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Abstract—In designing eigen-based clutter filters for color flow
imaging, one of the challenges is to develop an accurate way of
estimating the eigen-components that represent clutter in slow-
time ensembles. To provide new insights on the problem, this
paper presents a comparative analysis on how eigen-filters per-
form when using eigen-estimation methods that involve multiple
ensembles or a single ensemble. The analysis consists of two
parts: 1) a comparative review on the principles behind different
eigen-estimation methods; 2) an eigen-filtering experiment done
with coronary flow imaging data acquired from a porcine during
bypass graft operation. For an imaging case containing tissue
motion due to myocardial contraction, our analysis showed that
the single-ensemble eigen-filter shared similar performance with
a multi-ensemble eigen-filter that uses small (5x5) ensemble
windows (with about 1 dB difference in clutter suppression level).
Results also showed that a multi-ensemble eigen-filter with large
(20x20) ensemble windows yielded poorer performance (clutter
suppression level was 3 to 6 dB lower).

Index Terms—color flow imaging, clutter supression, eigen-
based filters, eigen-component estimation.

I. INTRODUCTION

An important step in the processing of color flow imaging
data is the suppression of slow-time clutter originating from
tissue reverberations and beam sidelobe leakages. If done
properly, this clutter filtering step can reduce the amount of
flashing or blooming artifacts seen in color flow images. Over
the past decade, various clutter filtering solutions have been
developed in attempt to improve the visualization performance
of color flow images [1]. Amongst the solutions reported,
the eigen-based filter has been suggested to have potential in
adaptively suppressing slow-time clutter with variable spectral
characteristics. This filter works by directly removing eigen-
components (or orthogonal bases) that represent clutter in
the slow-time signal [2]–[7]. Its attenuation response is in
theory adapted to the clutter contents because the eigen-
components are estimated based on the actual slow-time signal
statistics. Nevertheless, its practical efficacy in color flow data
processing has not been well-established because there are two
design issues that have not been properly addressed: 1) the
estimation approach used to determine the eigen-components,
and 2) the algorithm used to identify the eigen-components
that are related to clutter. As such, further investigations are
still needed to fine-tune the formulation of the eigen-based

filter and to demonstrate its effectiveness in suppressing slow-
time clutter.

The aim of this work is to acquire a better understanding
of one specific eigen-filter design issue: the methodology
used to estimate the eigen-components of a slow-time en-
semble. In particular, it is our intent to comparatively assess
the performance of eigen-component estimation methods that
involve either multiple slow-time ensembles [2]–[6] or only a
single slow-time ensemble [7]. In the next section, we shall
review and compare the theoretical principles behind these
two eigen-estimation approaches. We will then present an in-
vivo imaging example that demonstrates how the two eigen-
estimation approaches perform in eigen-based clutter filtering.

II. THEORY

A. Basic Principles of Eigen-Based Clutter Filters

A conceptual illustration of the eigen-based filter is shown
in Fig. 1. This filtering strategy generally begins by decompos-
ing a sample volume’s slow-time signal contents into a sum
of mutually orthogonal components that have the minimum
mean-squared modeling error [2]–[7]. Such a signal decom-
position, often referred to as the Karhunen-Loeve expansion,
can be mathematically expressed as follows for a given slow-
time ensemble vector x with ND samples:

x = [x(0), x(1), . . . , x(ND − 1)]T =
∑

k

γkek. (1)

In the above, ek is the kth eigenvector (of length ND), while
γk is the corresponding expansion weight that satisfies the
following orthogonality relation:

E
{
(γkek)∗T (γlel)

}
=

{
λk (k = l)
0 (k �= l) , (2)

where λk is referred to as the kth eigenvalue. By definition,
the eigen-components in (1) are ordered in a descending
energy order, and hence λkek can be considered as the
kth principal eigen-component. The goal of the eigen-based
filter is to then identify the eigen-components that represent
clutter in the slow-time signal. Assuming that the Kc largest
eigen-components correspond to clutter, the filtered slow-time
ensemble y is simply equal to the following matrix product
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Fig. 1. Conceptual illustration of the principles behind eigen-based clutter fil-
ters. During the filtering process, eigen-components (often the more dominant
ones) that represent clutter are removed.

between the raw ensemble and the orthogonal projection of
all the clutter eigenvectors:

y = (I − CC†)x, C =


 | | |

e1 e2 · · · eM

| | |


 , (3)

where the ‘†’ superscript denotes a pseudoinverse operation
(i.e. the singular matrix version of matrix inverses). Note that
Kc can be interpreted as the (Kc − 1)th eigen-filter order.

B. Overview of Eigen-Component Computation

The common way of finding the eigen-components in (1) is
to compute the eigenvalue decomposition (EVD) of the slow-
time signal’s correlation matrix (i.e. E

{
xx∗T

}
, or the expected

outer product between the signal vector and its conjugate
transpose). This computation approach stems from matrix
algebra’s version of the spectral theorem [8], which relates
the slow-time correlation matrix R to the eigen-components
in (1) as follows based on the orthogonality principle:

R = E
{

xx∗T
}

=
∑

k

λkeke∗T
k . (4)

Since the correlation matrix in (4) has a self-adjoint structure
(i.e. R = R∗T ), it is possible to define a non-square data
matrix A that satisfies the relation R = AA∗T . It follows that
the singular value decomposition (SVD) of A is connected to
the EVD of R according to the following duality relation:

A =
∑

k

σkukv∗T
k ⇐⇒ AA∗T =

∑
k

σ2
kuku∗T

k ≡ R, (5)

where σk is the kth singular value with uk and vk as the
corresponding left/right singular vectors. Comparing between
(4) and (5), it can be seen that: 1) the eigenvectors in the EVD
of R are equivalent to the left singular vectors in the SVD
of A, and 2) each eigenvalue is essentially the square of the
corresponding singular value. These two properties show that
both the SVD of A and the EVD of R may be used to calculate
the eigen-components in (1). Note that EVD/SVD can be
solved using numerical algorithms such as power iterations
and QR factorization [8].

To carry out the above eigen-computation approaches in
practice, it is necessary to first estimate the slow-time cor-
relation matrix R or the data matrix A. As reported in
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Fig. 2. Principles of two different eigen-component estimation methods: (a)
a multi-ensemble approach that uses a set of slow-time ensembles within a
spatial window; (b) a single-ensemble approach that involves redundant use
of slow-time data samples.

existing eigen-filter designs, this estimation process can be
done based on formulations that involve either multiple slow-
time ensembles or a single slow-time ensemble. The principles
of both formulations and their suitability in slow-time clutter
filtering will be discussed in the following subsections.

C. Eigen-Estimation Based on Multiple Ensembles

One method of estimating the slow-time correlation matrix
during operations is to first create a data matrix by stacking
together multiple realizations of slow-time ensembles (see Fig.
2a) and then compute the outer product between the data
matrix and its conjugated transpose. For a set of M slow-time
ensembles, this formulation would give the following forms of
the data matrix A (with size ND ×M ) [2] and the correlation
matrix R (with size ND × ND) [3]–[6]:

A =
1√
M


 | | |

x1 x2 · · · xM

| | |


 , (6)

R = AA∗T =
1
M

M∑
m=1

xmx∗T
m , (7)

where xm is the mth realization in the ensemble set. Note
that the SVD/EVD computed from these two matrices would
comprise ND eigen-components if (6) and (7) have full matrix
rank (i.e. linear independence between all rows), which can be
achieved when the number of slow-time ensembles is at least
equal to the ensemble size (i.e. M ≥ ND). Nevertheless, the
ensemble set used to form (6) and (7) is required to possess
similar clutter statistics because these matrices are formed
via ensemble stacking and averaging. In the literature, it was
suggested that the ensemble set can be chosen either from
sample volumes along the same beam line [2]–[5] or from ones
within a spatial window centered about the sample volume
concerned [6]. The latter way, which is illustrated in Fig.
2a, seems more appropriate since adjacent sample volumes
within an imaging view are more likely to share similar clutter
statistics.

D. Eigen-Estimation Based on a Single Ensemble

Instead of relying on multiple ensembles, it is possible to
use a single slow-time ensemble to form the matrices A and
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R. In this second formulation, the slow-time data matrix is
created by dividing a slow-time ensemble into lag-one over-
lapping subsets and stacking the subsets together in different
columns (see Fig. 2b). The resulting data matrix would take
on the following Hankel structure (i.e. with constant reverse
diagonals) [7]:

A =
1√
P




x(0) x(1) · · · x(ND − P )
x(1) x(2) · · · x(ND − P + 1)

...
...

. . .
...

x(P − 1) x(P ) · · · x(ND − 1)


 ,

(8)
where P is a dimension parameter representing the subset size
and it is often set to ceil(ND/2) to form the most subsets
from a slow-time ensemble. From the P × (ND −P +1) data
matrix defined in (8), a slow-time correlation matrix of size
P × P can then be computed as:

R = AA∗T

=




R0(0) R1(−1) · · · RP−1(−P + 1)
R0(1) R1(0) · · · RP−1(−P + 2)

...
...

. . .
...

R0(P − 1) R1(P − 2) · · · RP−1(0)


 ,

(9)

with Rk(l) being the lth-lag autocorrelation estimate found
from the following average of correlation values over an
ensemble subset of ND − P + 1 samples (with k as the first
sample index at lag-zero):

Rk(l) =
1
P

ND−P+k+l∑
n=k+l

x(n)x∗(n − l). (10)

Note that (8) and (9) theoretically assumes statistical station-
arity between samples in the slow-time ensemble because of
the data redundancy introduced in the matrix structures. Also,
their respective SVD/EVD would give P eigen-components
with size-P vectors. Since P = ceil(ND/2) in most cases,
as mentioned above, the maximum number and size of eigen-
components obtainable from this eigen-estimation method are
both equal to ceil(ND/2), or half the amount available
from the multi-ensemble formulation. To reconstruct eigen-
components with size-ND vectors as needed for the filtering
in (3), we can first create a rank-one Hankel matrix from each
singular vector pair’s outer product ukv∗T

k and then average
along the ND reverse diagonals of this matrix [7].

III. EXPERIMENTAL WORK

A. Overview of Study

To assess the impact of different eigen-estimation methods
on the performance of eigen-filters, we conducted a clutter
filtering experiment using intra-operative flow imaging data
acquired from a pig’s coronary anastomosis during a bypass
graft operation. Table I lists the data acquisition parameters
used in this study, and Fig. 3a (next page) shows a B-
mode image of the field-of-view. It is worth noting that the

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value
Transmit pulse frequency 10 MHz
Pulse repetition frequency 2.5 kHz
Slow-time ensemble size 10

Beam line interleaving ratio 13 to 1
Lateral field of view -7.8 to +7.8 mm (182 beam lines)
Axial field of view 0 to +15 mm (195 depth sections)

TABLE II
CLUTTER SUPPRESSION LEVEL (DECIBEL SCALE) IN TISSUE REGIONS

Eigen-Filter Type EPICARDIUM BELOW ANASTOMOSIS
5 × 5 Multi-Ensemble 21.6 48.7

20 × 20 Multi-Ensemble 18.9 43.9
Single-Ensemble 22.7 49.9

dataset was acquired in the presence of apparent tissue motion
originating from cardiac contraction. As such, the imaging data
contains clutter with spatially and temporally varying features.

B. Analysis Procedure

In this work, we evaluated eigen-based clutter filters that
make use of three different eigen-estimation strategies: 1) the
single-ensemble approach; 2) the multi-ensemble approach
based on 5 × 5 ensemble windows (0.39 × 0.43 mm2); 3)
another one based on 20×20 ensemble windows (1.54×1.71
mm2). Each form of eigen-filter was applied to the raw slow-
time ensemble of every sample volume within the imaging
view, and the filtered signal power estimates were used
to produce Doppler power maps. During the eigen-filtering
process, the Kc clutter eigen-components were identified by
finding the dominant eigen-components with mean frequency
(estimated via the lag-one autocorrelator) inside a prescribed
clutter band centered at the mean frequency of the most
dominant eigen-component. This frequency-based filter order
selection algorithm was used because it can more robustly
identify clutter eigen-components than other algorithms [9].
Note that the clutter band was empirically chosen to be 250
Hz (0.1 norm freq) in our imaging example since it gave the
most consistent visualization of the blood vessels.

C. Results

Figs. 3b through 3d show the Doppler power maps obtained
from the three forms of eigen-based filters being tested. Also,
Table II summarizes the clutter suppression level (i.e. average
power removed) in different tissue regions. Two observations
should be noted from these results. First, the single-ensemble
eigen-filter seems to share similar performance with the 5 ×
5 multi-ensemble eigen-filter (with about 1 dB difference in
clutter suppression level). Second, smearing artifacts can be
seen in the power image obtained from the multi-ensemble
eigen-filter that uses 20 × 20 ensemble windows, suggesting
that this filter is less capable of suppressing slow-time clutter.
Indeed, its clutter suppression level was between 3 to 6 dB
worse than the other two eigen-filters.
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Fig. 3. Results for the eigen-filtering experiment. Part (a) shows the B-mode image of the field of view. Marked in yellow are the contours of coronary
graft, epicardial tissues, and other arterial branches. Parts (b), (c), and (d) show the Doppler power maps obtained respectively from the 5× 5 multi-ensemble
eigen-filter, the 20 × 20 multi-ensemble eigen-filter, and the single-ensemble eigen-filter. The dynamic range of the power map scale is 40 dB. The analysis
procedure used was described in Sec. III-B.

IV. DISCUSSION

A. Efficacy of Multi-Ensemble Eigen-Estimation Method

In our imaging example, the 5 × 5 multi-ensemble eigen-
filter showed better clutter suppression performance than the
one that uses 20 × 20 ensemble windows (improvements of
roughly 3 dB in epicardium and 5 dB near anastomosis).
This finding suggests that, for eigen-filters involving the multi-
ensemble eigen-estimation method, the use of a smaller ensem-
ble window (0.39×0.43 mm2 in our case) seems more suitable
than a larger one (1.54 × 1.71 mm2). Such a deduction can
be explained by considering the multi-ensemble approach’s
statistical stationarity assumption, which expects all the slow-
time ensembles in the window to share similar clutter statistics
(because A and R are formed via ensemble stacking and av-
eraging). Given this statistical assumption, the multi-ensemble
approach is more likely to give accurate estimates of the
clutter eigen-components (and hence lead to effective clutter
filtering) when using smaller ensemble windows over which
tissue motion is more likely to remain coherent. Conversely,
the approach may give rise to leakages in the clutter eigen-
components (and hence reduced clutter filtering efficacy) when
using larger ensemble windows that may have incoherent
tissue motion within. This latter explanation may indeed be
the prime reason for why smearing artifacts are seen in the
Doppler power map of the 20×20 multi-ensemble eigen-filter.

B. Efficacy of Single-Ensemble Eigen-Estimation Method

Another key result shown in our imaging example is that
the single-ensemble eigen-filter seems capable of suppressing
clutter in the tissue regions, particularly the ones in the deep
epicardium. This finding is in agreement with the previous
subsection’s conclusion that smaller ensemble windows lead
to better clutter suppression performance (the window size
is simply 1 × 1 for the single-ensemble approach). Though
from a theoretical angle, such a finding may seem surprising
because the single-ensemble approach’s stationarity assump-
tion in slow-time inherently forces the eigen-components to

be complex sinusoids that are less representative of non-
sinusoidal clutter arising from accelerative tissue motion. A
likely reason for not suffering much performance drops due
to this theoretical limitation is that the slow-time spectral
resolution may be too low (PRF /ND=250 Hz in our case)
for accelerative tissue’s clutter to be necessarily treated as non-
sinusoids. Nevertheless, the impact of the slow-time stationar-
ity assumption may become more prominent when the slow-
time spectral resolution is improved (e.g. through lowering the
pulse repetition frequency or acquiring more data samples).
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