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We study the dynamic sensitivity of an atomic ensemble dressed by a single-mode cavity field �called a
photon-dressed atomic ensemble�, which is described by the Dicke model near the quantum critical point. It is
shown that when an extra atom in a pure initial state passes through the cavity, the photon-dressed atomic
ensemble will experience a quantum phase transition showing an explicit sudden change in its dynamics
characterized by the Loschmidt echo of this quantum critical system. With such dynamic sensitivity, the Dicke
model can resemble the cloud chamber for detecting a flying particle by the enhanced trajectory due to the
classical phase transition.
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I. INTRODUCTION

The quantum phase transition �QPT� �1� occurs at zero
temperature when the external parameters of some interact-
ing many-body systems change to reach the critical values.
Generally, it is associated with the ground state with energy
level crossing and symmetry breaking at the critical points.
Recently, it was discovered that near the quantum critical
point the QPT system possesses the ultrasensitivity in its
dynamical evolution �2�. This theoretical prediction has been
demonstrated by an NMR experiment �3�. Similar sensitivity
exists in some quantum systems �4–9� possessing QPT.

In this paper, we study the dynamic sensitivity of an
atomic ensemble in a cavity with a single-mode electromag-
netic field �called a photon-dressed atomic ensemble�, which
is described by the Dicke model �10�. We assume the atoms
in the Dicke model are resonant with the cavity field. When
an extra two-level atom in large detuning goes through the
cavity field, the frequency of cavity field will be shifted ef-
fectively according to the Stark effect so that the photon-
dressed atomic ensemble near the QPT will be forced into its
critical point. In this situation the dynamic evolution of the
Dicke model becomes too sensitive in response to the pas-
sage of the extra atom.

Here, this dynamic sensitivity is characterized by the
Loschmidt echo �LE� �11�, which is intrinsically defined by
the structure of the photon-dressed atomic ensemble. For a
short-time approximation, we prove that the LE is just an
exponential function of the photon number variance in the
photon-dressed atomic ensemble. This finding means that the
LE can be experimentally measured by detecting the photon
correlation. Its sudden change may imply the passage of an
extra atom through the cavity. With this reorganization we
will demonstrate that such quantum sensitivity in the Dicke
model is very similar to the classical sensitivity of the cloud
chamber for detecting a flying particle, which is character-

ized by the macroscopically observable trajectories enhanced
by the classical phase transitions.

This paper is organized as follows. In Sec. II, we describe
the setup of the quantum critical model based on the Dicke
model. The effective Hamiltonian is given in terms of the
collective excitation of the atomic ensemble. Then the ana-
lytic calculation of LE �or the decoherence of the extra atom�
is carried out in Sec. III for the normal and super-radiant
phases, respectively, by short-time approximation. In the fol-
lowing Sec. IV we plot some figures to explicitly show the
sensitive properties of the LE. In Sec. V, we address the
similarity between the dynamic sensitivity of the photon-
dressed atomic ensemble induced by an extra atom and the
classical cloud chamber. Finally, we draw our conclusion in
Sec. VI. The detailed coefficients for Bogoliubov transfor-
mation in Sec. IV are given in the Appendix.

II. MODEL AND HAMILTONIAN

As showed in Fig. 1, we consider an atomic ensemble
confined in a gas cell coupled with a single-mode cavity field
of frequency �, which is described by the annihilation
�creation� operator a�a†�. We use the Pauli matrices

*lmkuang@hunnu.edu.cn
†suncp@itp.ac.cn; http://www.itp.ac.cn/~suncp

0ω

S

sωe

g

FIG. 1. �Color online� Schematic of a cavity field coupled with
an atomic gas consisting of N two-level atoms. An extra detected
two-level atom S is injected into cavity field.
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�z
�j�= �e� j j�e�− �g� j j�g�, �+

�j�= �e� j j�g�, and �−
�j�= �g� j j�e� to de-

scribe the atomic transition of the jth atom with energy level
spacing �0, where �e� j and �g� j are the excited and ground
states of the jth atom, respectively. The system of the atomic
ensemble coupled with the single-mode cavity field is de-
scribed by the Dicke model �hereafter, we take �=1�,

H0 = �a†a + �
j=1

N

� 1
2�0�z

�j� + g0�a† + a���−
�j� + �+

�j��� . �1�

Here, for small-dimension atomic gas �5�, we have assumed
that all the atoms locate near the origin point and interact
with the cavity field with the identical coupling strength g0.

An extra two-level atom S with transition operators �z,
�+, and �− couples to the original single-mode cavity field
with Hamiltonian

HI = 1
2�s�z + gs�a†�− + a�+� , �2�

where we have made a rotating wave approximation. Simi-
larly, �s is the transition frequency between the ground state
�g� and excited state �e� of the atom S; gs is the correspond-
ing coupling strength.

It has been shown that the QPT will occur in the system
described by Dicke Hamiltonian �1� �5�, since it keeps Her-
mitian only for a small coupling strength g0. But it is only a
model to display QPT in quantum optical system. Actually it
could not happen for the realistic atomic, molecular, and op-
tical �AMO� system if the unreasonably ignored two-photon
term A2 is included �12�. To focus on our main idea in the
work, we only regard the Dicke system as a simplified
model. We would like to point out that many authors have
recognized this problem, but there still exist many explora-
tions by using this simplified model �13�.

If the atom S is far-off-resonant with the cavity field, that
is, the detuning �s�	�s−�� is much larger than the corre-
sponding coupling strength gs, i.e., ��s��gs, then one can use
the so-called Fröhlich-Nakajima transformation �14,15� �or
other elimination methods� to obtain the effective total
Hamiltonian

Heff = �� + �̃�z�a†a +
1

2
��s + �̃��z +

�0

2 �
j=1

N

�z
�j�

+
g


N
�
j=1

N

�a† + a���−
�j� + �+

�j�� , �3�

where �̃	gs
2 /�s and g	g0


N. We note that the Fröhlich-
Nakajima transformation is equivalent to the approach based
on the adiabatical elimination.

The Hilbert space of N two-level atoms is spanned by 2N

basis states. In the current case all the atoms have the same
free frequencies and coupling constants with the cavity field,
we can consider these atoms being identical. Then the Hil-
bert space is reduced into a subspace of �2N+1� dimension.
In this subspace, Hamiltonian �3� is simplified by introducing
the collective atomic operators

J� = �
j=1

N

��
�j�, Jz =

1

2�
j=1

N

�z
�j�, �4�

which obey the following angular momentum commutation
relations:

�Jz,J�� = � J�, �J+,J−� = 2Jz. �5�

The collective atomic operator Jz denotes the collective
population of the atomic gas and J� represents the collective
transitions.

In terms of the above angular momentum operators,
Hamiltonian �3� is written as

Heff = �� + �̃�z�a†a +
1

2
��s + �̃��z + �0Jz

+
g


N
�a† + a��J+ + J−� , �6�

which is further reduced to

Heff = �� + �̃�z�a†a + �0b†b +
1

2
��s + �̃��z + g�a† + a�

��b†
1 − b†b/N + H.c.� �7�

�up to constant terms� through making use of the Holstein-
Primakoff �16� transformation, which represents the angular
momentum operators in terms of a single bosonic mode as
follows:

J+ = b†
N − b†b ,

J− = 
N − b†bb ,

Jz = b†b −
1

2
N . �8�

To see more explicitly the dynamic sensitivity of the
photon-dressed atomic ensemble in response to the extra
atom, corresponding to different state of the extra atom, the
effective Hamiltonian in Eq. �7� reads

Heff = �g��g� � Hg + �e��e� � He, �9�

with

Hg = �ga†a + �0b†b + g�a† + a��b†
1 − b†b/N + H.c.� ,

�10�

He = �ea
†a + �0b†b + g�a† + a��b†
1 − b†b/N + H.c.� ,

�11�

where �e=�+ �̃ and �g=�− �̃. Note that in the derivation of
the above Hamiltonians �10� and �11�, we have discarded
some constant terms.

III. QUANTUM CRITICAL EFFECT

Before the extra atom S is sent into the cavity, the photon-
dressed atomic ensemble �including the cavity field and the
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atomic gas� is described by the Dicke Hamiltonian

HG = �a†a + �0b†b + g�a† + a��b†
1 − b†b/N + H.c.� .

�12�

Comparing Eqs. �10� and �11� with Eq. �12�, we find, as a
result of the injection of the atom S, only the frequency of

the optical field changes by a small shift �̃ in the dynamic
evolution of the photon-dressed atomic ensemble.

The photon-dressed atomic ensemble is initially prepared
in the ground state �G� of Hamiltonian �12� and the extra
atom S in a superposed state 	�g�+
�e�, where the normal-
ization condition requires �	�2+ �
�2=1. When the extra atom
S interacts dispersively with the cavity field, the total system
is governed by Hamiltonians �10� and �11� corresponding to
the extra atom S in states �g� and �e�, respectively. Then at
time t the state of the total system becomes an entanglement
one,

���t�� = e−iHefft�	�g� + 
�e�� � �G�

= 	�g� � e−iHgt�G� + 
�e� � e−iHet�G�

	 	�g� � �Gg�t�� + 
�e� � �Ge�t�� , �13�

where we have defined

�Gg�t�� 	 e−iHgt�G�, �Ge�t�� 	 e−iHet�G� . �14�

The generation of the above entanglement is due to the con-
ditional dynamics of the total system. This is to say, corre-
sponding to the detected atom prepared in states �g� and �e�,
the evolution of the photon-dressed atomic ensemble will be
governed by the Hamiltonians Hg and He, respectively. The
central task of this paper is to show that the dynamic of the
photon-dressed atomic ensemble is sensitive to the state of
the extra atom. When the photon-dressed atomic ensemble
stays in the vicinity of the QPT, the effect of QPT must
impose on the state of the extra atom with some enhance-
ment fashion, like the results in Ref. �2�. This motivates us to
study the quantum decoherence of the extra atom near the
critical point of the photon-dressed atomic ensemble, which
can also reflect the dynamic sensitivity of the photon-dressed
atomic ensemble.

By tracing over the degree of freedom of the photon-
dressed atomic ensemble in evolution state �13�, the reduced
density matrix �s�t�=Tra,b����t�����t��� of the detected atom
is obtained as

�s�t� = �	�2�g��g� + �
�2�e��e� + �D	�
�e��g� + H.c.� ,

�15�

where we have introduced the decoherence factor

D�t� = �G�exp�iHgt�exp�− iHet��G� . �16�

Alternatively, we can investigate the decoherence of the ex-
tra atom by examining the so-called LE

L�t� 	 �D�t��2 �17�

defined for the dynamic sensitivity of the photon-dressed
atomic ensemble. For a short time t, the LE can be approxi-
mated as

L�t� 
 ��G�e−2i�̃ta†a�G��2. �18�

The straightforward calculation can give

L�t� 
 exp�− 4
�̃2t2� . �19�

Here, we have introduced the photon number variance


 	 ��a†a�2� − �a†a�2, �20�

and the average � · � is taken for the ground state �G�.
We point out that, up to the second order of time t, the

decay rate of the LE depends not only on t2, but also on the
photon number variance 
. It is well known that the photon-
dressed atomic ensemble described by Dicke Hamiltonian
�12� transits from the normal phase to the super-radiant one
with the increase in the parameter g from that less than the
critical value gc=
��0 /2 to that larger than gc. Going across
the phase transition point, the ground state of the photon-
dressed atomic ensemble experiences a complex change. We
can predict that the photon number variance 
 of the ground
state will exhibit some special features at the critical point.

According to Eq. �13�, we can imagine that the quantum
criticality of the photon-dressed atomic ensemble can display
which single state �g� or �e� that the extra atom stays. When
L�t� approaches zero, the photon-dressed atomic ensemble is
forced into two orthogonal states �Gg�t�� and �Ge�t��, and thus
it behaves as a measurement apparatus to detect the state of
the extra atom. In this case, its measurement on the atom will
induce the decoherence of the extra atom. In what follows,
we will calculate the photon number variance 
 of the
photon-dressed atomic ensemble in two different phases, that
is, the normal phase and the super-radiant phase.

A. Dynamic sensitivity in normal phase

In this subsection, we explicitly calculate 
 to investigate
the properties of the LE when the photon-dressed atomic
ensemble is within the normal phase. In the case of low
excitations at thermodynamic limit N→�, Hamiltonian �12�
becomes

HG = �a†a + �0b†b + g�a† + a��b† + b� �21�

for 
1−b†b /N
1, which is typical to describe two-coupled
harmonic oscillators. It is well known that Hamiltonian �21�
becomes non-Hermitian in the overstrong coupling region
g�gc, namely, the Hamiltonian possesses imaginary eigen-
values �17�. This means effective Hamiltonian �21� is ill-
defined for g�gc. Therefore, we now restrict the Hamil-
tonian within the so-called normal phase region g�gc.
Correspondingly, this limited Hamiltonian �21� describes the
normal phase of the Dicke model.

In the normal phase, Hamiltonian �21� can be diagonal-
ized as

HG = �AA†A + �BB†B �22�

by introducing the polariton operators A�A†� and B�B†�,
which depict the mixed bosonic fields of photons and collec-
tive atomic excitations. The eigenfrequencies of the polari-
tons A and B are
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�A
2 =

1

2
��0

2 + �2� −
1

2

��0

2 − �2�2 + 16g2�0� , �23�

�B
2 =

1

2
��0

2 + �2� +
1

2

��0

2 − �2�2 + 16g2�0� . �24�

It is straightforward to see that �A
2 �0 when

g�gc	
��0 /2. That is, the eigenfrequency �A of mode A
becomes a complex number, which means Hamiltonian �22�
will be non-Hermitian in the coupling region of g�gc.

The relations between the operators �a ,b ,a† ,b†� and
�A ,B ,A† ,B†� are given by

a† = f1A† + f2A + f3B† + f4B ,

b† = h1A† + h2A + h3B† + h4B , �25�

where the concrete forms of coefficients f i and
hi�i=1,2 ,3 ,4� have been given by Ref. �5�. Here we only
give the detailed forms of f i in the Appendix.

From Eq. �22�, we can see that the ground state of the
photon-dressed atomic ensemble in the polariton representa-
tion is �G�= �0�A � �0�B	�00�AB. Making use of Eqs. �20� and
�25�, we can obtain the photon number variance


 = 2f1
2f2

2 + 2f3
2f4

2 + �f1f4 + f2f3�2. �26�

In the normal phase, all the coefficients f i�i=1,2 ,3 ,4� are
real, then the photon variance is a positive number, which
implies the coherence of the extra atom will vanish with
time.

We have mentioned that Hamiltonian �21� of two-coupled
harmonic oscillators cannot work well in the overstrong cou-
pling region �g�gc�. This is because the approximation

1−b†b /N
1 for the original one �Eq. �12�� cannot make
sense in this region. Thus, we need to consider a different
approximation for Eq. �12� when g�gc.

B. Dynamic sensitivity in super-radiant phase

Physically, when the atom-light coupling becomes stron-
ger and stronger, the coupled system will acquire a macro-
scopic excitations of atomic ensemble. And then the system
enters into a super-radiant phase when g�gc. In this situa-
tion, the low-excitation approximation is no longer valid. We
can use the coherent state �
� of the collective atomic opera-
tor b to depict these kinds of macroscopic excitations �4�. To
achieve the effective Hamiltonian over such background of
macroscopic excitations, we need to do the displacement
�4,5�

b† → b�† − 

 �27�

�or alternatively, b†→b�†+

�. Correspondingly, we also
displace the optical field by

a† → a�† + 
	 �28�

�or alternatively, a†→a�†−
	�. Here a�† and b�† describe
quantum fluctuations about the semiclassical steady state
�18�; elsewhere, 
	 and 

 describe the macroscopic mean
fields above gc in the order of O�
N� �5�. Then Hamiltonian
�12� becomes

HG = �0�b�†b� − 

�b�† + b�� + 
� + ��a�†a� + 
	�a�† + a�

+ 	� + g
 k

N
�a�† + a� + 2
	��b�†
� + 
�b� − 2


�� ,

�29�

where


� = 
1 − �d†d − 

�d† + d��/�N − 
�

is introduced. In the thermodynamic limit N→�, for Eq.
�29�, we follow Emary and Brandes �5�: expand the square
root 
� and keep terms up to the order of N0 in the Hamil-
tonian. Then through choosing the appropriate displacements


	 =
g

�

N�1 − �2�, 

 =
N

2
�1 − ��

with �=��0 /4g2, we can diagonalize Hamiltonian �29� as

HG = �A�A�†A� + �B�B�†B� �30�

by the Bogoliubov transformation

a�† = f1�A�† + f2�A� + f3�B�† + f4�B�,

b�† = h1�A�† + h2�A� + h3�B�† + h4�B�, �31�

where the coefficients f i� and hi��i=1,2 ,3 ,4� have been given
in Ref. �5�. Here we only give the detailed forms of f i� in the
Appendix.

The eigenfrequencies �A� and �B� of the polaritons de-
scribed by the operators A� and B� are given by

�A�
2 =

1

2
��0

2

�2 + �2 −
��0
2

�2 − �2�2

+ 4�2�0
2� , �32�

�B�
2 =

1

2
��0

2

�2 + �2 +
��0
2

�2 − �2�2

+ 4�2�0
2� . �33�

It is known that if the coupling strength g exceeds the critical
value gc, both the above eigenfrequencies are real, but not in
the region of g�gc. Namely, when g�gc, Hamiltonian �30�
is Hermitian.

In the super-radiant phase, the ground state �G�= �00�A�B�
satisfies A��G�=B��G�=0. Similar to the normal phase, we
can calculate the photon number variance in the super-radiate
phase as


 = 2f1�
2f2�

2 + 2f3�
2f4�

2 + �f1�f4� + f2�f3��
2

+ 	��f1� + f2��
2 + �f3� + f4��

2� . �34�

Compared with the case of normal phase, the displace-
ment 	 of the photon operator appears in the photon number
variance.

IV. PHOTON NUMBER VARIANCE FOR LOSCHMIDT
ECHO

We have separately calculated the LE of the photon-
dressed atom ensemble perturbed by an extra atom in two
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quantum phases: normal phase and super-radiant phase. Our
calculations are based on the short-time approximation, but it
can cover the main character of the QPT of the photon-
dressed atomic ensemble induced by the extra atom. As fol-
lows, we illustrate the LE versus the coupling strength g and
time t by plotting its three-dimensional �3D� contour.

Figure 2 shows the LE as a function of the time t and the
coupling strength g in the normal and super-radiant phases. It
is obvious that the LE, which is calculated from Eqs. �19�,
�26�, and �34�, will have a sudden change near the critical
point. Its decay is highly enhanced at the critical value gc. In
the normal phase, the LE decays rapidly to zero as the en-
larged coupling strength g of the photon-dressed atomic en-
semble approaches the critical point gc. In the super-radiant
phase, similarly, the LE decays faster as the parameter g
decreases to the critical point gc. Then the coherence of the
extra atom is very sensitive to the dynamical perturbation of
the photon-dressed atomic ensemble near the critical point.

Meanwhile, in the vicinity of the critical point, the coher-
ence of the extra atom decreases to zero sharply with time at
fixed point of g. The more nearly the work point g ap-
proaches the critical point gc, the sharper the decay of the
decoherence of the extra atom is. During this process, the
detected atom evolves from a pure state to a mixed one.
Therefore, we can measure the QPT of the photon-dressed
atomic ensemble by exploring the coherence of the detected
atom in the photon-dressed atomic ensemble.

Figure 3 shows the LE at a fixed time ��t=100� for the
photon-dressed atomic ensemble in both the normal and
super-radiant phases. Contrary to the case of the transverse
field Ising model, the LE in the present system will not ap-
proach 1 when the coupling strength is much more than the
critical point �seen from Fig. 3�. The reason is that a large
displacement 
	�g
N appears in the super-radiant phase
and will increase as the coupling strength increases. That

means a small disparity ��̃a†a� in the initial Hamiltonian in
the super-radiant phase may lead to a large difference �e.g.,
the decoherence factor will decay faster� after period of long-

enough time. As pointed out in Ref. �5�, the so-called quan-
tum chaos always appears in the super-radiant phase.

It follows from Eqs. �19�, �26�, and �A1� that the LE is
independent of N in the normal phase. However, the LE de-
pends on the number of the atoms N in the super-radiant
phase via 
	�
N. In Fig. 4, the LE is plotted as a function
of the coupling strength g with N=100, 1000, and 10 000
respectively. It can be observed from Fig. 4 that the LE line
decays faster and faster in the super-radiant phase as the
atom number N increases. The reason is the same as that
mentioned above. The photon number variance 
 propor-
tional to the decay rate for the decoherence of the extra atom
increases as N increases via approximately


 � 	 � g2N . �35�

Accordingly, the LE decreases with the form

ln L � − g2N �36�

in the super-radiant phase. Thus, as N→�, the decay of the
LE will be strongly enhanced at the critical point.

V. ANALOG TO CLOUD CHAMBER

Now we can address the similarity of sensitive dynamics
between the present system and the classical cloud chamber.
In classical cloud chamber, when a charged particle �or a

L

FIG. 2. �Color online� 3D diagram of the LE plotted as a func-
tion of the time t and the coupling strength g both in the normal
phase �the left panel� and in the super-radiant phase �the right

panel�. Here, in unit of �, �0=1.44�, �̃=gs
2 /�s=0.001� ��s

=0.1� , gs=0.01��, the critical point gc=
��0 /2=0.6�, the num-
ber of atoms N=100.

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

L

N=100

FIG. 3. �Color online� The cross section of the 3D surface of the
LE in Fig. 2 at �t=100. For other parameters see Fig. 2.

0.56 0.58 0.6 0.62 0.64

0

0.2

0.4

0.6

0.8

1

L

N=100

N=1000

N=10000

FIG. 4. �Color online� The LE of the systems for different N at
�t=100. In normal phase, the LE is independent of N. In super-
radiant phase, N=100 �solid line�, 1000 �dashed line�, and 10 000
�dotted line�, respectively, from up to bottom. For other parameters
see Fig. 2.
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dust� flies into the cloud chamber, which is filled with super-
saturated and supercooled water or alcohol, the water or al-
cohol vapor will condensate around the flying charged par-
ticle �or a dust� and form a liquid droplet, then a track is left.
During this process, as a result of the sensitivity in response
to the extra particle, the supersaturated vapor staying in the
vicinity of the classical phase transition experiences a clas-
sical phase transition, transiting from vapor to liquid.

In the present investigation, similarly, there exists very
sensitive dynamics of the photon-dressed atomic ensemble
when a far-off-resonant atom goes through the cavity. In
view of the Stark effect, the far-off-resonant atom shifts the
frequency of the cavity field. We assume that the photon-
dressed atomic ensemble is initially prepared in a state near
the quantum critical point of the QPT of the Dicke model.
Then the frequency change induced by the far-off-resonant
atom will lead the Dicke model to cross the quantum critical
point resulting in a sensitive dynamics of the LE. This quan-
tum effect is similar to the classical phenomenon in the re-
alistic cloud chamber that the vapor in the cloud chamber
will condensate around the microscopic detected particle af-
ter experiencing the classical phase transition. Therefore, it is
possible to realize the quantum version of the cloud chamber
effect through observing the sensitive change in the LE of
the photon-dressed atomic ensemble.

Here, the enhancement of the decay of LE or its sudden
change can be regarded as an indicator of the one-atom in-
duced QPT to detect the passage of the atom. This fact prop-
erly resembles the cloud chamber effect. In this analogy, the
photon-dressed atomic ensemble, which can be tuned to the
vicinity of the QPT point, behaves as the supersaturated va-
por in the classical cloud chamber, while the enhancement of
the decay of LE just resembles the transition from vapor to
liquid.

Indeed, the LE in our paper is obtained from the decoher-
ence factor for time evolution of the extra atom, but it actu-
ally represents the “mark” of this atom on the “cloud
chamber”—the photon-dressed atomic ensemble. An obvious
reason is that the LE only depends on the parameters of the
“chamber” and, thus, is an intrinsic quantity of the chamber.
Especially, the extra atom can only provide a small perturba-
tion; thus, the LE is independent of the detected particle. In
most of the references we cite, the LE can be defined without
the detected particle by the chamber. It is only in our own
paper �2� where the detected particle is introduced and it is
proved that the decoherence factor of the detected particle is
just the LE of the chamber. Thus, the LE is obviously the
mark of the detected particle left in the chamber.

VI. CONCLUSION WITH A REMARK

In summary, based on the QPT of the Dicke model, we
have proposed a quantum critical model to display the ultra-
sensitivity of dynamic evolution of a QPT system of a
photon-dressed atomic ensemble. We have also pointed out
the analog of this one-atom induced QPT to the cloud cham-
ber based on QPT. Frankly we have to point out that such a
model cannot be implemented easily with the generic AMO
system, since the two-photon term could not be simply ig-

nored in the overstrong coupling limit �12�. However, our
present study is still heuristic and the toy model covers the
principle ideas for QPT inducing the cloud chamberlike ef-
fect. Furthermore, with the great development of solid quan-
tum device physics, the Dicke model may be realized in
some solid-state systems such as the superconducting quan-
tum circuits and the nanomechanical resonators integrated
with some qubit array systems.

Finally, we would like to mention a reference �18�, in
which an effective Dicke model was derived in a multilevel
atomic ensemble. In this reference, the two-photon term A2

may be safely ignored originally; thus, the modified Dicke
model based on such a practical setup may be used to display
the QPT phenomena we found in this paper.
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APPENDIX: COEFFICIENTS OF BOGOLIUBOV
TRANSFORMATION

1. Normal phase

The coefficients of Bogoliubov transformation in the nor-
mal phase are

f1,2 =
1

2

cos �


��A

�� � �A� ,

f3,4 =
1

2

sin �


��B

�� � �B� , �A1�

where the rotating angle in the coordinate-momentum repre-
sentation � is given by

tan 2� =
4g
��0

�0
2 − �2 . �A2�

2. Super-radiant phase

The coefficients of Bogoliubov transformation in the
super-radiant phase are

f1,2� =
1

2

cos ��


��A�
�� � �A�� ,

f3,4� =
1

2

sin ��


��B�
�� � �B�� , �A3�

where the analogous rotating angle �� is

tan 2�� =
2��0�2

�0
2 − �2�2 . �A4�
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