A111
A112

...
A11K
A121

...
A12K

...
A1J K

...
AI J K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, {B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B111
B112

...
B11N
B121

...
B12N

...
B1M N

...
BL M N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, {C} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C111
C112

...
C11R
C121

...
C12R

...
C1Q R

...
CP Q R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

Various elements in sub-matrices [Ki j ] and [Mii ](i, j = u, v, w) are given by

[Kuu] = (1 − ν)(1 + cos α)

(1 − 2ν) sin α
E110

uiui
G00−1

u ju j
H00

ukuk
+ sin α

2(1 + cos α)
(E112

uiui
G00−1

u ju j
+ E00

uiui
G111

u ju j

+ E101
uiui

G010
u ju j

+ E011
uiui

G100
u ju j

)H00
ukuk

+ 1 + cos α

8γ 2 sin α
E000

uiui
G001

u ju j
H00

ukuk
,

[Kvv] = (1 − ν) sin α

(1 − 2ν)(1 + cos α)
(E112

vlvl
G00−1

vmvm + E000
vlvl

G111
vmvm + E101

vlvl
G010

vmvm + E011
vlvl

G100
vmvm)H00

vnvn

+ 1 + cos α

8γ 2 sin α
E000

vlvl
G001

vmvm H11
vnvn + 1 + cos α

2 sin α
E110

vlvl
G00−1

vmvm H00
vnvn,

[Kww] = (1 − ν)(1 + cos α)

4(1 − 2ν)γ 2 sin α
E000

wpw pG001
wqwq H11

wrwr + sin α

2(1 + cos α)
(E112

wpw pG00−1
wqwq + E000

wpw pG111
wqwq

+ E101
wpw pG010

wqwq + E011
wpw pG100

wqwq)H00
wrwr + 1 + cos α

2 sin α
E110

wpw pG00−1
wqwq H00

wrwr ,

[Kuv] = ν

1 − 2ν
(E111

uivl
G00−1

u jvm + E100
uivl

G010
u jvm)H00

ukvn + 1

2
(E111

uivl
G00−1

u jvm + E010
uivl

G100
u jvm)H00

ukvn,

(13)

[Kuw] = (1 + cos α)

4γ sin α

(
2ν

1 − 2ν
E100

uiw pG000
u jwq H01

ukwr + E010
uiw pG000

u jwq H10
ukwr

)
,

[Kvw] = 1

4γ

[
2ν

1 − 2ν
(E101

vlw pG000
vmwq + E000

vlw pG101
vmwq)H01

vnwr

+ (E011
vlw pG000

vmwq + E000
vlw pG011

vmwq)H10
vnwr

]
,

[Muu] = (1 + ν)(1 + cos α)

16γ 2 sin α
E000

uiui
G001

u ju j
H00

ukuk
,

[Mvv] = (1 + ν)(1 + cos α)

16γ 2 sin α
E000

vlvl
G001

vmvm H00
vnvn,

[Mww] = (1 + ν)(1 + cos α)

16γ 2 sin α
E000

wpw pG001
wqwq H00

wrwr ,
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where

γ = h/a, Eθσς

αsβs =
1∫

−1

dθ Fs(ξ)

dξθ

dσ Fs(ξ)

dξσ
ξςdξ,

Gθστ
αsβs =

1∫

−1

dθ Fs(η)

dηθ

dσ Fs(η)

dησ
(1 − η)τ dη, (14)

H θσ
αsβs =

1∫

−1

dθ [ fα(ζ )Fs(ζ )]
dζ θ

dσ [ fβ(ζ )Fs(ζ )]
dζ σ

dζ,

in which,

θ, σ = 0, 1, ς = 0, 1, 2, τ = −1, 0, 1, α, β = u, v, w,

s = i, j, k, l, m, n, p, q, r, s = i, j, k, l, m, n, p, q, r . (15)

It should be mentioned that the equations of the algebraic system (11) and its elements in (13), respectively,
have been divided by the parameter Ea2/h. A nontrivial solution is obtained by setting the determinant of
the coefficient matrix of Eq. (11) equal to zero. Roots of the determinant are the square of the eigenvalues
or nondimensional eigenfrequencies. Eigenfunctions, i.e. mode shapes, are determined by back-substitution
of the eigenvalues, one-by-one, in the usual manner. All computations are performed in double precision (16
significant figures) on a microcomputer. The integrals in Eq. (14) are numerically evaluated by the piecewise
Gaussian quadrature with 24 points.

3 Convergence and comparison study

It is obvious that for a prism with isosceles triangular cross-section, the 3-D vibration modes can be divided
into two distinct categories: antisymmetric and symmetric ones of the bisecting plane about the apex α, i.e.
those about the y − z (or η − ζ ) plane. It is well known that the Ritz method results in the upper eigen-
frequencies and the eigenfrequencies should monotonically decrease with increasing the number of terms of
the admissible functions. Although solution of any accuracy can be provided theoretically by using sufficient
terms of admissible functions, the significant figures and capacity of the computer will inevitably result in a
limitation to the number of terms of the admissible functions. Therefore, the choice of admissible functions
becomes the successful key in the Ritz method. Moreover, suitable admissible functions not only should pro-
vide high accuracy and rapid convergence, but also should avoid the premature occurrence of ill-conditioning
in numerical computation, which is of considerable importance for the 3-D Ritz analysis because of triplicate
series generally has to be used.

A convergence study has been conducted for a prism with isosceles triangular cross-section. The length-
thickness ratio of the prism is h/a = 5. Two different apex angles: α = 60o and α = 120o and three
different boundary conditions: clamped-clamped, clamped-free and free-free are considered. For simplic-
ity, equal numbers of terms of the Chebyshev polynomials were used in each displacement functions. The
eigenfrequency parameters with respect to four groups of different numbers of terms of admissible functions:
I × J × K = 5 × 5 × 10, 6 × 6 × 15, 7 × 7 × 20 and 8 × 8 × 25, respectively, are studied. Table 2 gives
the first eight antisymmetric modes about the bisecting plane of apex angle and Table 3 gives the first eight
symmetric ones. The data accurate to the third figure after decimal point are examined and those underlined
are the converged values for the smallest number of terms in 5×5×10, 6×6×15, 7×7×20 and 8×8×25.
From these two tables, it is shown that the fastest convergence is for the F-F prisms while the slowest con-
vergence is for the C-C prisms. One reason for this is that the fixed ends cause large stress gradients near
the corners and another reason is that for the F-F prisms, the admissible functions is a set of orthogonal and
complete series while for the C-C prisms, the orthogonality of the admissible functions is destroyed by the
multiplying boundary functions, which require more terms to represent with reasonable accuracy. However,
the main properties of the Chebyshev polynomials are preserved in the present admissible functions because
the boundary functions are always invariable in sign.
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In order to demonstrate the advantage of the Chebyshev polynomials in numerical robustness over the
simple algebraic polynomials, the convergence for a C-F prism with the apex angle α = 60◦ and the length-
thickness ratio h/a = 5, using the simple algebraic polynomials as the admissible functions, are given in
Table 4. It is seen that when 6 × 6 × 12 terms of simple algebraic polynomials are used, the computation
becomes ill-conditioned. However, one can see from Tables 2 and 3 that even using 8 × 8 × 25 terms of
Chebyshev polunomials, a stable computation still has been obtained.

Table 2 Convergence of the first eight eigenfrequency parameters for a prism with isosceles triangular cross-section and length-
thickness ratio h/a = 5: antisymmetric modes about the bisecting plane of apex angle

α B.C. I × J × K �1 �2 �3 �4 �5 �6 �7 �8

60◦ F-F 5 × 5 × 10 0.852 1.509 2.108 3.016 3.662 4.519 5.357 6.025
6 × 6 × 15 0.852 1.509 2.108 3.016 3.660 4.518 5.336 6.015
7 × 7 × 20 0.852 1.509 2.108 3.016 3.660 4.518 5.336 6.015
8 × 8 × 25 0.852 1.509 2.108 3.016 3.660 4.518 5.336 6.015

C-F 5 × 5 × 10 0.142 0.761 0.814 2.037 2.283 3.518 3.802 5.144
6 × 6 × 15 0.142 0.760 0.813 2.035 2.280 3.515 3.798 5.135
7 × 7 × 20 0.142 0.760 0.813 2.034 2.280 3.515 3.798 5.134
8 × 8 × 25 0.142 0.760 0.813 2.034 2.280 3.514 3.797 5.134

C-C 5 × 5 × 10 0.812 1.535 1.964 3.068 3.386 4.601 4.948 6.129
6 × 6 × 15 0.810 1.533 1.961 3.064 3.382 4.593 4.943 6.119
7 × 7 × 20 0.810 1.532 1.960 3.063 3.381 4.592 4.942 6.117
8 × 8 × 25 0.810 1.532 1.960 3.063 3.380 4.592 4.941 6.116

120◦ F-F 5 × 5 × 10 0.854 0.961 1.924 2.118 2.906 3.540 4.070 4.636
6 × 6 × 15 0.854 0.961 1.922 2.118 2.904 3.536 4.064 4.610
7 × 7 × 20 0.854 0.960 1.922 2.118 2.903 3.535 4.063 4.609
8 × 8 × 25 0.854 0.960 1.922 2.118 2.903 3.535 4.063 4.609

C-F 5 × 5 × 10 0.142 0.488 0.821 1.465 2.046 2.477 3.265 3.783
6 × 6 × 15 0.142 0.488 0.819 1.463 2.044 2.473 3.260 3.778
7 × 7 × 20 0.142 0.487 0.819 1.462 2.043 2.472 3.259 3.776
8 × 8 × 25 0.142 0.487 0.819 1.462 2.043 2.471 3.259 3.776

C-C 5 × 5 × 10 0.804 1.015 1.851 2.159 2.871 3.631 3.850 4.826
6 × 6 × 15 0.802 1.013 1.848 2.156 2.865 3.625 3.843 4.806
7 × 7 × 20 0.802 1.012 1.846 2.154 2.864 3.624 3.841 4.805
8 × 8 × 25 0.802 1.012 1.846 2.154 2.863 3.623 3.840 4.804

Table 3 Convergence of the first eight eigenfrequency parameters for a prism with isosceles triangular cross-section and length-
thickness ratio h/a = 5: symmetric modes about the bisecting plane of apex angle

α B.C. I × J × K �1 �2 �3 �4 �5 �6 �7 �8

60◦ F-F 5× 5 ×10 0.852 2.108 3.137 3.662 5.357 6.244 7.483 9.281
6 × 6 × 15 0.852 2.108 3.137 3.660 5.336 6.244 7.048 8.743
7 × 7 × 20 0.852 2.108 3.137 3.660 5.336 6.244 7.048 8.735
8 × 8 × 25 0.852 2.108 3.137 3.660 5.336 6.244 7.048 8.735

C-F 5 × 5 × 10 0.142 0.814 1.578 2.037 3.519 4.719 5.144 6.860
6 × 6 × 15 0.142 0.813 1.577 2.035 3.516 4.717 5.135 6.812
7 × 7 × 20 0.142 0.813 1.577 2.034 3.516 4.717 5.134 6.811
8 × 8 × 25 0.142 0.813 1.577 2.034 3.515 4.717 5.134 6.811

C-C 5 × 5 × 10 0.812 1.964 3.166 3.387 4.950 6.306 6.603 8.336
6 × 6 × 15 0.810 1.961 3.164 3.382 4.944 6.302 6.583 8.255
7 × 7 × 20 0.810 1.960 3.164 3.381 4.942 6.300 6.581 8.253
8 × 8 × 25 0.810 1.960 3.164 3.381 4.942 6.300 6.580 8.252

120◦ F-F 5 × 5 ×10 0.301 0.809 1.531 2.432 3.139 3.861 5.547 6.261
6 × 6 × 15 0.301 0.809 1.530 2.418 3.139 3.430 4.535 5.685
7 × 7 × 20 0.301 0.809 1.530 2.418 3.319 3.430 4.527 5.671
8 × 8 × 25 0.301 0.809 1.530 2.418 3.319 3.430 4.527 5.671

C-F 5 × 5 × 10 0.048 0.296 0.806 1.518 1.576 2.403 3.433 4.721
6 × 6 × 15 0.048 0.295 0.804 1.516 1.575 2.392 3.391 4.473
7 × 7 × 20 0.048 0.295 0.804 1.515 1.575 2.391 3.389 4.472
8 × 8 × 25 0.048 0.295 0.804 1.515 1.575 2.391 3.389 4.472

C-C 5 × 5 × 10 0.301 0.801 1.506 2.372 3.161 3.381 4.515 6.306
6 × 6 × 15 0.300 0.799 1.502 2.367 3.158 3.350 4.421 5.540
7 × 7 × 20 0.300 0.798 1.501 2.365 3.157 3.349 4.418 5.538
8 × 8 × 25 0.299 0.798 1.501 2.364 3.157 3.348 4.417 5.536
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Table 4 Convergence of the first eight eigenfrequency parameters for a C-F prism with apex angle α = 60◦ and length-thickness
ratio h/a = 5, using the simple algebraic polynomials as the admissible functions

I×J×K �1 �2 �3 �4 �5 �6 �7 �8

Symmetric modes about the bisecting plane of apex angle
2 × 2 × 4 0.162 0.926 1.590 2.955 4.780 6.061 8.882 14.715
3 × 3 × 6 0.143 0.823 1.581 2.084 3.741 4.729 7.436 7.835
4 × 4 × 8 0.142 0.815 1.579 2.040 3.536 4.722 5.305 7.444
5 × 5 × 10 0.142 0.814 1.578 2.037 3.519 4.719 5.144 6.860
6 × 6 × 12 Ill-conditioned

Antisymmetric modes about the bisecting plane of apex angle
2 × 2 × 4 0.150 0.867 0.923 2.770 2.839 4.988 5.829 9.561
3 × 3 × 6 0.143 0.818 0.866 2.066 2.595 3.695 4.330 6.223
4 × 4 × 8 0.142 0.762 0.815 2.039 2.287 2.523 3.813 5.296
5 × 5 × 10 0.142 0.761 0.814 2.037 2.283 2.518 3.802 5.144
6 × 6 × 12 Ill-conditioned

Table 5 Comparison of the first eight eigenfrequency parameters for a slender prism with equilateral triangular cross-section
(α = 60◦, h/a = 20) between the present 3-D elasticity solutions and the classical 1-D approximate theory solutions

B.C. Solution �1 �2 �3 �4 �5 �6 �7 �8

C-C 3-D 0.227 0.618 1.193 1.515* 1.934 2.827 3.030* 3.148**
1-D 0.228 0.626 1.234 1.509 2.040 3.047 3.018 3.142

C-F 3-D 0.036 0.224 0.620 0.756* 1.197 1.572** 1.944 2.268*
1-D 0.036 0.225 0.630 0.755 1.234 1.571 2.040 2.264

C-S 3-D 0.157 0.503 1.036 1.512* 1.572** 1.742 2.604 3.024*
1-D 0.157 0.510 1.064 1.509 1.571 1.819 2.776 3.018

F-F 3-D 0.227 0.621 1.202 1.509* 1.954 2.861 3.018* 3.141**
1-D 0.228 0.626 1.234 1.509 2.040 3.047 3.018 3.142

S-F 3-D 0.157 0.504 0.755* 1.040 1.750 2.264* 2.619 3.141**
1-D 0.157 0.510 0.755 1.064 1.819 2.264 2.776 3.141

S-S 3-D 0.101 0.399 0.889 1.509* 1.556 2.387 3.018* 3.141**
1-D 0.101 0.403 0.907 1.509 1.612 2.518 3.018 3.141

Data with one asterisk are the torsional modes while data with two asterisks are the longitudinal modes

Table 6 Comparison of the present solutions with the finite element (FE) solutions for prisms with isosceles triangular cross
section of apex angle α = 90◦

h/a Solution �1 �2 �3 �4 �5 �6 �7 �8

Cantilevered
1.5 Present 0.263* 0.417 0.690 1.241* 1.585* 1.613 2.048 2.691*

FE 0.266 0.419 0.699 1.260 1.586 1.619 2.084 2.761
3.0 Present 0.137* 0.231 0.678 0.780* 1.187 1.579* 1.937* 2.029

FE 0.138 0.232 0.686 0.789 1.193 1.579 1.964 2.055
Clamped at two ends
1.5 Present 1.202* 1.373 1.611 2.516* 2.713 3.159 3.186* 3.803*

FE 1.255 1.408 1.619 2.589 2.807 3.169 3.192 4.005
3.0 Present 0.777* 1.142 1.404 1.866* 2.481 2.852 3.169* 3.193*

FE 0.789 1.156 1.426 1.917 2.518 2.898 3.174 3.286

Data with asterisk are those for the symmetric modes about the bisecting plane of apex angle

A comparison study between the present 3-D solutions and the classical 1-D theory solutions is given in
Table 5 for a cantilevered prism with equilateral triangular cross-section. The length-thickness ratio of the
prism is h/a = 20, which means the prism is a slender one. Six groups of common boundary conditions are
considered. In all the following analysis, Poisson’s ratio ν = 0.3 is fixed and the zero eigenfrequencies are
excluded from the results. It is obvious that for a prism with equilateral triangular cross-section, the elastic axis
is coincident with the inertial axis. In such a case, 1-D beam theory considers that the torsional vibration and the
flexural vibration are uncoupled. It is shown that in general for a slender prism, the low-order eigenfrequencies
from the 1-D theory accord reasonably with those from the 3-D theory and in the three types of different modes,
the longitudinal and torsional modes have the best accuracy and no clear error can be observed. While for the
flexural modes, when the order of eigenfrequencies rises the errors from the 1-D theory increase accordingly.
In all kinds of the boundary conditions, the worst 1-D results always come from the prism with C-C ends and



Three-dimensional vibration analysis of prisms 707

Table 7 The first eight eigenfrequency parameters of antisymmetric and symmetric modes about the bisecting plane of apex
angle for thick prisms with isosceles triangular cross-section, apex angle α = 60◦

B.C. h/a �1 �2 �3 �4 �5 �6 �7 �8

Antisymmetric modes
C-C 1 1.623 1.655 3.093 3.071 3.194 3.924 4.188 4.332

2 1.387 1.567 2.827 3.124 4.464 4.664 5.584 5.807
4 0.955 1.538 2.219 3.074 3.725 4.606 5.337 6.133

C-F 1 0.548 0.782 1.700 2.292 2.710 2.934 3.478 3.615
2 0.331 0.769 1.444 2.298 3.093 3.804 4.551 5.276
4 0.176 0.762 0.967 2.284 2.332 3.802 3.904 5.313

F-F 1 1.484 2.181 2.500 2.727 2.848 3.119 3.262 3.508
2 1.505 1.676 2.989 3.266 4.433 4.772 5.162 5.431
4 1.030 1.509 2.445 3.013 4.102 4.511 5.804 5.999

S-S 1 1.238 1.505 2.598 2.920 2.950 2.993 3.941 3.999
2 0.841 1.508 2.477 3.010 4.202 4.503 5.196 5.539
4 0.477 1.509 1.682 3.016 3.248 4.520 4.954 6.020

Symmetric modes
C-C 1 1.656 3.071 3.093 3.201 3.924 4.188 4.332 4.721

2 1.388 2.827 3.184 4.464 5.584 5.807 6.124 6.157
4 0.955 2.219 3.168 3.725 5.337 6.293 6.998 8.655

C-F 1 0.548 1.592 1.700 2.710 2.934 3.478 3.588 3.615
2 0.331 1.444 1.584 3.093 4.552 4.654 5.404 5.505
4 0.176 0.967 1.578 2.332 3.905 4.713 5.569 7.234

F-F 1 2.181 2.500 2.727 2.969 3.119 3.262 3.445 3.508
2 1.676 3.110 3.266 4.772 5.162 5.431 5.535 5.771
4 1.030 2.445 3.134 4.102 5.804 6.219 7.467 8.964

S-S 1 1.238 2.598 2.950 2.969 3.429 3.763 3.999 4.112
2 0.841 2.477 3.110 4.202 5.196 5.539 5.841 5.899
4 0.477 1.682 3.134 3.248 4.954 6.219 6.690 8.407

the biggest error between the 3-D and 1-D theories occurs at the sixth eigenfrequency (2.827 vs. 3.047), which
is about 7.8%.

In order to further demonstrate the accuracy and correctness of the present method, a comparison study
of the present solutions with the 3-D finite element solutions is given in Table 6 for the prisms with isosceles
triangular cross-section of apex angle α = 90◦. Two kinds of boundary conditions: clamped at two ends and
cantilevered, and two different length-thickness ratios: h/a = 1.5 and h/a = 3.0, are considered. In the
computation, the following parameters are taken: a = 1.0, ρ = 1.0 and E = 1.0, and 64 × 30 = 1,920 (64
is the element number in the cross-section while 30 is that along the length direction) Wedge6 elements for
h/a = 1.5 and 64 × 60 = 3,840 for h/a = 3.0 in commercial program Strand7 were used. The first eight
frequency parameters are given for comparison. It is observed that the present solutions are in agreement with
the finite element solutions for all cases.

4 Numerical results

In Tables 7, 8 and 9, the first eight eigenfrequency parameters of antisymmetric and symmetric modes about the
bisecting plane of the apex angle are given for thick prisms with isosceles triangular cross-section. Three dif-
ferent apex angles α = 60◦, 90◦, 120◦, three different length-thickness ratios h/a = 1, 2, 4 and four different
boundary conditions C-C, C-F, F-F, S-S are considered. It is shown that the first eigenfrequencies monotoni-
cally decrease with the increase of length-thickness ratio for all cases except for the F-F beams. Moreover, it is
seen that the C-C prisms always provide the highest eigenfrequencies (if concluding the zero eigenrequencies
of F-F prisms) because of the severest boundary constraints. It should be mentioned that the 3-D vibration
modes of a prism can be also divided into three distinct types: flexural modes, longitudinal modes and torsional
modes, which correspond to the 1-D solutions as shown in Table 5. Observing the data given in Table 7, one
can find that for prisms with equilateral triangular cross-section (α = 60◦), a part of eigenfrequencies of the
antisymmetric modes are the same as those of the symmetric modes. This comes from the symmetry of the
equilateral triangle, i.e. there are just the same three bisecting planes of angles. For each bisecting plane, the
vibration modes should be the same, which only can be ensured when the eigenfrequencies of antisymmetric
modes of the flexural vibration are the same as those of symmetric modes of the flexural vibration. Therefore,
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Table 8 The first eight eigenfrequency parameters of antisymmetric and symmetric modes about the bisecting plane of apex
angle for thick prisms with isosceles triangular cross-section, apex angle α = 90◦

B.C. h/a �1 �2 �3 �4 �5 �6 �7 �8

Antisymmetric modes
C-C 1 1.427 1.734 2.768 3.258 3.868 4.052 4.422 4.713

2 1.320 1.501 2.655 3.039 3.992 4.795 5.278 6.284
4 0.957 1.378 2.224 2.775 3.677 4.239 5.105 5.847

C-F 1 0.547 0.704 1.726 2.030 3.124 3.414 3.599 4.062
2 0.331 0.684 1.464 2.042 3.078 3.466 4.431 4.983
4 0.176 0.675 0.975 2.017 2.367 3.365 3.953 4.744

F-F 1 1.297 2.223 2.560 2.919 3.410 3.510 3.823 4.354
2 1.327 1.690 2.632 3.326 3.926 4.795 5.376 5.816
4 1.033 1.333 2.468 2.660 3.985 4.150 5.325 5.826

S-S 1 1.210 1.401 2.517 2.755 3.273 3.754 3.859 4.249
2 0.847 1.340 2.419 2.801 3.777 4.628 5.033 5.511
4 0.479 1.336 1.693 2.681 3.257 4.067 4.839 5.603

Symmetric modes
C-C 1 1.405 2.717 2.741 3.196 3.673 4.041 4.631 4.812

2 1.028 2.283 3.178 3.704 4.947 5.116 5.404 6.139
4 0.614 1.543 2.741 3.163 4.092 5.526 6.298 6.992

C-F 1 0.371 1.461 1.589 2.404 2.858 3.074 3.602 4.030
2 0.202 1.050 1.582 2.419 3.857 4.671 4.762 5.025
4 0.103 0.611 1.576 1.582 2.817 4.209 4.716 5.676

F-F 1 1.714 2.388 2.440 3.028 3.179 3.285 3.382 3.896
2 1.139 2.549 3.120 4.013 4.746 4.787 5.221 5.470
4 0.632 1.619 2.899 3.137 4.332 5.829 6.241 7.319

S-S 1 0.895 2.661 2.688 3.036 3.675 3.729 3.897 4.358
2 0.536 1.886 3.120 3.279 4.770 4.924 5.433 5.983
4 0.284 1.072 2.217 3.137 3.578 5.049 6.241 6.557

Table 9 The first eight eigenfrequency parameters of antisymmetric and symmetric modes about the bisecting plane of apex
angle for thick prisms with isosceles triangular cross-section, apex angle α = 120◦

B.C. h/a �1 �2 �3 �4 �5 �6 �7 �8

Antisymmetric modes
C-C 1 1.086 1.762 2.100 3.052 3.163 3.282 3.906 3.981

2 1.010 1.475 2.010 2.990 3.030 3.946 4.838 4.888
4 0.912 1.063 1.918 2.381 2.903 3.872 3.989 4.830

C-F 1 0.492 0.582 1.461 1.805 2.368 2.910 3.259 3.403
2 0.330 0.502 1.395 1.586 2.397 3.276 3.365 4.228
4 0.176 0.489 0.975 1.472 2.268 2.574 3.313 4.132

F-F 1 0.936 1.765 2.394 2.589 2.850 3.027 3.089 3.436
2 0.956 1.658 1.950 2.733 3.536 3.620 4.489 5.306
4 0.960 1.033 1.922 2.436 2.937 3.664 4.415 4.621

S-S 1 0.932 1.339 1.854 2.768 2.873 3.135 3.326 3.687
2 0.829 0.995 1.864 2.678 2.792 3.708 4.622 4.658
4 0.479 0.965 1.657 1.991 2.771 3.498 3.727 4.661

Symmetric modes
C-C 1 1.050 2.092 2.138 3.036 3.056 3.191 3.981 4.404

2 0.675 1.613 2.716 3.173 3.794 3.816 4.188 4.828
4 0.370 0.970 1.792 2.770 3.160 3.849 4.979 6.117

C-F 1 0.230 1.076 1.586 1.844 2.182 2.412 3.170 3.361
2 0.119 0.677 1.580 1.665 2.789 3.619 3.830 4.028
4 0.060 0.366 0.981 1.576 1.817 2.813 3.908 4.715

F-F 1 1.181 1.820 1.885 2.493 2.504 3.045 3.395 3.486
2 0.709 1.715 2.862 3.123 3.613 3.646 4.016 4.104
4 0.374 0.991 1.842 2.856 3.137 3.968 5.123 6.247

S-S 1 0.578 1.704 2.057 2.744 2.819 3.045 3.687 4.140
2 0.322 1.157 2.255 3.123 3.408 3.774 4.117 4.490
4 0.166 0.644 1.382 2.313 3.137 3.375 4.510 5.669

from Table 7 one can conclude that all of the duplicate eigenfrequencies belong to the flexural vibration while
all of the mono eigenfrequencies in symmetric modes belong to the longitudinal vibration and all of the mono
eigenfrequencies in antisymmetric modes belong to the torsional vibration.
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Γ

Fig. 2 The first two modes of flexural vibration for prisms with equilateral triangular cross-section (α = 60◦), dashed lines
the first modes; dotted lines the second modes, open diamond 3-D solutions of S-S prisms; filled diamond 1-D solutions of S-S
prisms, open triangle 3-D solutions of F-F prisms; filled triangle 1-D solutions of F-F prisms, open square 3-D solutions of C-C
prisms; filled square 1-D solutions of C-C prisms, open circle 3-D solutions of C-F prisms; filled circle 1-D solutions of C-F
prisms

Ω

Fig. 3 The fundamental modes of longitudinal and torsional vibrations for prisms with equilateral triangular cross-section (α =
60◦), dashed lines torsional; dotted lines longitudinal, open diamond 3-D solutions of S-S prisms; filled diamond 1-D solutions
of S-S prisms, open triangle 3-D solutions of F-F prisms; filled triangle 1-D solutions of F-F prisms, open square 3-D solutions
of C-C prisms; filled square 1-D solutions of C-C prisms, open circle 3-D solutions of C-F prisms; filled circle 1-D solutions of
C-F prisms

Introducing a new dimensionless eigenfrequency parameter � = (h/a)� to describe the flexural vibration,
the tendency of eigenfrequencies varying with increasing of the length-thickness ratio can be clearly shown.
Again consider the prisms with equilateral triangular cross-section. Figure 2 gives the first two eigenfrequencies
of flexural vibrations with respect to the length-thickness ratio, and Fig. 3 gives the fundamental eigenfrequen-
cies of the longitudinal and torsional vibrations with respect to the length-thickness ratio. The varying interval
of the length-thickness ratio h/a is from 1 to 24. For convenience in comparison, the classical 1-D solutions
are also given in the figures. It is shown that with the increase of length-thickness ratio, the 3-D solutions
gradually become close to the 1-D solutions, however, the speed approaching to 1-D solutions decreases with
the increasing eigenfrequency order. In these three different types of modes, the error of torsional vibration
between the 3-D solutions and the 1-D solutions is the least and secondly the longitudinal vibration while
the worst is the flexural vibration. It is seen that for the flexural vibration, the eigenfrequencies from the 1-D
theory are always higher than those from the 3-D theory. Such an observation completely coincides with the
basic assumption in the classical 1-D theory. However, this conclusion cannot be extended to the longitudinal
vibration and the torsional vibration. Moreover, it is seen that for the flexural vibration, the 1-D solutions of
the C-F prisms have the best accuracy while those of the C-C prisms have the worst accuracy.
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5 Conclusion

In this paper, the 3-D vibration characteristics of uniform prisms with isosceles triangular cross-section are
studied. The analysis process is based on the exact, linear and small strain elasticity and the Ritz method is
applied to derive the eigenfrequency equation. Using a domain mapping, the integrals in a tri-prism domain
are transferred into the integrals in a basic cubic domain. By selecting the Chebyshev polynomials which are
multiplied by a boundary function to ensure the satisfaction of the geometric boundary conditions, the high
accuracy and numerical robustness of the admissible functions are guaranteed. The convergence and compar-
ison studies show the correctness of the present method. The effect of apex angle and length-thickness ratio
on eigenfrequencies is investigated in detail and results known for the first time are reported.
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