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ABSTRACT

A two-server service network has been studied by Gilbert and Weng [13] from the principal-agent perspective. In the model,
services are rendered by two independent facilities coordinated by an agency. The agency must devise a strategy to allocate
customers to the facilities and determine the compensation. A common queue allocation scheme and separate queue allocation
scheme are then compared. It has been shown that the separate queue system gives more competition incentives to the
independent facilities and induces a higher service capacity. The main aim of this paper is to extend the results of the two-
server queueing model to the case of multiple-server queueing model. Our analysis shows that in the case of multiple servers
the separate queue allocation scheme creates more competition incentives for servers to increase their service capacities. In
particular, when there are not severe diseconomies associated with increasing service capacity, the separate queue allocation

scheme gives a lower expected sojourn time in equilibrium.

Keywords: Capacity Allocation, Competition, Incentive Theory, Markovian Queueing Systems, Nash Equilibrium, Principal

Agent.

1. INTRODUCTION

The study of optimal strategy and control policy for a
queueing system is a traditional mathematical problem and
has been well studied in the literature, see for instance
[2, 10, 11, 12, 13, 18]. In an optimal control problem, it
usually involves making decisions on system parameters
such as the system service capacity and number of servers
in the system under a specified cost structure (convex or
concave). Here service capacity is an important competi-
tive factor in the design of a system, for example, in the
areas of telecommunication networks [1], data transmis-
sion systems [12] and Vendor-Managed Inventory (VMI)
system [3, 17]. In particular, the current development in
supply chain management emphasizes the coordination and
integration of inventory and transportation logistics [4, 19].
VMLl is a supply chain initiative where the distributor is re-
sponsible for all decisions regarding the selection of retail-
ers or agents. This creates a competitive environment for
the agents and retailers to compete in the market [15].

Regarding the service capacity, Kalai et al [12] studied
a strategic game of two servers competing for their mar-
ket shares through determining their service capacities. A
Markovian queueing system of two servers is used in their
model and analysis. Markovian queueing systems are pop-
ular tools for modeling service systems as they are math-
ematically tractable [6, 7]. The problem is then analyzed
using game theory [16]. Game theory is a popular and
promising approach [1, 5] for the captured problem. They
classified the Nash equilibria into three different cases con-
cerning the cost function and the revenue per customer.
The waiting time is finite in one of these cases and there
is a unique symmetric equilibrium. Although their model
is simple, it brings in two important concepts. The first one
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is the “competitive game of servers” and the second one
is the “market share of a server in a multi-server facility”.
Furthermore, they also report that when the marginal cost
of providing service is “high”, then there is a unique sym-
metric equilibrium and the total service capacity is less than
the mean demand rate. In such a case, each server actually
behaves as if it were a monopolist. Competition therefore
has no effect and this leads to an undesirable situation. On
the other hand, when the marginal cost of providing ser-
vice is “low”, a unique symmetric equilibrium exists and
the total service capacity is greater than the mean demand
rate.

In [13], a service network in which a coordinating agency
is responsible for satisfying customers in total waiting and
service time is studied. They consider a network of two
facilities (two servers) with two types of allocation pol-
icy: a common queue with two servers and two separate
single-server queues. They conclude that in some cases the
separate queue allocation scheme has advantages over the
common queue allocation scheme though. Here we will
extend the model in [12] by allowing the number of servers
to be more than two. In particular, we are interested in
the case when the total service capacity is greater than the
mean demand rate. Our analysis indicates that in the case
of multiple servers, the separate queue allocation scheme
also gives more incentives to servers and induces higher
service capacities. Moreover, when there are not severe dis-
economies associated with increasing service capacity, the
separate queue allocation scheme gives a lower expected
sojourn time in equilibrium.

The remainder of the paper is structured as follows. In
Section 2, we will give a brief review on the two-server
queueing system discussed in [12] and the service system
in [13]. We present the multiple-server common-queue
model and our analysis on the system performance in Sec-
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tion 3. In Section 4, we then present the multiple-server
separate queue system and give the analysis on the system
performance. In Section 5, we discuss the effect of the
number of servers on the system equilibrium. In Section
6, we compare the competition incentives for the servers to
increase capacities in the two schemes and the resulting ex-
pected sojourn times. Finally concluding remarks are given
to address further research issues in Section 7.

2. A REVIEW ON THE TWO-SERVER MODEL

The service system studied by Gilbert and Weng [13] con-
sists of two independently operating servers coordinated by
one central agency. Customers arrive according to a Pois-
son process of rate A. Each of the server ¢ operates inde-
pendently and determines its own service capacity p; so
as to maximize its own individual profit. Its service time
is then assumed to follow an exponential distribution with
mean 1/p;. The cost to operate at service capacity p is
c(u). Here the operating cost function ¢(.) is assumed to be
an increasing and strictly convex function, i.e., both ¢/ ()
and ¢”’ () are positive and an example of such a function is

c(n) = 12

The goal of the coordinating agency is to maintain the ex-
pected sojourn time below a given level W with a minimal
cost. The coordinating agency determines a fixed amount
R to compensate the servers for each unit of service ren-
dered.

The agency also chooses between two allocation systems,
namely the common queue system and the separate queue
system. The first one allocates customers to a single queue,
which is First-In-First-Out (FIFO). If a customer arrives
when both servers are idle, he/she is assigned to either
server with equal likelihood. The second allocation pol-
icy maintains a separate queue for each server, and arriving
customers are assigned so that the expected sojourn time
(i.e., the total waiting and service time) is identical for each
server. In the followings, we give a brief review on the
queueing models discussed in [12, 13].

2.1. The Common Queue Model

The service system studied in Kalai et al [12] consists
of two independently operated servers coordinated by one
central agency. Customers arrive according to a Poisson
process of rate A and the service times are assumed to fol-
low the exponential distribution. Each of the server ¢ oper-
ates independently and determines its own service capacity
14 SO as to maximize its profit. They share the same cost
function c(u) to operate at service capacity . The coor-
dinating agency then determines a fixed amount R to com-
pensate the servers for each unit of service rendered. The
queueing system is a two-server FIFO queue. If a customer
arrives when both servers are idle, the customer will be as-
signed to either server with equal likelihood. No server is
allowed to be idle when at least one customer is in the sys-
tem. If a customer arrives when one server is idle and the
other is busy, he/she will be assigned to the idle server. We
then briefly present the main results obtained in [12] con-
cerning the two-server queueing model.

The Market Share Computing the market share of Server
1 is equivalent to computing the mean number of customers

per time unit that entered service with Server i. The frac-
tion of all customers served by Server i(i = 1,2), is given
by

A2 + ppo(pa + p2)
p1 + p2)? + 2papa(p1 + p2 — A)

a;(pr, p2) = N . (D

The Profit Function Given the market shares of the
servers, the profit function 7 (u1, pe) of Server i € {1,2},
the expected profit per time unit earned by Server 1, is then
given by

i (11, o) = { ngl_(/ét;‘/j;) — ()

if/Ll + po > A
if g + p2 < A

Here c(p) is the cost per time unit of providing service at a
capacity of x and R is the amount of compensation that the
server receives for each customer served.

The Equilibrium Kalai et al. [12] considered the situa-
tion as a two-person strategic game and found that finite
waiting times exist at equilibrium if and only if

A\ R

Moreover, if this condition is satisfied, then a unique equi-
librium exists in which both servers select the same service
capacity pic = p1 = p2, such that

RN?

- 2uc(2pc + ) )

< (pre)

2.2. The Separate Queue Model

Gilbert and Weng [13] studied the separate queue model
and obtained the following results. To achieve the same
expected sojourn time for both servers, we have 3; (11, u2),
the fraction of customer requests that are assigned to Server
i(i = 1, 2), given by

%jh\ forpj — A <y < pj+ A

&)
where j € {1,2} and i # j. In cases where p; falls outside
of the bounds, there does not exist an allocation of cus-
tomers for which the expected sojourn times are equal for
the two servers. Using (;(u1, pu2) defined in (5), we have

the profit for Server 7 as follows:

Bi(p1, p2) =

if g1+ po > A

s | RABi(p1, p2) — c(pi)
Wi(m,m)—{ ifpg 4+ po <A

Ry — c(ui)

They proved the following result for determining the Nash
equilibrium of the service capacities in the separate queue
system.

Proposition 1 (Gilbert and Weng [13]). Consider the sep-
arate queue system in which Server i € {1,2} faces the
profit function in (6).

(a) At equilibrium, the expected sojourn time W is finite if
and only if R/2 > ¢/ (\/2).

(b) If R/2 > c'()\/2), then there will be a unique equi-
librium in which p1 = ps = us, where ug satisfies:
c(us) = R/2.
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Gilbert and Weng [13] then concluded that for a given value
of R > 2¢/(\/2), the equilibrium service capacities will be
higher under the separate-queue system than in the com-
mon queue system. The result can be interpreted as the
consequence of the more intensive competition between
the servers for market share in the separate queue system.
They also compared the cost that the coordinating agency
incurs to maintain expected sojourn time below a given
level W in the two systems. It is found that cases with
not severe diseconomies associated with increasing ser-
vice capacity favor the separate queue allocation scheme.
In particular, the coordinating agency incurs lower costs
with the separate queue allocation than with the common
queue allocation when the cost function is quadratic, i.e.,
c(u) = ap?,a > 0.

3. The Common Queue Model with Multiple Servers

3.1. The n-server Queueing System

In this section, we extend the two-server queueing system
studied in [12] and [13] to a n-server queueing system. The
arrival process of customers is assumed to be a Poisson pro-
cess. In this queueing system, arriving customers wait in a
single FIFO queue if all servers are busy. No server is al-
lowed to be idle when there is at least one customer in the
queueing system. If a customer arrives when more than one
server is idle, the customer is assigned to any of the idle
servers with equal likelihood. Once a server completes the
service of a customer, the first customer in the queue, if any,
is assigned to the server. Each server ¢+ may choose its own
service capacity u;, and its service time follows the expo-
nential distribution with mean 1/u;. It is assumed that the
service capacity chosen is not observed by the coordinating
agency, and therefore cannot be contracted. The servers are
compensated by an amount of R for each customer served,
and each of them incurs a cost of ¢(u) to operate at service
capacity p.

The Market Share We derive the market share of each
server from the steady-state distribution in [8]. We note
that when -, p; < A, the steady-state probability dis-
tribution does not exist. In this case, each server receives
customers at its service capacity. Otherwise, > ., f1; > A
and all customers will be served. Each server only receives
a fraction of the arriving customers, at a rate lower than
its service capacity. The server’s profit is thus affected by
the fraction of all customers it serves, i.e. its market share.
The market share can be obtained by finding the expected
value of the server’s rate of receiving customers in differ-
ent state of the systems, over the steady-state probabilities,
then dividing by the arrival rate A\. We have the following
proposition.

Proposition 2. (Ching et al [8]) If Y i, i > A, the mar-
ket share of Server i, a;(ji1, b2, - - - , fin) IS given by

n—1
ke P
pi | KAPTRT Do Mahg i [ FATTHT)
k=0 J1<G2<...<Jk, P
inFivp
n An
&
ST kian Do Mk b |+
=1 1<32< <k p

)

We note that when p; — oo, we have a; (11, t2, - - -, fin)s
the market share of Server ¢ (i = 1,2,...,n) tend to the
following limit

f P
k=0

Z Mgy Bgg « - - Ky
J1<j2<...<jk,jpF#IVp
n—1
—k—1
Z(k+1)')\n Z [,lep,h ...ujk
k=0 J1<J2<...<Jk,JpF#iVp

It is shown in Ching et al [8] that the market share «; is
increasing and concave with respectto y; (1 = 1,2,...,n).
This will be useful in characterizing the servers’ decisions
and determining the Nash equilibrium of the system when
we considered the system as a n-player strategic game.

3.2. The Profit Function

In deriving the profit function of the servers, there are two
cases to be considered. When Z?zl i > A, Server i re-
ceives customers at a rate of Aoy (p1, 42, - - -, fn ). When

n
Z i < )\7
i=1

Server ¢ receives customer at a rate of u;. In both cases,
Server i incurs a cost of ¢(u;). Therefore, the rate of profit
of Server ¢ takes a similar form as the one in [12] and is
given by

777,'6(/1‘17/L27 ) 7/L’n)

R (pa, py - - -5 pin) — c(pti) if Zui > A

_ i=1
Ru; — () if Z#i <A

i=1

®)

When servers choose their service capacities, there is a
tradeoff between increasing revenue and minimizing cost.
From the fact that «; is increasing and concave with respect
to p;, we readily obtain the following proposition describ-
ing the properties of the profit function m; with respect to

M-

Proposition 3. (Ching et al [8]) For 1 = 1,2,...,n, for
each fixed A > 0 and p; > 0 for j # 4, the function
we (1, f2, - - -, tbn) IS continuous and strictly concave in

M.

3.3. The Equilibrium of the System

Since servers’ decisions of their service capacities would
affect the profit of each other, we model the situation as
an n-player strategic game, in which each server 7 chooses
its service capacity p, to maximize its profit ;. Here we
discuss the Nash equilibrium of the system. In our analysis,
we will show that, similar to the two-server case in [12],
when the marginal cost is low enough, there is a unique
equilibrium, in which all servers choose the same service
capacities. In the following, we will first look at how the
profit of Server 7 changes with its service capacity when all
other servers choose the same service capacities.
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Proposition 4. For u. > A\/n,

0
_ai(ﬂhﬂm s 7/1%)

Opi PA=p2 = = =flc
B A )\n—l
Tp2p2 | nod B
c Z(k—l—l)'( nkl >)\n—k—1'u/c€
k=0
)]
which is decreasing in .. Also, we have
im oy, in) _rl
pe—>(A/n)*t a,u’b B Rz P1=U2=...=ln=[bc nA
and
. 0
lim 3 'ai(ul,ug,...,un) =0.
pe—00 Ofli B1=p2=..=lhn=lc

It should be noted that proposition 4 implies that for . >
A/n, we have

n—1
n\x

a“n)

7

O e
a1, U2, - - -
ap‘ H1=p2=...=lUn=lc

The following proposition gives the Nash equilibrium of
the game, which represents the decision of the servers on
their service capacities in the long run.

Proposition 5. If (n — 1)R/n > c¢/(A/n) then there is a
unique equilibrium where

M1 = p2=...= ln = ¢ (10)
and i unique solution that satisfies ji. > \/n and
0
RX Tai(ﬂlyﬂ%---,ﬂn) :Cl(/J’C),
Hi H1=p2=... ==l
a1
ie.,
2 n—1
R( p ) b ’ = ¢’ (e)-
Nlhe n—1

DRV (R PU”:

k=0
12)

If (n — 1)R/n < ¢/(\/n) then the system has no equilib-
rium in which the expected waiting time is finite.

The proposition shows that, given the arrival rate of cus-
tomer ), the number of servers n and the revenue per cus-
tomer R, all servers will choose the same service capacity
given by Equation (12) in the long run if the condition
w > c( é) (13)
n n
is satisfied. The proposition is useful for determining the
minimum value of compensation per customer R for which
the system will have a finite-waiting time equilibrium.

4. The Separate Queueing Model
4.1. The n-separate-queue System

In this subsection, we extend the separate queueing system
studied by [13] to a system of n M /M /1 /oo FIFO queues.

The arrival of customers is assumed to be a Poisson pro-
cess. Again, each server ¢ may choose its own service
capacity u;, and the service time follows an exponential
distribution with mean 1/u,. The coordinating agency al-
locates a fraction of the arriving customers to each of the
queues such that each customer has the same expected so-
journ time, independent of which server he/she is being as-
signed to. It is assumed that the arrival of customers to each
of the queues is also a Poisson process. Similar to the case
of the common queue system, the service capacity chosen
is not observed by the coordinating agency, and therefore
cannot be contracted. The servers are compensated by an
amount of R for each customer served, and each of them
incurs a cost of ¢(u) to operate at service rate u, where ¢(.)
is increasing and strictly convex.

4.2. Proportion of Customers Allocated

Let 8;(p1, p2, - - -, i) be the proportion of arriving cus-
tomers allocated to Server ¢. We derive an expression for
[ so that the expected sojourn time for customers in each
queue is the same. The sojourn time W; of a customer
in Queue 7 depends on the rate of arrival to Queue i, i.e.
ABi(p1, p2, - - -, tn) and p;, the service capacity of Server
i. By using standard results in an M/M/1/o0o queue the-
ory, we have W; = —— L . The proof of the
pi— B (1,425 e s i )X

following proposition and the remark can be found in [9].

Proposition 6. Ifforalli =1,2,...,n,

1 - 1
m_1 Z pi— A < p < P
=L

n
D st
j=1,j#i
(14)
then the proportion of arriving customers allocated to
Server i to achieve identical expected sojourn times for all
servers is,

(n—1)p; — Z Ky + A

j=1,j#i
(15)

Remark 1. If the constraint (14) is not satisfied, then it is
impossible to make the expected sojourn time of all servers
equal with all servers receiving a positive fraction of cus-
tomers. The service capacities of some servers are low to
an extent that it is possible to allocate all the customers
to other servers and still achieve an expected sojourn time
less than the expected service time of the slower servers. It
is therefore undesirable to allocate any customers to those
slow servers.

1
ﬂi(ﬂ17u27-..7un) = ﬁ

Similar to the case of the common server queue, the rate of
profit of server i is

s Hn) N
RABi(p1s pi2, - - -y pin) — c(us)  if Z#i > A
i=1

n
ity <A
i=1
(16)
We model the situation as a m-player strategic game, in
which each Server ¢ chooses service capacity p; to max-
imize its profit given by (16). We give the following result

Wf(,ul,,UQ,...

Ry — c(ps)
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on the equilibrium service capacities. The proof can be
found in [9].

Proposition 7. Consider the separate queue system in
which Server i € 1,2,...,n faces the profit function in
(16).

(a) At equilibrium, the expected sojourn time W is finite if
and only if
- 1R A
n-DE S 2.
n n
(b) If
- DR A
(DR _
n n
and ¢ () is not bounded above by (n — 1)R/n, then
there will be a unique equilibrium in which p; =
Bo = ... = Uy = s Where i satisfies

¢ (ua) = B DE (17)

n

For a numerical example of a 3-server queue system, refer
to [9].

5. The Effect of the Number of Servers

Recall that the condition for the existence of a finite
waiting-time equilibrium, in both the common queue sys-
tem and the separate queue system is

i c’(i).

R > .
n—1 n

It is worth noting that as n increases, (n — 1) R/n increases
and ¢’(\/n) decreases. Therefore, the minimum value of R
for which a finite waiting-time equilibrium exists decreases
as n increases. As the number of servers increases, com-
petition becomes more intense. This lowers the cost of the
coordinating agency to achieve finite-waiting time equilib-
rium.

Moreover, for the separate queue system, when the con-
dition above is satisfied, we have (n — 1)R/n = ¢(us),
where the left-hand side is increasing with n. Hence the
equilibrium value of u increases with n, since ¢(.) is con-
vex. In other words, a rise in the number of servers in-
creases competition incentives and induces higher service
capacities.

6. A Comparison of Competition Incentives in the
Two Systems

Combining the results of the common queue system and
the separate queue system, one can compare how the inde-
pendent servers choose their service capacities in the two
cases given the same level of compensation R, when R is
large enough for a finite-waiting time equilibrium to exist.

Proposition 8. For fixed R, if (n — 1)R/n > </ (A/n),
unique symmetric equilibriums exist for both the common
queue system and the separate queue system. Denote the
equilibrium service capacity in the two systems by u. and
s respectively, then we have g > L.

Proof.
n—1R
¢y = EDE
0
> R Taz‘(,ul,,u% coy M)
, Hi H1=H2=...=[in=[c
= ¢ (:u'c)

where the inequality follows from Proposition 4. Since ¢(.)
is strictly convex, ¢/(us) > ¢’ (u.) implies ps > L. a

This proposition shows that, for a given value of B >
- (%), the equilibrium service capacity commonly
chosen by the n servers in the separate queue system will
be higher than that in the common queue system. In other
words, the servers have more incentives to work at a higher
service capacity in a separate queue system than in a com-

mon queue system.

As suggested by Gilbert and Weng [13] in the two-server
case, this can be interpreted as a consequence of more in-
tense competition among servers for customers in the sepa-
rate queue system. In the separate queue system, increasing
the service capacity will increase the server’s rate of receiv-
ing customers both when it is idle and busy. However, in
the common queue system, since customers are allocated
to idle servers with equal probability, increasing service ca-
pacities only raise the server’s rate of receiving customers
when all servers are busy. Our proposition shows that this
result is also true for an n-server system and competition
in the separate queue system provides more incentives for
servers to work at a higher service capacity.

However, a higher equilibrium service capacity in the sepa-
rate queue system does not always imply a lower expected
sojourn time for customers. In the following, we give a
condition on ¢(.) for which the expected sojourn time in
equilibrium is always lower in the separate queue system
than in the common queue system. The proof can be found
in [9].

Propeosition 9. Suppose ¢’ (1) is concave, i.e. ¢’ (1) is non-
increasing. Then for any fixed R, if (n—1)R/n > ¢'(\/n),
unique symmetric equilibriums exists for both the common
queue system and the separate queue system. Denote the
expected sojourn time of the two systems by W, and W
respectively, then we have W, > W.

The proposition states that for any increasing and strictly
convex cost function ¢(.) with ¢/(.) being concave, the sep-
arate queue system always yields a lower expected sojourn
time than the common queue system. In other words, the
stronger competition incentive effect of a separate queue
system will more than offset the risk-pooling benefits of a
common queue system with such cost functions. Since a
rise in the level of compensation R reduces both W, and
W, the result also implies that it is less costly for the coor-
dinating agency to maintain expected sojourn time below a
given level in a separate queue system in these cases. When
n = 2 and c¢(u) = ap?,a > 0, this coincides with the re-
sults obtained in Gilbert and Weng [13].

The condition that ¢/(.) is concave is a requirement that
c/(.) does not increase too rapidly, or to be precise, that
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c’(.) is non-increasing. As ¢/(.) represents the marginal
cost to increase service capacity, this can be interpreted as
requiring that there are not severe diseconomies associated
with increasing service capacity. This agrees with the con-
clusion in [13].

It should be noted for cost function ¢(.) where ¢/(.) is
strictly convex, whether the separate queue system or the
common queue system gives a lower expected sojourn time
may depend on the level of compensation R.

7. Concluding Remarks

In this paper, we extend the analytic results and conclu-
sion of the two-server queueing model in [13] to the case of
multiple-server queueing model. Our analysis shows that in
the case of multiple servers, the separate queue allocation
scheme creates more competition incentives for servers and
induces higher service capacities. In particular, when there
are not severe diseconomies associated with increasing ser-
vice capacity, the separate queue allocation scheme gives a
lower expected sojourn time in equilibrium.

In the study of the service system of two servers by Gilbert
and Weng [13], they obtain a necessary and sufficient
condition for which the separate queue allocation is
less costly than the common queue allocation for the
coordinating agency to maintain expected sojourn times
under a given level. In particular, they conclude that
cases with small permissible waiting times or not severe
diseconomies associated with increasing capacity favor
the separate queue allocation scheme. In our analysis,
we conclude that cases where ¢/(.) is concave favor the
separate queue allocation scheme. It is of interest whether
the permissible waiting times and diseconomies associated
with increasing capacity have similar effects as in [13]
when ¢'(.) is strictly convex. However, the analysis
becomes more complicated as the desired service capacity
of servers cannot be expressed explicitly in terms of the
given constraint of the expected sojourn time. This can be
further investigated in the future.
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