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Abstract. Low back pain becomes one of the significant problem in
the industrialized world. Efficient and effective spinal motion analysis is
required to understand low back pain and to aid the diagnosis. Videofluo-
roscopy provides a cost effective way for such analysis. However, common
approaches are tedious and time consuming due to the low quality of the
images. Physicians have to extract the vertebrae manually in most cases
and thus continuous motion analysis is hardly achieved. In this paper,
we propose a system which can perform automatic vertebrae segmenta-
tion and tracking. Operators need to define exact location of landmarks
in the first frame only. The proposed system will continuously learn the
texture pattern along the edge and the dynamics of the vertebrae in the
remaining frames. The system can estimate the location of the vertebrae
based on the learnt texture and dynamics throughout the sequence. Ex-
perimental results show that the proposed system can segment vertebrae
from videofluoroscopic images automatically and accurately.
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1 Introduction

Low back pain is one of the most common health disorders and its cost is enor-
mous [1]. There is a general consensus that the diagnosis and the treatment of low
back pain can be aided by analysing spinal movement [2]. Thus, spinal measure-
ment techniques have been studied widely. At present, videofluoroscopic imaging
provides an effective method of obtaining images for spinal motion analysis. Gen-
erally, landmarks of a moving vertebra will be extracted from videofluoroscopic
video and will then be analysed. Landmarks are usually the corners of the mov-
ing vertebra and are usually extracted manually [3]. Unfortunately, the analysis
is difficult and time consuming due to the low quality of the videofluoroscopic
images. Figure 1(a) shows typical videofluoroscopic image of spine. Thus, a wide
range of researches on automatic extraction of landmarks have been conducted,
such as [4].

In general, there are two main approaches in videofluoroscopic analysis. The
first one is based on template matching and correlation (e.g. [5]) which is simple



to implement and easy to understand. However, such approach involves pixel-to-
pixel comparison and thus susceptible to changing contrast and pixel intensity of
the image. Another approach which is based on feature detection is adopted in
current research. Features can be corners, edges and shape. In [6], the vertebrae in
the images are located by matching corners. In [7], active shape models is used to
improve the robustness by introducing shape constraints. To reduce the searching
size, generalized hough transform is used in [8]. Such approach is computational
efficient but making unrealistic assumption of high image contrast. Edges and
features have to be manually enhanced and refined before feature location can be
done. It seems that most of the commonly adopted approaches can be considered
as computer-aided but not automatic.

In this paper, we propose a method in which an active contour (or snake) will
attach to the vertebrae automatically throughout the video sequence. Users only
need to define landmark positions on the first videofluoroscopic image. The active
contour formed from such landmarks will attach to the vertebra automatically
in the remaining video images. This greatly reduces the effort of physicians
in setting accurate landmarks of vertebra manually in every video frame. The
reduction in human intervention means the reduction in error rate due to fatigue
of the operator. Analysis on spinal motion can be done much more effectively
and accurately.

2 System Architecture

The whole system consists of three major modules, namely feature learning
module, feature detection module and tracking module. The workflow of the
system is shown in figure 1(b).

Given the first image and the exact position of the landmarks, the feature
learning module will learn the texture pattern encoded by Markov Random
Field (MRF) [9] using Support Vector Machine (SVM) [10] along the edge. On
the other hand, a snake or active contour [11] is formed from the landmarks.
When second image is input, the feature detection module will detect the edge
using the texture information from feature learning module along the snake.
The snake will then fitted toward features (or edges) detected. The tracking
module will then learn the dynamic of those landmarks using Kalman filter [12].
It will predict the location of the landmarks in the next frame and shift the
snake accordingly. At the same time, the feature learning module will learn the
texture pattern again. The feature detection will then detect the features in the
next frame as described above and the whole process repeats. Thus, given the
videofluoroscopic video, the corresponding time series data on the location of
the landmarks will be obtained by the system.

3 Implementation details

As described in previous section, there are several components within each mod-
ule in order to achieve the aim of automatic vertebrae tracking. These compo-



(a) (b)

Fig. 1. In (a), it shows a typical videofluoroscopic image of spine. In (b), it shows the workflow

of the system.

nents are shared among the modules and work collaborately. These components
include the MRF texture descriptor, the SVM pattern recognizer, the snake
and the kalman filter. The implementation details of these components will be
explored in this section.

3.1 Texture description by Markov Random Field

Markov Random Field was first developed for texture analysis, e.g. [13]. It can
be used to describe a texture and make prediction on the intensity value of a
certain pixel given the intensity value of its neighborhood. The theories related
to Markov Random Field can be found in [9].

In Markov Random Field, the neighborhood is defined as clique elements.
Consider that S = {s1, s2, .., sP } is a set of pixels inside the image, and N =
{Ns|s ∈ S} is the neighborhoods of the set of pixels. In the system, the neigh-
borhoods are the 8 pixels that with chessboard distance 1 away from the target
pixel.

Assuming X = {xs|s ∈ S} is the random variables (the intensity value) for
every pixel inside an image, where xs ∈ L and L = {0, 1, .., 255}. Besides, we
have a class set for texture pattern, Ω = {ωS1, ωS2, ..., ωSP } where ωSi ∈ M
and M is the set of available classes. In the proposed system, we have only two
classes, the edge and the non-edge classes.

In Markov chain analysis, the conditional probability of certain pixel being
certain class is given by Gibbs distribution according to Hammersley-Clifford
theorem. The density function is π(ω) = 1∑

ω
exp(

−U(ω)
T )

exp(−U(ω)
T ), where T

is the temperature constant, which is used in stimulated annealing. The energy
term can be further represented as U(ω, xi) = V1(ω, xi)+

∑
i′∈Ni

βi,i′δ(xi, xi′),where
V1(ω, xi) represents the potential for pixel with certain intensity value belongs
to certain class and the δ(xi, xi′) is the normalised correlation between pixel at
si and those at si′ .



When the texture is being learnt by the feature learning module, the set
of βi,i′ is estimated according to the requirement that the probability of its
associated texture class will be maximised. The estimation algorithm used in
the system is simulated annealing. The set of βi,i′ corresponds to the correlation
value and thus represents the configuration of the pixels such that it can be
classified as that texture class. In the system, this set of estimated β will be used
as texture feature vector. It will be used as input of support vector machine such
that the association between texture feature and texture class can be formed.

3.2 Texture learning using Support Vector Machine

Support vector machine have been widely used in recognition recently due to its
non-linear classification power and thus be used to solve complicated recognition
problem such as face recognition (e.g. [14]). Given data set: {(b1, y1), (b2, y2),
..., (bl, yl)}∈ B × {+1,−1}, support vector machine can learn to find out the
association between bi and yi. In the proposed system, the bi will be the texture
feature set {βi,i′} after texture extraction on the input image and {+1,−1} refers
to edge and non-edge classes. During learning phase, the support vector machine
will be trained. The classifier’s parameters, αi are learnt from data set {bi, yi}
under the criteria function, maxα

∑l
i=1 αi− 1

2

∑l
i,j=1 αiαjyiyjk(bi, bj). Gradient

ascent approach is used in the system. During testing phase, the texture feature
extracted from the image will be classified by the support vector machine. The
determinant function can be written as f(b) = sgn(

∑l
i=1 αiyik(b, bi)+constant),

where k(·, ·) is gaussian RBF kernel. The output will be an binary image with
’1’ indicates the edge class and ’0’ indicates the non-edge class. Mathematical
details of support vector machine can be found in [10].

3.3 Texture Segmentation by Snake Fitting

Active contour [11] had been used in pattern location and tracking [15] for a long
time. It is good at attaching to object with strong edge and irregular shape. The
snake can be interpreted as parametric curve v(s) = [x(s), y(s)].

In the proposed system, the initial position of the active contour is defined by
the user. The active contour will move according to the refined energy function,
E∗

snake =
∫ 1

0
{[Eint(v(s))] + [Etexture(v(s))] + [Econ(v(s))]}ds, where Eint repre-

sents the internal energy of the snake due to bending, Etexture represents the
texture-based image forces, and Econ represents the external constraint forces.
The snake is said to be fitted if the E∗

snake is minimised.
The above equation is similar to commonly used snake equation but with

the energy term Etexture(v(s)) replaces the original Eimage(v(s)) which means
image force. The energy term Etexture(v(s)) represents the energy of texture
and is proportional to the negative of similarity of desired texture. This means
the energy will be lower near the patch that shows desired texture (e.g. edge
texture). Thus, the snake will search for strong edge in the binary texture map,
that described in Section 3.2, along the direction toward the centroid of potential



region. It stops at the pixel with strong edge characteristic in the texture map.
Thus, the term Etexture(v(s)) can be interpreted as the texture attractive force
and the snake is texture sensitive. Texture represents a patch of pixels instead of
a single pixel and texture-based analysis is more tolerant to noise compare with
pixel-based analysis. Thus, texture is a much reliable feature than strong edge
under pixel-based analysis.

3.4 Prediction by Kalman filtering

Kalman filtering [12] is a prediction-correction procedure. By encapsulating the
motion of the object into internal states, Kalman filtering aims at finding ap-
propriate states that gives best-fit observations. Dynamic equation and mea-
surement equation will be used in Kalman filter for representing the change in
internal states and conversion from internal state to observation respectively.

Since the motion of the vertebrae is planar, kalman filter is good enough to
make prediction on the spinal motion. In the system, dynamic model is assumed
to be common rigid body motion and the uni-modal Gaussian noise distribution
is assumed. The state transition equation and the measurement equation used

are:
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respectively, where xt, yt is the position of the landmark, ut, vt represent the
velocity along x and y direction respectively, at represents the acceleration, and
mt, nt represent the dynamic noise and measurement noise respectively. The
equation for updating the parameters in Kalman filter can be found in [12].

4 Experiment and Result

The proposed system was implemented using Visual C++ under Microsoft Win-
dows. The experiments were done on a P4 2.26 GHz computer with 512M Ram
running Microsoft Windows.

4.1 Experiment 1: Low Contrast and Noisy Video fluoroscopic
Image

In this experiment, the performance of the proposed feature learning and de-
tection algorithm was evaluated. The vertebrae had to be segmented from the
medical image with poor quality and low contrast. Actually, the image may not
be segmented easily manually. There are totally 2 phases in this experiment. The
first phase is learning phase where the texture pattern associated with edges is
learnt and the second phase is vertebral boundary detection where the snake is
fitted toward the edge detected.



In training phase, the total number of samples to be trained was around
1000, half of them was edge and half of them was non-edge. The samples were
selected manually and were selected from images with similar illumination and
contrast. The learning images and the testing images were randomly selected
from the same video sequence and thus with similar illumination and contrast.
In testing phase, the snake is initially mounted at location close to the vertebral
boundary. The snake will then attach to the boundary automatically by using
texture as heuristic.

The result of segmentation is showed in figure 2. It shows that the snake can
fit the target vertebrae very well. The accuracy cannot be determined here due
to no ground truth image provided. If the output is compare with the landmarks
marked by a skilled physician, the relative root-mean-square error (the difference
between the tracked corners and the physician-marked corners) is less than 3%
in average out of 100 testing samples. The processing time is around 18s when
the whole texture binary map is formed and the image with size 600 x 450 pixels.
Some of the edge detection result of commonly used edge detector is shown in
figure 3 for reference. It shows that the proposed method works much better
than the commonly used edge detectors.

4.2 Experiment 2: Tracking spine in videofluoroscopic video

In this experiment, the performance of the whole system is evaluated. The system
ran in the same way as described in section 2. Firstly, the accuracy on the
reported location of the vertebra was tested. One of the vertebra in the video
was tracked. The corners will be extracted and reported. Throughout a video
sequence of 2 minutes, 200 sample frames was tested. The testing result is shown
in figure 4(a). It shows that the reported location by the system and the marked
location by the physician are very close. The relative root-mean-square error
(the difference between the tracked location and the physician-marked location)
is less than 5% in average. The processing time of each frame is aound 0.5 s
because the edge pattern is now analysed along the snake instead of analysed
the whole image.

The accuracy on intervertebral relation reported by the system were also
tested. The angle between two vertebrae is usually used in most spinal motion
analysis. Thus, the accuracy on the angle reported by the system were evaluated.
The measurement methodology is shown in figure 5(a). The testing result is
shown in figure 5(b). It shows the relative root-mean-square error (the angular
difference between the tracked result and the physician-reported result) is quite
large during initial phase but getting smaller after 30 frames. The relative root-
mean-square error is lower than 10% in average in later stage.

Finally, the number of vertebrae that can be tracked by the system is evalu-
ated. The result is shown in figure 4(b). It shows that totally four of the vertebrae,
namely L2, L3, L4 and L5 can be tracked, provided that the illumination and
the contrast is not varied a lot. The relative root-mean-square error reported is
less than 10% in these four vertebrae.



Fig. 2. The first image shows the testing image. The second image shows the binary image after

final classification. The third image shows the fused image constructed from the testing image and

the binary image. The fourth image shows the snake attached to the boundary of the vertebrae.

Fig. 3. Edge detection result of some commonly used edge detector is shown.

5 Conclusions

In this paper, a system for automatic spinal motion analysis is proposed. The
proposed system requires less human intervention than common approaches by
automating the edge detection and snake fitting. Operators may need to setup
initial snake position in the first frame only. The edge will then be detected
automatically using pattern recognition and the snake will fit toward the edge
accordingly. The initial snake position in the next frame will be predicted through
the use of dynamic that learnt from previous observations. Experimental results
show that the proposed system can segment vertebrae from videofluoroscopic
images automatically and accurately.
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