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Improved Iterative Non-Cartesian SENSE Reconstruction Using Inner-regularization 
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Introduction 
The conjugate-gradient (CG)-based non-Cartesian SENSE reconstruction [1] in many cases exhibits unstable convergence behavior. This is because the 
generalized encoding matrix (GEM) is usually seriously ill-conditioned due to the large dimension and the mixed encoding scheme [2]. To overcome this difficulty, 
an improved iterative SENSE approach is presented. During a so-called Lanczos iteration process which is equally efficient as CG [3], the inversion of GEM can 
be approximated by calculating inversions of small tridiagonal matrices. In this fashion, inner-regularization can be incorporated into the reconstruction without 
touching the iteration process. With inner-regularization adaptively applied for every iteration loop, the convergence behavior of iterative SENSE can be 

significantly improved and noise booming can be avoided.  

Theory 

Generally parallel imaging reconstruction for arbitrary k-space trajectories can be simply formulated as solving a linear equation system s Em= , where s contains 

signal samples, m is the vector of the unknown image and E is the GEM composed of gradient encoding and coil sensitivity encoding. The least squares estimate 

can be obtained by iteratively solving the normal equation, which reads ( )H HE E m E s=  (1). 

The principle of Lanczos method is projecting a large Hermitian matrix onto a set of suitably chosen orthogonal vectors by an iteration process so that it is reduced 

to a much smaller matrix. In SENSE, Lanczos method is applied to Eq. (1). Let HA E E=  is an n-by-n Hermitian matrix, the stepwise nature of the Lanczos 

process results in a (j+1)×(j+1) tridiagonal matrix jT  and in a unitary matrix 1 2[ , ,... ], 1,...,j jQ q q q j n= =  after j iteration loops, which are related 

as 1
T

j j j j j jAQ Q T q eb += +  (2), where jb  decreases with j and jb → 0 when j → rank(A). In this work the Lanczos algorithm is adopted from Ref. [3]. 

Assuming that jb  becomes numerically negligible when j ≥ r (in practice usually r << n), such that Eq.(2) becomes H
j j jA Q T Q= , and since jQ  is unitary, 

inverse of A can be simplified as 1 1( ) H
j j jA Q T Q- -=  (3).  

Numerically the Lanczos process is equally efficient as a typical CG algorithm. Also, the Lanczos method holds a unique desirable property: the singular values 

(SV) of A are gradually captured in decreasing order by the small tridiagonal matrix jT , i.e., the j SVs of jT  are approximations of the j largest SVs of A, with 

higher accuracy for larger SVs and more iterations. Taking advantage of the property of Lanczos process, regularization can be applied only for inversion of jT  in 

Eq. (3). Since the SVs of A are captured by jT  in decreasing order, regularization by directly manipulating the SV components in 1( )jT -  is obvious. In this 

study we set a SV threshold as 1% of the largest SV, and simply disregard all the SV components below that threshold.  

In summary, Lanczos process provides possibility to apply regularization into the inversion without touching the iterations (so this method is called 
inner-regularization); meanwhile, it provides SV information to determine the degree of regularization. 

Results 
Radial and spiral experiments were performed with a homogenous sphere phantom. A full 
radial dataset of 128 projections and a full spiral dataset of 4 interleaves were acquired. 
These data were then decimated to simulate accelerated cases. Iterative SENSE 
reconstructions using inner-regularization and using conventional CG method were 
performed with the radial and spiral data, respectively. Matrix-vector multiplications were 
performed using the gridding/FFT procedure, where gridding were implemented using the 
LS-nuFFT method [4].  
The reconstruction errors of phantom images from 8X accelerated radial data (16 
projections) and 2X accelerated spiral data (2 interleaves) varying with iteration count are 
shown in Figs. 1a and 1b, respectively. The reconstruction error is measured 
by 2 1/ 2( ) [min ( ( ) ) ]ref

n n
n

err j I j Iα α= −∑ , where ( )nI j is the image resulted after j iterations 
with n denoting the pixel index; ref

nI  is the reference image reconstructed from the 
corresponding full datasets. The solid lines are the results of conventional CG-based method, 
and the dashed ones are their counterparts using inner-regularization. The curves clearly 
show that without regularization, the CG iteration does not converge stably. The image 
quality improves with the iterations in early stages but deteriorates in later stages. With the 
inner-regularization strategy, the convergence behavior of the reconstruction is significantly 
improved, as shown by the dashed lines.  
As an example, Fig. 2 shows the radial phantom images after 30 iterations using the 
conventional CG method (Fig. 2a) and inner-regularization (Fig. 2b), respectively. Observe 
that the resulted image after 30 CG iterations is contaminated by noise, while the 
inner-regularization result exhibits excellent compromise between noise and artifacts. 

Discussion 
To handle the ill-conditioning issue, one may consider directly applying Tikhonov regularization to Eq. (1), which can be written as ( )H HE E I m E sλ+ = .  
However, we remark that this is not quite feasible. It is very difficult to choose the regularization parameter λ because each new λ entails a new iteration process. In 
contrast, in our method based on Lanczos iteration process, the degree of inner-regularization can be suitably determined by SV information. 

Conclusion 
An improved algorithm for iterative SENSE reconstruction has been proposed. Based on the Lanczos iteration process, inner-regularization can be applied 
adaptively to stabilize the reconstruction and avoid noise amplification. 
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Fig. 1. Reconstruction errors vs. iteration count for SENSE 
phantom images with (a) radial trajectories; (b) spiral trajectories. 

Fig. 2. 30-iteration reconstructions of radial SENSE images using 
(a)conventional CG-based method; (b)inner-regularization method. 
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