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Tight upper bound of the maximum speed of evolution of a quantum state
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I report a tight upper bound of the maximum speed of evolution from one quantum state ρ to another ρ ′

with fidelity F (ρ,ρ ′) less than or equal to an arbitrary but fixed value under the action of a time-independent
Hamiltonian. Since the bound is directly proportional to the average absolute deviation from the median of the
energy of the state DE, one may interpret DE as a meaningful measure of the maximum information-processing
capability of a system.
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I. MOTIVATION AND PRIOR WORK

It is impossible to build an arbitrarily fast and powerful
computer, quantum or classical, because several fundamental
physical limits bound the maximum speed of logical operations
and the size of memory space [1]. In particular, Bhattacharyya
[2], Uhlmann [3], and Pfeifer [4] found that the time τ needed
to evolve a (mixed) state ρ to another state ρ ′ under the action
of a time-independent Hamiltonian H is tightly lower-bounded
by

τ � τTEUR ≡ h̄ cos−1(
√

ε)

�E
≡ gTEUR(ε)πh̄

2�E
, (1)

where ε = F (ρ,ρ ′) ≡ [Tr(
√√

ρρ ′√ρ)]2 is the fidelity be-
tween the two states and

�E =
√

Tr(H 2ρ) − E2 ≡
√

Tr(H 2ρ) − [Tr(Hρ)]2 (2)

is the standard deviation of the energy of the system. [Actually,
the authors of Refs. [3] and [4] considered the more general
situation of a time-dependent Hamiltonian whose results can
be reduced to Eq. (1) in the time-independent case.] Because
of the form of Eq. (1), it is sometimes called the time-energy
uncertainty relation (TEUR) bound. Bounds of this type are
interesting for they depend only on a modest description of
the system. Later on, Margolus and Levitin [5,6] discovered
another tight lower bound on the time required to evolve a
(pure) state to another state in its orthogonal subspace under
the action of a time-independent Hamiltonian H . Their bound
is inversely proportional to the average energy of the system
above the ground state, E − E0. Giovannetti et al. [7] extended
the Margolus-Levitin (ML) theorem by showing that the time
τ required to evolve between two (mixed) states with fidelity
less than or equal to a fixed ε ∈ [0,1] under the action of a
time-independent Hamiltonian is tightly lower-bounded by

τ � τML ≡ gML(ε)πh̄

2(E − E0)
(3)

for some smooth function gML. Although no closed-form
expression is known for gML, it can be approximated to within
a few percent of error by [7]

gML(ε) ≈ [gTEUR(ε)]2 . (4)
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More importantly, Giovannetti et al. found examples in
which the ML bound in Eq. (3) is better than the TEUR
bound [7]. Note that the smaller the τ , the faster the system
can be used for quantum-information processing. In this
respect, the tight bounds in Eqs. (1) and (3) show that
�E and E − E0 are reasonable measures of the maximum
possible quantum-information-processing rate of a system
[1,5–7].

Here I report another tight lower bound on the time needed
to evolve from one (mixed) state to another under the action of a
time-independent Hamiltonian such that the fidelity is less than
or equal to a fixed value ε ∈ [0,1]. Recall from the discussions
of Margolus and Levitin in Refs. [5,6] that the faster the time
τ for a quantum system to evolve between two orthogonal
states, the more powerfully the system can process quantum
information. In this respect, a lower bound of the time τ poses
a so-called quantum speed limit on the maximum quantum-
information-processing rate of the system. This notion of a
quantum speed limit was then generalized by Giovannetti et al.
to the study of evolution between two nonorthogonal states [7].
Since the tight evolution-time bound reported here is inversely
proportional to the so-called average absolute deviation from
the median (AADM) of the energy of the state DE of the
system, I conclude that DE is also a reasonable measure of
the maximum possible quantum-information-processing rate
of a system. Finally, I compare this bound with the TEUR
bound [2–4] and the ML bound [5–7].

II. THE EVOLUTION-TIME BOUND

A. An auxiliary inequality

I begin by considering an inequality with a simple geometric
meaning. The first quadrant of Fig. 1 depicts the (unique) line
with the greatest slope that passes through the origin and meets
the curve y = 1 − cos x at two distinct points (namely, x = 0
and x = xm). Clearly, this line is the tangent to the curve at
x = xm; and its slope A is given by

A = max

{
1 − cos x

x
: x > 0

}
. (5)

Numerically, I find that

A ≈ 0.724 611 (6a)
and

xm ≈ 2.331 12. (6b)
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FIG. 1. The curve y = 1 − cos x and the broken line y = A|x|
defined in the text.

By considering the mirror image of this line with respected
to the y axis, it is obvious that

cos x � 1 − A|x| (7)

for all x ∈ R. (The geometric meaning of this inequality is
apparent from Fig. 1.)

B. The pure-state case

Now, I may use Margolus and Levitin’s argument in
Refs. [5,6] to obtain the required bound for the case of pure
states. Suppose |�(0)〉 = ∑

j αj |Ej 〉, where the |Ej 〉’s are
the normalized energy eigenvectors of the time-independent
Hamiltonian H and

∑
j |αj |2 = 1. Then, under the action

of H ,

〈�(0)|�(t)〉 ≡ 〈�(0)|e−iH t/h̄|�(0)〉 =
∑

j

|αj |2e−iEj t/h̄. (8)

In other words, at the time when the system evolves to a state
whose fidelity is less than or equal to ε from |�(0)〉, the real
part of Eq. (8) obeys∣∣∣∣∣∣

∑
j

|αj |2 cos

(−Ej t

h̄

)∣∣∣∣∣∣ �
√

ε. (9)

Applying the inequality in Eq. (7) to Eq. (9), I get

1 − At

h̄

∑
j

|αj |2|Ej | �
√

ε. (10)

Therefore, the earliest time τ at which |�(0)〉 evolves to a state
whose fidelity is less than or equal to ε from |�(0)〉 satisfies
the inequality

τ � (1 − √
ε) h̄

A
∑

j |αj |2|Ej | . (11)

By means of the fact that the reference energy level of a
system has no physical meaning, I can further strengthen the
bound in Eq. (11) as follows: Recall that the function f (x) =∑

j |αj |2|Ej − x| attains its minimum when x equals M , the
median of the Ej ’s with relative frequency of occurrence of

Ej equal to |αj |2. More precisely, consider the cumulative
distribution function

C(x) =
∑

j :Ej �x

|αj |2. (12)

Then

M = 1

2

(
lim

y→0.5−
C−1(y) + lim

y→0.5+
C−1(y)

)
. (13)

(The above assertion can be proven by checking when
df/dx = 0.) In statistics, the quantity

DE ≡
∑

j

|αj |2|Ej − M|

= Tr[
√

(H − M)†(H − M)|�(0)〉〈�(0)|] (14)

is known as the AADM of the energy. Thus, I conclude that

τ � τC ≡ (1 − √
ε) h̄

A
∑

j |αj |2|Ej − M| ≡ (1 − √
ε) h̄

A DE
≡ gC(ε) h̄

A DE
.

(15)

C. The mixed-state case

To extend the above bound to cover the case of mixed states,
one simply needs to repeat the argument used by Giovannetti
et al. in Ref. [7]: One can always purify the initial and final
mixed states. And one may consider a particular choice of the
purified states such that the two sets of orthonormal state kets
of the ancillary systems used in the purification are identical.
Clearly, for other choice of the purified states, the evolution
time τ can never be shorter than the above choice. In addition,
the fidelity between this pair of particularly chosen purified
states does not exceed the fidelity between the original pair
of mixed states. By applying the time bound in Eq. (15) to
this particular choice of purified states, one concludes that the
bound is also applicable to mixed states [7].

D. Tightness of the bound

The time bound in Eq. (15) is certainly tight when ε = 1.
Hence, to show that this bound is tight for all ε, I need only to
consider the case of ε < 1. Let me consider the state

|ϕ(0)〉 = √
1 − α|0〉 +

√
α

2
| − E〉 +

√
α

2
|E〉, (16)

where

α = 1 − √
ε

Axm

≈ 0.592 011(1 − √
ε) ∈ [0,1]. (17)

Furthermore, |0〉, |E〉, and | − E〉 are normalized energy
eigenkets with energies 0, E , and −E , respectively. Note
that 〈ϕ(0)|ϕ(t)〉 = 1 − α + α cos(E t/h̄) is a real-valued sinu-
soidal function of t . Besides, it starts to decrease at t = 0
until t = πh̄/E . Therefore, the earliest time τ at which
F (|�(0)〉,|�(τ )〉) = |〈�(0)|�(τ )〉|2 � ε obeys

√
ε = 1 − α + α cos

(Eτ

h̄

)
= 1 − α + α cos

(
τ DE

αh̄

)
.

(18)
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TABLE I. Comparison between the three lower bounds on τ for ε = 0.

|�(0)〉 τ τTEUR τML τC

1√
2

(| − E〉 + |E〉) πh̄

2E
πh̄

2E = τ πh̄

2E = τ h̄

AE ≈ 0.879τ

|ϕ(0)〉 as defined in Eq. (16) h̄

AαE
πh̄

2
√

αE ≈ 0.876τ πh̄

2E ≈ 0.674τ h̄

AαE = τ

|ϕ(0)〉 as defined in Eq. (16) but 7πh̄

12E
πh̄√

4−√
2+√

6E
πh̄

2E
4h̄
AE

with α = 4
4−√

2+√
6

≈ 0.794 ≈0.764τ ≈0.857τ ≈0.598τ

1√
3

(|0〉 + | − E〉 + |E〉) 2πh̄

3E
πh̄

E

√
3
8 ≈ 0.919τ πh̄

2E = 0.75τ 3h̄
2AE ≈ 0.988τ

1√
2n

∑n−1
k=0[| − (k + 1

2 )E〉 + |(k + 1
2 )E〉] πh̄

nE (n
√

3
4n2−1

)τ ( n

2n−1 )τ ( 2
Aπ

)τ

≈0.866τ for large n ≈0.5τ for large n ≈0.879τ

1√
2n+1

∑n

k=−n |kE〉 2πh̄

(2n+1)E ( 2n+1
4

√
3

n(n+1) )τ ( 2n+1
4n

)τ ( (2n+1)2

2n(n+1)πA
)τ

≈0.866τ for large n ≈0.5τ for large n ≈0.879τ for large n

From Eq. (17), I arrive at

(1 − √
ε) cos

(
τAxm DE

(1 − √
ε) h̄

)
= (1 − √

ε)(1 − Axm)

= (1 − √
ε) cos xm. (19)

Note that I have used the fact that the line y = Ax intersects
with the curve y = 1 − cos x at x = xm to arrive at the last
line of the above equation. Since ε < 1, the general solution
of Eq. (19) is

τADE

(1 − √
ε)h̄

= 1 + 2nπ

xm

(20)

for all n ∈ Z. From Eq. (6b), I know that 2π/xm > 1.
Therefore, the earliest time τ at which |〈ϕ(0)|ϕ(τ )〉|2 = ε

obeys τADE/[(1 − √
ε)h̄] = 1. Thus, the bound stated in

Eq. (15) is tight. After all the discussions above, it is clear
that the maximum speed of evolution of a quantum state
under the action of a time-independent Hamiltonian H is
tightly upper-bounded by ADE/[(1 − √

ε)h̄]. And since the
reciprocal of the speed of evolution of a quantum system
signifies its quantum-information-processing rate [1,5–7], the
AADM of the energy DE is also a reasonable measure of the
maximum possible quantum-information-processing rate of a
system.

III. COMPARISON WITH EXISTING
MINIMUM-EVOLUTION-TIME BOUNDS

Now, I start to compare the performance of the three bounds
based on �E, E − E0, and DE for fixed values of ε. Table I
shows the values of these three bounds when ε = 0 for a few
cases in which the τ ’s are known. Clearly, the three bounds
complement each other. Moreover, τC is the best whenever
DE/�E and DE/(E − E0) are small. This finding is easy to
understand. From Eqs. (1), (3), and (15), it is clear that for a
fixed value of ε, the performances of these three bounds are
determined by the ratio �E:E − E0:DE. And the τC bound
works best when DE 	 min(�E,E − E0).

Observe that E − E0 is the average absolute deviation from
the ground-state energy E0. (Consequently, the three bounds

are in fact based on three different statistical dispersion mea-
sures of the eigenvalues of H whose frequencies of occurrence
are given by the |αj |2’s.) So, from our earlier discussions on
AADM, DE � E − E0. Furthermore, by a straight-forward
application of the Cauchy-Schwarz inequality, one can show
that DE � �E. Note, however, that even though DE � �E

and E − E0, it is still possible for the other two bounds to out-
perform Eq. (15) because the ratio gTEUR(ε):gML(ε):2gC(ε)/π
also plays a role in determining which bound is better. But in
any case, if the distribution formed by the eigenvalues of H

whose frequencies of occurrence are given by the |αj |2’s has
a small kurtosis (whose value depends on ε, of course), then
the time bound due to DE is better than the other two. As
an illustration, I consider the special case in which ε = 0 and
the eigenvalues of H are drawn uniformly from an interval
[a,b]. The expected values of �E, E − E0, and DE are
(b − a)

√
3/6, (b − a)/2, and (b − a)/4, respectively. Thus,

as the Hilbert space dimension of the state ket increases, the
ratio τTEUR:τML:τC approaches

√
3:1:4/(πA) ≈ 1.732:1:1.757

for a typical state ket |�(0)〉. So, as a rule of thumb, τC has a
good chance of giving a better time bound for τ when ε ≈ 0
provided that the kurtosis of the distribution of eigenvalues
of H is greater than or equal to the kurtosis of a uniform
distribution, namely, −6/5.

Finally, I study the effect of ε on the performance of
the three bounds. Note from Eqs. (1), (4), and (15) that
gTEUR(0) = gML(0) = gC(0) = 1. Moreover, by differentiat-
ing gC(ε)/gTEUR(ε) and gC(ε)/gML(ε) with respect to ε,
I conclude that gC(ε)/gTEUR(ε) and gC(ε)/gML(ε) are de-
creasing and increasing functions of ε, respectively. In fact,
limε→0+ gC(ε)/gTEUR(ε) = 0. In other words, for a sufficiently
small value of ε, it is likely that τTEUR � τC � τML.

IV. CONCLUSIONS

To summarize, I presented a tight lower bound τC for the
time required to evolve between two states with fidelity less
than or equal to ε under the action of a time-independent
Hamiltonian. This time bound τC works best when the fidelity
between the two states, ε, is small and the kurtosis of the
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distribution of eigenvalues of H is >∼−6/5. My result also
implies that the AADM of the energy DE is a reasonable
measure of the maximum quantum-information-processing
rate of a system.
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