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The Relation Between Physical and Risk-neutral

Cumulants

Abstract

Variance swaps are natural instruments for investors taking directional bets on volatility

and are often used for portfolio protection. But the crucial observation suggests that

derivative professionals may desire to hedge beyond volatility risk and there exists the need

to hedge higher-moment market risks, such as skewness and kurtosis risks. We propose new

derivative contracts: skewness swap and kurtosis swap, which trade the forward realized

third and fourth cumulants. Using S&P 500 index options data from 1996 to 2005, we

document the returns of these swap contracts, i.e., skewness risk premium and kurtosis risk

premium. We find that the skewness risk premium is significantly negative and kurtosis

risk premium for 90 day maturity is significantly positive.
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1 Introduction

It is well known that managing volatility is central to hedging the risk in an options port-

folio. Variance swaps offer investors a straightforward vehicle for achieving long or short

exposure to market volatility. Investors trade volatility (variance) by swap contracts. In

late 1990s, Wall Street firms started to trade variance swaps, a forward contract with a

payoff based on the realized variance of a stated equity index. In late 1998, variance swaps

became very popular. According to some estimates, the daily trading volume in equity

index variance swaps reached USD 4-5 million vega notional in 2006. On an annual ba-

sis, this corresponding to payments of more than USD 1 billion, per percentage point of

volatility (Carr and Lee (2009)).

Variance swaps are natural instruments for investors taking directional bets on volatility

and are often used for portfolio protection. Variance swaps are especially attractive to

volatility traders for two reasons:(1) implied volatility of an exchange traded option tends

to be higher than the realized volatility; (2)the payoff of a variance swap is convex in

volatility (volatility skew)(Bossu, Strasser and Guichard (2005)). Evidence supporting

the first reason has been well documented in that the Black-Scholes implied volatilities of

at-the-money options are systematically and consistently higher than realized volatilities

of the underlying. Negative volatility risk premium, the difference between the physical

and risk-neutral volatilities, is regarded as a major explanation for this seemingly puzzling

evidence by researchers (Bakshi and Kapadia (2003)). The second reason has also been

studied. Rubinstein (1994) empirically documents that the implied volatility as a function

of the strike price has been skewed towards the left since the market crash in 1987. In

particular, the downward slope of the smirk reflects asymmetry (negative skewness) in the

risk-neutral distribution of the underlying index return (Carr and Wu (2003)). Together,

they contribute to the huge sucess of the variance swaps market. Robinstein (1994) and
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Dennis and Mayhew (2002) also show that risk-neutral skewness tends to be more negative

in periods of high market volatility and when the market skew is negative.

This crucial observation suggests that derivative professionals may desire to hedge

beyond volatility risk and there exists the need to hedge higher-moment market risks,

such as skewness and kurtosis risks. In fact, deviations of physical densities from risk-

neutral(implied) densities have led to skewness and kurtosis trading strategies. Ait-Sahalia,

Wang and Yared (2001) and Balskowitz and Schmidt (2002) investigate such strategies

for the period from April 1997 until December 1999 and document that the trades ap-

plied to European options on the German DAX index generated a positive net cash flow.

Blaskowitz, Hardle and Schmidt (2003) investigate the profitability of skewness trades and

kurtosis trades by derivatives market option strategies based on comparisons of implied

state price densities versus historical densities. Traditionally, volatility trading requires

both buying and selling options, but from time to time traders find that their brokerage

firms do not facilitate options sellings as straightforward as options buying. By variance

swaps, traders can now have easy access to volatility trades. Accordingly, we propose two

new derivative contracts: skewness swap and kurtosis swap that will trade skewness and

kurtosis risks directly. We offer in this paper some fundamental understanding of the risk

premium properties of these two potential contracts.

Following the definition of variance swap, skewness and kurtosis swaps are proposed to

trade the forward third and fourth central moments. Carr and Wu (2009) develop a method

to measure the return variance risk premium by a variance swap contract that pays the

difference between a standard estimate of the realized variance and the fixed variance swap

rate which equals the risk-neutral future realized variance. Given the reasons that have

contributed to the success of variance swaps, it is of great interest to know whether or

not the skewness/kurtosis risk premia defined by the difference between the physical and

risk-neutral third/fourth central moments are non-zero.
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The variance swap is a contract in which two parties agree to exchange cash flows based

on the measured variance of a specified underlying asset during a certain time period. On

the trade date, the two parties agree on the strike price of the contract (the reference level

against which cash flows are exchanged), as well as the number of units in the transaction.

Following Carr and Wu (2009) that the fair strike price of the variance swap is the risk-

neutral second central moment of the underlying asset return, we propose that the fair strike

price of the skewness/kurtosis is defined by the risk-neutral third/fourth central moments.

Thus, the skewness/kurtosis swap contract is designed as the same manner in spirit as the

variance swap contract except the strike price of the contract.

We define the premia of skewness and kurtosis risks estimated as the difference between

the physical and risk-neutral central moments. Using S&P 500 index options data from

1996 to 2005, we study the properties of the risk premia.

To estimate the risk-neutral standard deviation, skewness and kurtosis efficiently, we

adopt the methodology developed by Zhang and Xiang (2008) based on the implied volatil-

ity smirk. We infer the risk-neutral higher order cumulants from options with 30, 60 and 90

days to maturity. By comparing these risk-neutral cumulants with the subsequent realized

physical cumulants, we can study the risk premium of higher order cumulants. We find that

S&P 500 index return has a significant negative variance risk premium and a significant

negative skewness risk premium. Kurtosis risk premium is significant for a long maturity.

This paper makes two contributions. First, this paper is the first to offer a justification

and to propose the trading of the skewness swap and kurtosis swap contracts, which trade

the forward realized third and fourth cumulants. Second, this is the first paper to document

the signs and magnitudes of skewness and kurtosis premium.

The rest of this paper is organized as follows. Section 2 gives the definitions and

calculations of physical and risk-neutral cumulants. Section 3 describes the trading of the

second order cumulants. Trading the third and fourth cumulants are given in Section 4.
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Section 5 describes the data for our empirical study. Section 6 presents our empirical study

results. Section 7 concludes.

2 Definitions and calculations of Physical and Risk-

neutral Cumulants

2.1 Cumulants of a random variable

In probability theory and statistics, the first cumulant of a random variable X is defined

as its expected value κ1 = µ = E(X). Its second cumulant is defined as the variance

κ2 = σ2 = E((X − µ)2).

The higher order cumulants κn are defined by the cumulant-generating function:

g(t) = ln(E(et·X)) =
∞∑

n=1

κn
tn

n!
= µt + σ2 t2

2
+ · · · ,

where t is the parameter. Then we have :

κ1 = E(X) = g′(0),

κ2 = V ar(X) = g′′(0),

κn = g(n)(0).

Working with cumulants has an advantage over using moments, because for independent

variables X and Y ,

gX+Y (t) = ln(E(et·(X+Y ))) = ln(E(etX) · E(etY ))

= ln(E(etX)) + ln(E(etY )) = gX(t) + gY (t),

therefore the cumulants of the sum of two independent random variables are the sum of

the corresponding cumulants of the addends.
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Some prefer to define the cumulant generating function g(t) via the characteristic func-

tion h(t), which is

h(t) = ln(E(eitX)) =
∞∑

n=1

κn · (it)n

n!
= µit− σ2 t2

2
+ · · · . (1)

The two functions are related by h(t) = g(it) and where i is the standard imaginary unit.

This characterization of cumulants is valid even for distributions whose higher moments

do not exist.

2.2 The relation between cumulants and moments

The cumulants of a random variable are closely related to its moments. The moment

generating function, Mn, is defined:

1 +
∞∑

n=1

Mnt
n

n!
= exp

( ∞∑
n=1

κnt
n

n!

)
= exp(g(t)),

therefore, the cumulant generating function is the logarithm of the moment generating

function. The third cumulant is the third central moment, and the fourth cumulant is the

fourth central moment minus three times the square of the variance. The higher cumu-

lants are neither moments nor central moments, but rather more complicated polynomial

functions of the moments.

We summarize the relation between the first four moments and cumulants are given as
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follows:

M1 = κ1, (2)

M2 = κ2 + κ2
1, (3)

M3 = κ3 + 3κ2κ1 + κ3
1, (4)

M4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1, (5)

κ1 = E(X) = M1, (6)

κ2 = E[(X −M1)
2] = M2 −M2

1 , (7)

κ3 = E[(X −M1)
3] = M3 − 3M1M2 + 2M3

1 , (8)

κ4 = E[(X −M1)
4]− 3E[(X −M1)

2]2

= M4 − 4M1M3 − 3M2
2 + 6M2

1 M2 + 6M1M2 − 6M4
1 . (9)

2.3 Calculations of physical and risk-neutral cumulants of index
returns

2.3.1 Physical cumulants

The continuously compounded return of underlying asset with price St during the period

time t to T is defined as

Yτ = ln(St+τ/St), (10)

where τ = T − t.

Following Carr and Wu (2009), we use the realized cumulants as the proxies of physical

cumulants. Based on the daily data and set τ = 1/252, the first physical cumulant can be

calculated from the daily stock price, Si, as follows:

κ1 =
1

n− 1

n−1∑
i=1

ln(Si+1/Si), (11)

where n is the total number of the daily observations over the estimation interval. Si is the

i-th observation and Si+1 is the price value of the following trading day (all the values of
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cumulants calculated are annualized).

The second, third and fourth physical cumulants at time t for n daily observations are

calculated from the following equations:

κ2 =
1

n− 1

n−1∑
i=1

[ln(Si+1/Si)− κ1]
2, (12)

κ3 =
n

(n− 1)(n− 2)

n−1∑
i=1

[ln(Si+1/Si)− κ1]
3, (13)

κ4 =
n(n + 1)

(n− 1)(n− 2)(n− 3)

n−1∑
i=1

[ln(Si+1/Si)− κ1]
4 − 3κ2, (14)

where the three coefficients before summations related to n are due to the unbiased esti-

mation rule in statistics.

2.3.2 Risk-neutral cumulants

We estimate the risk-neutral cumulants based on Zhang and Xiang’s (2008) methodology.

The implied volatility, IV, can be approximated by a second-order polynomial function of

moneyness, i.e,

IV (ξ) = η0(1 + η1ξ + η2ξ
2), (15)

where η0, η1, η2 are the level, slope and curvature of the implied volatility smirk and ξ is a

measure of the moneyness which is defined by

ξ ≡ ln(K/F0)

σ̄
√

τ
, (16)

where σ̄ denotes a measure of the average volatility of the underlying asset return, τ is the

option’s maturity, K is the strike price and F0 is the forward price which is described in

detail in the following sections.

Then we invoke the following proposition according to Zhang and Xiang (2008).

Proposition 1 The level, slope and curvature of the implied volatility smirk, (η0, η1, η2),

and the risk-neutral standard deviation, skewness and excess kurtosis, (σQ, λQ
1 , λQ

2 ) are
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related by following leading-order result:

η0 ≈ (1− λQ
2

24
)σQ, η1 ≈ 1

6
λQ

1 , η2 ≈ 1

24
(1− λQ

2

16
). (17)

If we further assume that λ2

16
¿ 1, then we obtain following simple result

η0 ≈ σQ, η1 ≈ 1

6
λQ

1 , η2 ≈ 1

24
λQ

2 . (18)

After we obtain the risk-neutral standard deviation σQ, skewness λQ
1 and kurtosis λQ

2 ,

by Proposition (1) and using the following relation, it is straightforward to obtain

κQ
2 = σQ, κQ

3 = λQ
1 (κQ

2 )3/2, κQ
4 = λQ

2 (κQ
2 )2. (19)

3 Variance Swaps

3.1 Variance swap rates

A variance swap is an instrument which allows investors to trade future realized (or his-

torical) volatility against current implied volatility. In late 1998, variance swaps became

very popular in the aftermath of LTCM meltdown when implied stock index volatilities

rose to unprecedented levels. Hedge funds took advantage of this by selling the realized

volatility at high implied levels. A return variance swap has zero net market value at entry.

At maturity, the payoff of a long side of the swap is equal to the difference between the

realized variance and a constant called variance swap rate,

[RVt,T − SWt,T ]L

where RVt,T denotes the realized annualized return variance between time t and T , SWt,T

denotes the fixed swap rate that is determined at time t and paid at time T , and L denotes

the nominal dollar amount that converts the variance difference into a dollar payoff. No
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arbitrage dictates that the variance swap rate SWt,T equals the risk-neutral expected value

of the realized variance, RVt,T . That is,

SWt,T = EQ[RVt,T ]. (20)

Assume the underlying stock follows the process,

dSt

St

= µdt + σtdBt, (21)

where the volatility σt is a stochastic variable and Bt is the standard Brownian motion.

Then

d(ln St) = (µ− 1

2
σ2

t )dt + σtdBt.

Subtracting these two equations gives

dSt

St

− d(ln St) =
1

2
σ2

t dt.

The realized variance can be written as

RVt,T =
1

T − t

∫ T

t

σ2
sds =

2

T − t
(

∫ T

t

dSu

Su

− ln
ST

St

)

The variance swap rate is then determined by

SWt,T = EQ[RVt,T ] =
2

T − t
erτ [

∫ F T
t

0

1

K2
pt(K)dK +

∫ ∞

F T
t

1

K2
ct(K)dK] (22)

Variance swap rate can be determined by the current price of all the out-of-money(OTM)

European calls and puts. This formula was obtained by Carr and Madan (1998) and Deme-

terfi et al (1999) independently.

Recently, the Chicago Board Options Exchange (CBOE) designed a new volatility index,

VIX2, by using discretized version of the formula.

2The definition of the VIX and the methodology of computing it from options prices are clearly described
in the CBOE white paper (2003).
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3.2 The relation between the variance swap rate and the risk-
neutral variance

The risk-neutral log return ln(ST /St) can be written as the following:

R = ln
ST

St

=

∫ T

t

(r − 1

2
σ2

s)ds +

∫ T

t

σsdBs,

then the risk-neutral variance is

EQ
t [R− EQ

t (R)]2 = EQ
t

[
1

2

(∫ T

t

σ2
sds− EQ

t

∫ T

t

σ2
sds

)
−

∫ T

t

σsdBs

]2

=
1

4
EQ

t

[∫ T

t

σ2
sds− EQ

t

∫ T

t

σ2
sds

]2

+ EQ
t

∫ T

t

σ2
sds

−EQ
t

[∫ T

t

σ2
sdBs

(∫ T

t

σ2
sds− EQ

t

∫ T

t

σ2
sds

)]

=
1

4
var(

∫ T

t

σ2
sds) + SWt,T

−EQ
t

[∫ T

t

σ2
sdBs

(∫ T

t

σ2
sds− EQ

t

∫ T

t

σ2
sds

)]
(23)

If the variance of σt is small, the values of the first and third terms are relatively small

compared with the variance swap rate SWt,T , then

SWt,T = EQ
t [R− EQ

t (R)]2 + εt, (24)

where the error term εt depends on the detailed specification of σt process.

Therefore, for simplification professionals usually use the risk-neutral variance as an

approximation to the swap rate of the variance swap to understand the variance risk pre-

mium.

4 Skewness and kurtosis swaps

Motivated by the design of variance swap contracts traded actively on the Wall Street,

we define two new derivative contracts: skewness swap and kurtosis swap. The skew-

ness/kurtosis swap is a forward contract on realized third/fourth central moments. A
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return skewness/kurtosis swap also has zero net market value at entry as a return vari-

ance swap. At maturity, the payoff of a long side of the skewness/kurtosis swap is equal

to the difference between the realized third/fourth central moments and a constant called

skewness/kurtosis swap rate,

[R3Ct,T − SW third
t,T ]L / [R4Ct,T − SW fourth

t,T ]L

where R3Ct,T /R4Ct,T denotes the realized annualized return third/fourth central moments

between time t and T , SW third
t,T /SW fourth

t,T denotes the fixed swap rate that is determined

at time t and paid at time T , and L denotes the nominal dollar amount that converts the

third/fourth central moments difference into a dollar payoff. No arbitrage dictates that

the skewness/kurtosis swap rate SW third
t,T /SW fourth

t,T equals the risk-neutral expected value

of the realized variance, RVt,T . That is,

SW third
t,T = EQ

t [R3Ct,T ], (25)

SW fourth
t,T = EQ

t [R4Ct,T ], (26)

where R3Ct,T /R4Ct,T is the realized third/fourth central moments.

Carr and Wu (2007) document that jump diffusions induce short term smiles and skews

that dissipate quickly with increasing maturity due to the central limit theorem, while

stochastic volatility induces smiles and skews that increase as maturity increases over the

horizon of interest. In order to understand the mechanism of skewness and kurtosis swap

rates we need a much more complicated model, such as one with stochastic volatility or

stochastic jump intensity. A theory of replicating the realized third/fourth cumulants by

using options portfolio is yet to be developed.

Like the relation between variance swap rate and risk-neutral variance discussed in the

previous section, the skewness/kurtosis swap rate is not equal, but very close to the risk-

neutral third/fourth central moments of log return over the period [t, T ]. The detailed
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analysis, which depends on the processes of volatility and jump intensity, for example, see

Carr and Wu (2004), is not elaborated here.

In this paper, we focus on the empirical study on the relation between physical and

risk-neutral cumulants by using S&P 500 index option data.

5 Data

We use the daily S&P 500 closing index from January 4, 1996 to December 30, 2005 as

our proxy for the underlying price. The total number of observations is 2514. The risk-free

rate used in our empirical study is from the U.S. daily treasury yield curve rates. We

also retrieve the daily S&P 500 index European options (including all the call and put

options for different strike prices and maturities traded) data from OptionMetrics which

provides historical prices of options based on closing quotes at the Chicago Board of Options

Exchange. The range of our data sample is also from January 4, 1996 to December 30,

2005.

6 Empirical results

6.1 Implied volatility smirk

From Proposition 1, we know the relation between the risk-neutral standard deviation,

skewness and excess kurtosis and the level, slope and curvature of the implied volatility

smirk. We demonstrate in this subsection the procedures to obtain the implied volatility

function by the S&P 500 index European options data on September 6, 2002, as an example,

for 30 days time to maturity.

We first select all the call and put options in the two nearest-term expiration months in

order to bracket a 30-day calendar period. Specially, the near term 15 days and the next

term 43 days options are chosen.
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For 15-day options, we observe that the options with at-the-money strike K0 = 900,

have the smallest difference between the call and put prices is the smallest. 15-day risk-free

rate is extrapolated from the 1 month rate and the 3 month rate of U.S. treasury yield

curve rates on September 6, 2002, i.e.,

r = r1mon − (r3mon − r1mon)× 30− 15

61
= 1.66%− (1.66− 1.68)× 15/61 = 1.685%.

As documented by Foresi and Wu (2005), the implied volatility of the US equity index

options, as a function of strike/moneyness for a certain maturity, exhibits a negatively

skewed curve for most of the index options. Following Zhang and Xiang (2008), the implied

volatility, IV, can be approximated by a second-order polynomial function of moneyness,

like equations (15) and (16). In our data analysis, we use at the money implied volatility

as a proxy of σ̄. F0 is the implied forward price and is determined based on at-the-money

option prices:

F0 = K0 + erτ ∗ (Call price− Put price)ATM

= 900 + e1.685%×15/365(18.9− 24.85) = 894.289,

where call prices and put calls are the midpoints of the bid-ask spread for each European

option with strike K.

Since put-call parity holds, the market data of either call or put give the same value of

the implied volatility. We use out-of-money options to compute the implied volatilities for

different strikes. When the strike is K < 900 or K > 900, implied volatilities are calculated

from the put and call options respectively by the Black-Scholes formula. At-the-money

implied volatility, denoted by σ̄, can be calculated by its call or put. We obtain two time

series for implied volatilities and corresponding moneyness values ξ with different strike

prices K for 15 day maturity on September 6, 2002. [”For a given day, there are different

strike K and for every k, we have a corresponding implied volatility and moneyness”]
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We follow the calculating method of Chicago Board Options Exchange (CBOE) Volatil-

ity Index, VIX, to construct the options with 30-day maturity. We use a quadratic function

to fit the implied volatilities by minimizing the volume weighted mean squared error

∑
ξ V oli × [IVi − σ̄(1 + η1ξ + η2ξ

2)]∑
ξ V oli

, (27)

where σ̄, η1 and η2 are defined in Equations (15) and (16). Accordingly, we obtain

IV (ξ) = 0.3237(1− 0.1614ξ + 0.0106ξ2), (28)

or the smirk parameters of the day on September 6, 2002 for 15 days maturity, (η1
0, η

1
1, η

1
2) =

(0.3237,−0.1614, 0.0106).

Repeating the above procedures, we have the smirk parameters for 43 time to maturity

on September 6, 2002, (η2
0, η

2
1, η

2
2) = (0.3219,−0.2274, 0.0095).

The implied volatility smirk for 15 days and 43 days time to maturity on September

6, 2002 is shown graphically in Figure 2. It is obvious that they fit quite well except for

points corresponding to approximate zero trading volumes.

We then use the extrapolation technique as it is used by CBOE for VIX3 to compute the

smirk parameters for 30 days time to maturity. The level η0, the slope η1 and the curvature

η3 of the implied volatility smirk for 30 days time to maturity is shown as follows:

η0 =
14

30
× 42− 30

42− 14
η1

0 +
42

30
× 30− 14

42− 14
η2

0 = 0.3222,

η1 =
14

30
× 42− 30

42− 14
η1

1 +
42

30
× 30− 14

42− 14
η2

1 = −0.2142,

η2 =
14

30
× 42− 30

42− 14
η1

2 +
42

30
× 30− 14

42− 14
η2

2 = 0.0097.

Using the same method, we can obtain these parameters of implied volatility smirk for

60 days and 90 days time to maturities.

3see white paper, “VIX-CBOE volatility index”, CBOE (2003)



Physical and Risk-Neutral Cumulants 16

6.2 Equity risk premium

We define the equity risk premium is defined as the excess average return earned by an

individual stock or the overall stock market index over the corresponding risk-free rate. It

compensates investors for taking on the relatively higher risk in the equity market. The

size of the premium will vary with time as well as the risk.

Suppose that the expected compound return of an asset is expressed as

µ = Et[ln(St+dt/St)]. (29)

Then the equity premium φ is

φ = µ− r.

If dt is 1/252, then µ is the daily mean return.

Table 1 reports the summary of the equity premium (annualized) from January 3, 1996

to December 31, 2005. The past realized excess return roughly can be divided into three

stages. The first stage is from 1996 to 2000 in which investors earned a positive high excess

return. 2000 to 2002 defines the second stage, where the average excess returns are large

negative numbers, even as low as -24.86% in year 2002. In the final stage the average

annual excess returns increase and become positive again, but are still not as high as the

average levels of the first stage. We note that investors bore a lower volatility over this

period than that in the first stage.

The partition for the three stages is roughly matching to the episodes of the “dot-

com bubble” (or sometimes the “I.T. bubble”). By 2001 the bubble burst drastically and

investors incurred a great loss with high volatility in the second stage. Table 2 shows

clearly that volatility or variance of return is not constant. It could be another source of

risk that needs to be compensated. Buyers of market volatility are arguably willing to

pay a premium for downside protection and the hedging motives is indicative of a negative
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volatility (variance) risk premium (Bakshi and Kapadia (2003)). Empirical studies show

that increased realized volatility coincides with downward market moves (French, Schwert

and Stambaugh (1987)). This could induce negative variance risk premium.

In equilibrium, risk averse investors are expected to be properly compensated for any

risk that is taken. Conceptually, this is not confined to volatility risk. The intuition motives

the need to further explore higher order risks, such as skewness risk and kurtosis risk.

6.3 Variance risk premium

According to the condition and Equations (17) and (18) in Proposition 1, it is straightfor-

ward to get the risk-neutral variance, skewness and excess kurtosis, (σ2
rn, λQ

1 , λQ
2 ), for 30

days time to maturity contract on September 6, 2002 (as an example),

σ2
rn = η2

0 = 0.322222 = 0.1038, (30)

λQ
1 = 6η1 = 6× (−0.2162) = −1.2972, (31)

λQ
2 = 24η2 = 24× 0.0097 = 0.2328. (32)

From Equation (19), we have the 2nd, 3rd and 4th central moments (M c) in risk-neutral

measure for 30 days time to maturity

M c
2 = κQ

2 = σ2
rn = 0.1038, (33)

M c
3 = κQ

3 = λQ
1 (κQ

2 )3/2 = −1.2972× (0.1038)3/2 = −0.0434, (34)

M c
4 = κQ

4 + 3(κQ
2 )2 = (λQ

2 + 3)(κQ
2 )2 = (0.2328 + 3)× (0.1038)2 = 0.03483. (35)

Using the same method, risk-neutral 2nd, 3rd and 4th central moments for 60 days and

90 days can be obtained.

Since variance risk premium is defined as the difference between physical (realized) and

risk-neutral variance, we also need to compute the physical variance with the same time

horizon.
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Figures 3, 4 and 5 plot the time series of physical variance, risk-neutral variance and

variance risk premium for 30 days, 60 days and 90 days time to maturities respectively

from January 4, 1996 to December 31, 2005. Table 2 reports the summary statistics for

the whole sample and sub-periods. To test whether the variance risk premium is negative

or not, we state the null-hypothesis as: H0 : µvar ≥ 0. For example, t-statistics for this

one-tailed test for 30 days time to maturity over the whole sample period is

t =
difvar − 0

σvar/
√

n
=

−0.00577

0.02516/
√

2516
= −11.95,

where difvar is the average of the time series of difference between physical and risk-

neutral variance, σvar is the standard deviation of this sample and n is the number of the

observations of the sample.

The results shows that the average variance risk premium for 30 days time to maturity

is significantly negative at the 1% level from January 4, 1996 to December 31, 2005. Two

of the three subperiods display the same results as the whole period. The exception occurs

in the second stage from 2000 to 2002, the I.T. bubble period, in which the variance risk

premium is not distinguishable from zero.

Panels B and C of Table 2 report the summary statistics of variance risk premiums for

60 days and 90 days time to maturity respectively. The variance risk premiums are all

significantly negative over the whole sample period. The negative variance risk premium

for S&P 500 index are also found by Engle (2004) and Carr and Wu (2009). The sub-period

results are similar to those in Panel A for 30 days time to maturity, variance risk premium

documented are averagely more negative than that of 30 days for 60 and 90 days time to

maturity which is consistent with Bakshi and Kapadia (2003).

It is interesting to note that during the period 1996-1999 and 2002-2005 that the average

return are positive and the variance risk premiums are negative. However, the variance

risk premiums became positive during 2000-2002 while the average return is negative. This
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pattern is consistent with Bollerslev, Tauchen and Zhou (2009) which show that high (low)

variance risk premia4 predicts high (low) future returns.

6.4 Skewness risk premium

Following the definition of the variance risk premium in Carr and Wu (2009), we define the

skewness risk premium to be the return of a skewness swap which is a forward contract on

the value of the third central moments. To ensure the swap rate in the contract is positive,

we define the skewness risk premium as the negative difference between the physical and

risk-neutral third central moments,

SRP = EQ
t [Rt − EQ

t (Rt)]
3 − Et[Rt − Et(Rt)]

3 = M cQ
3 −M c

3 . (36)

From Equations (16) and (17), we know that the physical third central moment M c
3 and

risk-neutral third central moment M cQ
3 can be obtained by

M c
3 = λ1(κ2)

3/2 = λ1σ
3
p, (37)

M cQ
3 = λQ

1 (κQ
2 )3/2 = λQ

1 σ3
rn. (38)

Using the same method to compute the physical and risk-neutral central moments as

in previous section, we obtain the time series of the realized and risk-neutral third central

moments by Equations (37) and (38) for 30 days, 60 days and 90 days, respectively, time

to maturity from January 4, 1996 to December 30, 2005.

Figures 3, 4 and 5 plot the daily dynamics of skewness risk premium, physical third

central moments and risk-neutral central moments for 30, 60 and 90 days time to maturity,

respectively, from January 4, 1996 to December 30, 2005. The diamonds in these figures

denote the skewness risk premiums and We observe that most of the diamonds is below

zero line for the whole time horizon and for 30, 60 and 90 days time to maturity.

4The definition of variance risk premium in Bollerslev, Tauchen and Zhou (2009) is the difference
between the risk-neutral and physical variance.
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Panels A, B and C of Table 3 report the skewness risk premiums for 30 days, 60 days

and 90 days maturities for different subperiods from January 4, 1996 to December 30, 2005.

The third and fourth columns are the mean of the physical and risk-neutral third central

moments, the fifth column is the skewness risk premium estimation. The sixth column

σvrp gives the standard deviation of the estimated skewness risk premium and the last

column is the t-statistics for the nonnegative skewness risk premium null-hypothesis, i.e,

H0 : µsrp ≥ 0.

We found that all the t-values in the last column of Table 3 are significantly nega-

tive. This means that the average skewness risk premium are significantly negative for the

subperiods from January 4, 1996 to December 30, 2005 for 30, 60 and 90 days time to

maturity. This is consistent with the literature that risk-neutral skewness is more negative

than physical measure. Brunnermeier and Parker (2005), Brunnermeier, Gollier and Parker

(2007) and Barberis and Huang (2007) show that investors’ preference to skewness pushes

up the prices of assets with high positive skewness, so that market portfolio has a negative

skewness due to its well-diversified. Our empirical results match the observations in Bates

(1991) and Rubinstein (1994) that index distributions have become (risk-neutrally) more

negatively skewed after the crash of 1987.

We find that, in all three panels, the skewness risk premium is most negative during

sub-period 2000-2002. Interestingly, it is also the sub-period in Table 1 where the average

excess return is most negative.

6.5 Kurtosis risk premium

Following the definition of the skewness risk premium, we define the kurtosis risk premium

to be the return of a kurtosis swap which is a forward contract on the value of the fourth

central moment. That is

KRP = Et[Rt − Et(Rt)]
4 − EQ

t [Rt − EQ
t (Rt)]

4 = M c
4 −M cQ

4 . (39)
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The fourth central moment can be obtained by equation (19):

M c
4 = λ1(κ2)

2 = (λ2 + 3)σ4
p, (40)

M cQ
4 = λQ

1 (κQ
2 )2 = (λQ

2 + 3)σ4
rn, (41)

and here 3 is added because λ2 and λQ
2 are excess kurtosis in our definition.

From Equation (18) in Proposition 1 and Equation (41), it is easy to obtain risk-neutral

fourth central moments. That is

M cQ
4 = (24η2 + 3)σ4

rn. (42)

The physical fourth central moment is directly calculated from the data based on the

Equation (14). Figures 3, 4 and 5 plot the time series, respectively, for the kurtosis risk

premium, physical fourth central moments and risk-neutral fourth central moments for 30

days, 60 days and 90 days time to maturity from January 4, 1996 to December 30, 2005.

Table 4 shows the summary statistics of the kurtosis risk premium. Over the entire

sample, we find that the kurtosis risk premium is not statistical distinguishable from zero

for 30 days and 60 days time to maturities. However, the kurtosis risk premium for 90 days

to maturity is significantly positive at a at the 10% level.

For different subperiods, the results are vary. For example, from January 3, 2000 to

December 31, 2002, the average kurtosis risk premia for 30, 60 and 90 days time to maturity

are all significantly positive. However, the kurtosis risk premium became significantly

negative during the period from January 2, 2003 to December 30, 2005. The investors were

likely to experience a loss when holding a constant long swap position during 2003-2005.

Finding still suggests that kurtosis risk premium may not necessarily be zero, especially

for long maturity contracts.
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7 Conclusions

It is well-known that risk-neutral moments have important effects on the option pricing.

Bakshi, Kapadia and Madan (2003) point out that how to quantify the relationship between

the risk-neutral density and moments of the physical return distribution is an outstanding

issue. Motivated by Carr and Wu (2009), we propose a quantitative measurement for a

skewness/kurtosis swap contract which longs a third/fourth central moments to capture

the uncertainty of the skewness/kurtosis themselves.

The risk-neutral densities can be infered from options markets. We can approximate

the swap rates of the skewness and kurtosis swap contracts by the risk-neutral third and

fourth central moments respectively. By studying the difference between the physical and

risk-neutral central moments, we can empirically investigate the variance risk premium,

skewness risk premium and kurtosis risk premium using S&P 500 index data based on a

model-free manner.

We find that variance risk premium and skewness risk premium are all significantly

negative for the time to maturities 30 days, 60 days and 90 days. The kurtosis risk premium

is significantly positive for 90 days time to maturity, although it is not significant for 30

days and 60 days time to maturities.

This paper makes two contributions. First, this paper is the first to offer a justification

and to propose the trading of the skewness swap and kurtosis swap contracts, which trade

the forward realized third and fourth cumulants. Second, this is the first paper to document

the signs and magnitudes of skewness and kurtosis premium.
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Table 1: The Average Excess Return

This table provides the annualized equity premium φ from January 4, 1996 to December
30, 2005 which is calculated by φ = µ − r. The data frequency is ∆ = 1

252
(one day) and

µ is the average historical return of the sample used, and r is the corresponding average
risk-free rate. Here r is the average 1-month US yield. µ is computed by the following

µ = 252× 1

n− 1

n−1∑
i=1

ln(St+dt/St)

σ̂ is the standard deviations of the sample and n is number of the observations of the
sample. SR is the sharp ratio which is defined by SR = φ/σ̂. All the results in the table
are based on annual adjustment.

Sample Period Obs. µ r φ σ̂ SR

1996/01/04-2005/12/30 2516 0.0867 0.0362 0.0505 0.1833 0.2755

1996/01/04-1999/12/31 1008 0.2320 0.0499 0.1821 0.1737 1.0484

2000/01/03-2002/12/31 752 -0.1446 0.0370 -0.1446 0.2333 -0.6198

2003/01/02-2005/12/30 756 0.1253 0.0153 0.1100 0.1316 0.8359

1996/01/04-1996/12/31 252 0.1828 0.0512 0.1316 0.1181 1.1143

1997/01/02-1997/12/31 253 0.2856 0.0518 0.2338 0.1813 1.2896

1998/01/02-1998/12/31 252 0.2571 0.0489 0.2082 0.2029 1.0261

1999/01/04-1999/12/31 251 0.1947 0.0476 0.1471 0.1807 0.8141

2000/01/03-2000/12/29 252 -0.0823 0.0597 -0.1420 0.2222 -0.6391

2001/01/02-2001/12/31 248 -0.1188 0.0350 -0.1538 0.2156 -0.7134

2002/01/02-2002/12/31 252 -0.2324 0.0162 -0.2486 0.2603 -0.9551

2003/01/02-2003/12/31 252 0.2487 0.0102 0.2385 0.1707 1.3972

2004/01/02-2004/12/31 252 0.0923 0.0127 0.0796 0.1109 0.7178

2005/01/03-2005/12/30 252 0.0348 0.0230 0.0118 0.1028 0.1148
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Table 2: Variance Risk Premiums

This table reports the summary statistics of variance risk premiums from January 4, 1996 to
December 30, 2005. Panel A, B and C report them respectively for 30, 60 and 90 days time
to maturity. Physical variance is calculated by realized return and risk-neutral variance is
implied from options. The variance risk premium is defined by the difference between the
former two variances. µphy is the mean of the physical variance, µrn is the mean of the
risk-neutral variance, µvrp and σvrp are the mean and standard deviation of variance risk
premium. ∗, ∗∗ and ∗ ∗ ∗ means significance at 90%, 95% and 99% confidence levels for
T-test respectively.

Panel A: variance risk premium for 30 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2516 0.0339 0.0397 -0.0058 0.0252 −11.51∗∗∗

1996/01/04-1999/12/31 1008 0.0311 0.0399 -0.0088 0.0265 −10.56∗∗∗

2000/01/03-2002/12/31 752 0.0550 0.0544 0.0006 0.0318 0.5017

2003/01/02-2005/12/30 756 0.0168 0.0248 -0.0080 0.0103 −21.41∗∗∗

1996/01/04-1996/12/31 252 0.0137 0.0209 -0.0072 0.0087 −13.09∗∗∗

1997/01/02-1997/12/31 253 0.0343 0.0409 -0.0066 0.0312 −3.36∗∗∗

1998/01/02-1998/12/31 252 0.0417 0.0515 -0.0098 0.0399 −3.90∗∗∗

1999/01/04-1999/12/31 252 0.0347 0.0463 -0.0117 0.0124 −12.91∗∗∗

2000/01/03-2000/12/29 252 0.0518 0.0450 0.0068 0.0228 4.75∗∗∗

2001/01/02-2001/12/31 248 0.0424 0.0531 -0.0107 0.0230 −5.61∗∗∗

2002/01/02-2002/12/31 252 0.0705 0.0651 0.0054 0.0380 2.27∗∗∗

2003/01/02-2003/12/31 252 0.0271 0.0429 -0.0158 0.0128 −19.56∗∗∗

2004/01/02-2004/12/31 252 0.0124 0.0189 -0.0065 0.0057 −18.15∗∗∗

2005/01/03-2005/12/30 252 0.0108 0.0127 -0.0018 0.0048 −6.12∗∗∗
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Table 2 (continued)

Panel B: variance risk premium for 60 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2513 0.0338 0.0408 -0.0070 0.0240 −14.66∗∗∗

1996/01/04-1999/12/31 1005 0.0313 0.0427 -0.0114 0.0241 −15.02∗∗∗

2000/01/03-2002/12/31 752 0.0549 0.0528 0.0021 0.0307 1.85∗∗

2003/01/02-2005/12/30 756 0.0162 0.0264 -0.0102 0.0091 −30.89∗∗∗

1996/01/04-1996/12/31 252 0.0140 0.0215 -0.0075 0.0072 −16.41∗∗∗

1997/01/02-1997/12/31 253 0.0342 0.0421 -0.0078 0.0201 −6.20∗∗∗

1998/01/02-1998/12/31 252 0.0425 0.0552 -0.0127 0.0402 −5.01∗∗∗

1999/01/04-1999/12/31 252 0.0341 0.0517 -0.0176 0.0135 −20.71∗∗∗

2000/01/03-2000/12/29 252 0.0504 0.0442 0.0062 0.0208 4.77∗∗∗

2001/01/02-2001/12/31 248 0.0433 0.0514 -0.0081 0.0269 −4.76∗∗∗

2002/01/02-2002/12/31 252 0.0707 0.0628 0.0080 0.0390 3.24∗∗∗

2003/01/02-2003/12/31 252 0.0255 0.0439 -0.0184 0.0096 −30.41∗∗∗

2004/01/02-2004/12/31 252 0.0124 0.0212 -0.0089 0.0046 −30.49∗∗∗

2005/01/03-2005/12/30 252 0.0108 0.0140 -0.0033 0.0040 −13.05∗∗∗
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Table 2 (continued)

Panel C: variance risk premium for 90 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2513 0.0337 0.0410 -0.0073 0.0232 −15.83∗∗∗

1996/01/04-1999/12/31 1005 0.0317 0.0436 -0.0120 0.0228 −16.63∗∗∗

2000/01/03-2002/12/31 752 0.0547 0.0512 0.0035 0.0291 3.27∗∗∗

2003/01/02-2005/12/30 756 0.0154 0.0273 -0.0118 0.0091 −35.93∗∗∗

1996/01/04-1996/12/31 249 0.0140 0.0215 -0.0076 0.0061 −19.45∗∗∗

1997/01/02-1997/12/31 253 0.0339 0.0416 -0.0077 0.0171 −7.18∗∗∗

1998/01/02-1998/12/31 252 0.0437 0.0565 -0.0129 0.0382 −5.35∗∗∗

1999/01/04-1999/12/31 251 0.0349 0.0547 -0.0198 0.0142 −22.12∗∗∗

2000/01/03-2000/12/29 252 0.0496 0.0440 0.0057 0.0189 4.77∗∗∗

2001/01/02-2001/12/31 248 0.0427 0.0497 -0.0069 0.0225 −4.84∗∗∗

2002/01/02-2002/12/31 252 0.0715 0.0600 0.0115 0.0388 4.70∗∗∗

2003/01/02-2003/12/31 252 0.0236 0.0438 -0.0202 0.0095 −33.65∗∗∗

2004/01/02-2004/12/31 252 0.0121 0.0228 -0.0107 0.0042 −40.25∗∗∗

2005/01/03-2005/12/30 252 0.0106 0.0152 -0.0046 0.0037 −19.67∗∗∗
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Table 3: Skewness Risk Premiums

This table reports the estimated skewness risk premiums from January 4, 1996 to December
30, 2005. Panel A, B and C report them respectively for 30, 60 and 90 days time to
maturity. Risk-neutral skewness is implied from options and physical skewness is calculated
by realized return and . The skewness risk premium is defined by the difference between
the former two skewness. µphy is the mean of the physical skewness, µrn is the mean of the
risk-neutral skewness, µsrp and σsrp are the mean and standard deviation of skewness risk
premium. ∗, ∗∗ and ∗ ∗ ∗ means significance at 90%, 95% and 99% confidence levels for
T-test respectively.

Panel A: skewness risk premium for 30 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2516 0.0007 -0.0095 -0.0101 0.0156 −32.48∗∗∗

1996/01/04-1999/12/31 1008 -0.0014 -0.0115 -0.0101 0.0167 −19.11∗∗∗

2000/01/03-2002/12/31 752 0.0041 -0.0124 -0.0165 0.0183 −24.74∗∗∗

2003/01/02-2005/12/30 756 0.00006 -0.0037 -0.0038 0.0050 −20.82∗∗∗

1996/01/04-1996/12/31 252 -0.0008 -0.0034 -0.0026 0.0023 −17.78∗∗∗

1997/01/02-1997/12/31 253 -0.0029 -0.0094 -0.0065 0.0141 −7.33∗∗∗

1998/01/02-1998/12/31 252 -0.0020 -0.0206 -0.0186 0.0269 −10.98∗∗∗

1999/01/04-1999/12/31 251 0.00004 -0.0126 -0.0126 0.0069 −28.96∗∗∗

2000/01/03-2000/12/29 252 -0.0028 -0.0084 -0.0056 0.0110 −16.18∗∗∗

2001/01/02-2001/12/31 248 -0.000006 -0.0115 -0.0115 0.0110 −16.58∗∗∗

2002/01/02-2002/12/31 252 0.0094 -0.0174 -0.0268 0.0246 −17.28∗∗∗

2003/01/02-2003/12/31 252 0.0002 -0.0073 -0.0075 0.0072 −16.59∗∗∗

2004/01/02-2004/12/31 252 -0.00006 -0.0025 -0.0024 0.0012 −31.14∗∗∗

2005/01/03-2005/12/30 252 0.00003 -0.0014 -0.0014 0.0009 −25.83∗∗∗
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Table 3 (continued)

Panel B: skewness risk premium for 60 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2513 0.0006 -0.0108 -0.0114 0.0141 −40.58?

1996/01/04-1999/12/31 1005 -0.0017 -0.0136 -0.0120 0.0162 −23.46?

2000/01/03-2002/12/31 752 0.0042 -0.0132 -0.0173 0.0143 −33.23?

2003/01/02-2005/12/30 756 0.00005 -0.0048 -0.0049 0.0059 −22.71?

1996/01/04-1996/12/31 249 -0.0008 -0.0038 -0.0030 0.0024 −20.09∗∗∗

1997/01/02-1997/12/31 253 -0.0032 -0.0100 -0.0067 0.0111 −9.66∗∗∗

1998/01/02-1998/12/31 252 -0.0023 -0.0236 -0.0213 0.0250 −13.54∗∗∗

1999/01/04-1999/12/31 251 -0.0003 -0.0170 -0.0167 0.0086 −30.84∗∗∗

2000/01/03-2000/12/29 252 0.0028 -0.0094 -0.0122 0.0070 −27.52∗∗∗

2001/01/02-2001/12/31 248 -0.0005 -0.0121 -0.0116 0.0087 −21.05∗∗∗

2002/01/02-2002/12/31 252 0.0101 -0.0181 -0.0281 0.0177 −25.23∗∗∗

2003/01/02-2003/12/31 252 0.0002 -0.0093 -0.0095 0.0082 −18.36∗∗∗

2004/01/02-2004/12/31 252 -0.0001 -0.0034 -0.0033 0.0015 −34.23∗∗∗

2005/01/03-2005/12/30 252 0.00002 -0.0017 -0.0007 0.0009 −37.93∗∗∗
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Table 3 (continued)

Panel C: skewness risk premium for 90 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-1999/12/31 1005 -0.0018 -0.0150 -0.0132 0.0183 −22.84∗∗∗

2000/01/03-2002/12/31 752 0.0041 -0.0126 -0.0167 0.0117 −39.28∗∗∗

2003/01/02-2005/12/30 756 -0.000003 -0.0052 -0.0052 0.0053 −26.78∗∗∗

1996/01/04-1996/12/31 249 -0.0007 -0.0044 -0.0037 0.0025 −22.96∗∗∗

1997/01/02-1997/12/31 253 -0.0032 -0.0100 -0.0068 0.0100 −10.85∗∗∗

1998/01/02-1998/12/31 252 -0.0029 -0.0248 -0.0219 0.0243 −14.31∗∗∗

1999/01/04-1999/12/31 251 -0.0003 -0.0205 -0.0202 0.0196 −16.33∗∗∗

2000/01/03-2000/12/29 252 0.0024 -0.0097 0.0121 0.0050 −38.65∗∗∗

2001/01/02-2001/12/31 248 -0.0003 -0.0145 -0.0112 0.0068 −26.05∗∗∗

2002/01/02-2002/12/31 252 0.0101 -0.0166 -0.0267 0.0136 −31.21∗∗∗

2003/01/02-2003/12/31 252 0.00009 -0.0094 -0.0095 0.0071 −21.16∗∗∗

2004/01/02-2004/12/31 252 -0.0001 -0.0039 -0.0038 0.0017 −35.91∗∗∗

2005/01/03-2005/12/30 252 1.42E-7 -0.0021 -0.0021 0.0007 −45.98∗∗∗
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Table 4: Kurtosis Risk Premiums

This table reports the summary statistics of kurtosis risk premiums from January 4, 1996
to December 30, 2005. Panel A, B and C report them respectively for 30, 60 and 90 days
time to maturity. Physical kurtosis is calculated by realized return and risk-neutral kurtosis
is implied from options. The kurtosis risk premium is defined by the difference between
the former two skewness. µphy is the mean of the physical kurtosis, µrn is the mean of the
risk-neutral kurtosis, µsrp and σsrp are the mean and standard deviation of kurtosis risk
premium. ∗, ∗∗ and ∗ ∗ ∗ means significance at 90%, 95% and 99% confidence levels for
T-test respectively.

Panel A: kurtosis risk premium for 30 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2516 0.0077 0.0074 0.0003 0.0187 0.8285

1996/01/04-1999/12/31 1008 0.0078 0.0065 0.0013 0.0236 1.83∗∗

2000/01/03-2002/12/31 752 0.0139 0.0126 0.0013 0.0201 1.78∗∗

2003/01/02-2005/12/30 756 0.0013 0.0034 -0.0021 0.0046 −12.33∗∗∗

1996/01/04-1996/12/31 252 0.0010 0.0015 -0.0006 0.0014 −6.40∗∗∗

1997/01/02-1997/12/31 253 0.0119 0.0059 0.0060 0.0320 3.00∗∗∗

1998/01/02-1998/12/31 252 0.0142 0.0112 0.0029 0.0335 1.38∗

1999/01/04-1999/12/31 251 0.0042 0.0072 -0.0030 0.0048 −9.85∗∗∗

2000/01/03-2000/12/29 252 0.0136 0.0074 0.0062 0.0150 6.55∗∗∗

2001/01/02-2001/12/31 248 0.0081 0.0116 -0.0035 0.0141 −3.96∗∗∗

2002/01/02-2002/12/31 252 0.0200 0.0189 0.0012 0.0272 0.68

2003/01/02-2003/12/31 252 0.0031 0.0083 -0.0052 0.0070 −11.85∗∗∗

2004/01/02-2004/12/31 252 0.0005 0.0013 -0.0008 0.0007 −18.59∗∗∗

2005/01/03-2005/12/30 252 0.0004 0.0006 -0.0002 0.0004 −7.72∗∗∗
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Table 4 (continued)

Panel B: kurtosis risk premium for 60 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2513 0.0073 0.0073 0.00005 0.0142 0.1907

1996/01/04-1999/12/31 1005 0.0073 0.0071 0.0002 0.0167 0.4858

2000/01/03-2002/12/31 752 0.0134 0.0113 0.0021 0.0166 3.52∗∗∗

2003/01/02-2005/12/30 756 0.0012 0.0035 -0.0023 0.0040 −15.72∗∗∗

1996/01/04-1996/12/31 249 0.0009 0.0016 -0.0007 0.0012 −9.21∗∗∗

1997/01/02-1997/12/31 253 0.0110 0.0063 0.0047 0.0195 3.83∗∗∗

1998/01/02-1998/12/31 252 0.0132 0.0118 0.0014 0.0257 -0.89

1999/01/04-1999/12/31 251 0.0040 0.0085 -0.0045 0.0055 −13.01∗∗∗

2000/01/03-2000/12/29 252 0.0128 -0.0067 0.0060 0.0109 8.76∗∗∗

2001/01/02-2001/12/31 248 0.0081 0.0104 -0.0022 0.0115 −3.06∗∗∗

2002/01/02-2002/12/31 252 0.0193 0.0168 0.0025 0.0233 1.72∗∗

2003/01/02-2003/12/31 252 0.0028 0.0082 -0.0054 0.0057 −15.13∗∗∗

2004/01/02-2004/12/31 252 0.0004 -0.0016 -0.0011 0.0006 −27.28∗∗∗

2005/01/03-2005/12/30 252 0.0004 0.0007 -0.0003 0.0003 −14.59∗∗∗
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Table 4 (continued)

Panel C: kurtosis risk premium for 90 days time to maturity

Sample Period Obs. µphy µrn µvrp σvrp t-value

1996/01/04-2005/12/30 2513 0.0071 0.0067 0.0004 0.0143 1.46∗

1996/01/04-1999/12/31 1005 0.0073 0.0065 0.0008 0.0183 1.32∗

2000/01/03-2002/12/31 752 0.0131 0.0103 0.0028 0.0144 5.30∗∗∗

2003/01/02-2005/12/30 756 0.0010 0.0034 -0.0024 0.0037 −17.74∗∗∗

1996/01/04-1996/12/31 249 0.0009 0.0014 -0.0006 0.0010 −9.03∗∗∗

1997/01/02-1997/12/31 253 0.0105 0.0056 0.0049 0.0170 4.62∗∗∗

1998/01/02-1998/12/31 252 0.032 0.0112 0.0021 0.0215 1.54∗

1999/01/04-1999/12/31 251 0.0044 0.0078 -0.0035 0.0235 −2.33∗∗∗

2000/01/03-2000/12/29 252 0.0122 0.0066 0.0056 0.0085 10.43∗∗∗

2001/01/02-2001/12/31 248 0.0079 0.0094 -0.0015 0.0095 −2.48∗∗∗

2002/01/02-2002/12/31 252 0.0191 0.0149 0.0042 0.0207 3.20∗∗∗

2003/01/02-2003/12/31 252 0.0023 0.0077 -0.0054 0.0052 −16.63∗∗∗

2004/01/02-2004/12/31 252 0.0004 0.0018 -0.0014 0.0007 −30.61∗∗∗

2005/01/03-2005/12/30 252 0.0004 0.0008 -0.0004 0.0003 −20.56∗∗∗
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Figure 1: Time series of daily closing levels of the S&P 500 index from January 4, 1996 to
December 30, 2005.
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Figure 2: The implied volatility smirks with 15-day and 43-day time to maturities

The following figures show that the implied volatility smirks on September 6, 2002 for

options with maturities 15 days and 43 days respectively on September 21, 2002. The

larger dots are the implied volatilities computed from the market prices of the out-of-

money calls and puts. The solid line is generated by fitting the market implied volatility

with a quadratic function that passes through the point at the money and minimizes the

volume-weighted mean square errors of the implied volatility. The vertical lines are the

trading volumes normalized by 20,000 contracts for the corresponding traded on September

6, 2002. The fitted quadratic functions for 15 days and 43 days respectively are: 0.3128(1−
0.1614x + 0.0106x2) and 0.3181(1− 0.2274x + 0.0095x2).
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Figure 3: The variance, skewness and kurtosis risk premium for 30 days

The figures plot respectively the daily changes of the second/variance risk premium,

third/skewness risk premium, fourth/kurtosis risk premium(diamond points), the physi-

cal second/variance, third/skewness and fourth/kurtosis central moments (darkest triangle

points) and the risk-neutral second/variance, third/skewness and fourth/kurtosis central

moments (unfilled star points) from January 4, 1996 to December 30, 2005 for 30 days

time to maturity. The variance/skewness/kurtosis risk premium is defined by the posi-

tive/negative/positive difference between the physical second/third/fourth central moments

and the risk-neutral second/third/fourth central moments.
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Figure 4: The variance, skewness and kurtosis risk premium for 60 days

The figures plot respectively the daily changes of the second/variance risk premium,

third/skewness risk premium, fourth/kurtosis risk premium(diamond points), the physi-

cal second/variance, third/skewness and fourth/kurtosis central moments (darkest triangle

points) and the risk-neutral second/variance, third/skewness and fourth/kurtosis central

moments (unfilled star points) from January 4, 1996 to December 30, 2005 for 60 days

time to maturity. The variance/skewness/kurtosis risk premium is defined by the posi-

tive/negative/positive difference between the physical second/third/fourth central moments

and the risk-neutral second/third/fourth central moments.
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Figure 5: The variance, skewness and kurtosis risk premium for 90 days

The figures plot respectively the daily changes of the second/variance risk premium,

third/skewness risk premium, fourth/kurtosis risk premium(diamond points), the physi-

cal second/variance, third/skewness and fourth/kurtosis central moments (darkest triangle

points) and the risk-neutral second/variance, third/skewness and fourth/kurtosis central

moments (unfilled star points) from January 4, 1996 to December 30, 2005 for 90 days

time to maturity. The variance/skewness/kurtosis risk premium is defined by the posi-

tive/negative/positive difference between the physical second/third/fourth central moments

and the risk-neutral second/third/fourth central moments.
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