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ABSTRACT
Cooperative communication systems have attracted much at-
tention recently due to their desirable performance gain while
using single antenna terminals. However, most of the existing
works on cooperative communications require perfect tim-
ing synchronization among users, which is usually not true
in practical systems. In this paper, a general framework of the
re-synchronization filter design is developed in order to com-
pensate the multiple timing offsets at the destination. The
proposed method is applied to different scenarios with vary-
ing degrees of timing misalignment and is numerically shown
to provide excellent performances that approach the perfectly
synchronized case.

Index Terms— Cooperative, timing offset, resynchro-
nization, Tikhonov regularization

1. INTRODUCTION

Nowadays, research involving distributed MIMO system,
which suggests the sharing of antennas among single-antenna
terminals to cooperatively transmit data, has received consid-
erable attention because of its desirable cooperative diversity
gain [1]-[2]. So far, the research over cooperative com-
munication systems predominantly assumes perfect timing
synchronization among users. However, many analytical and
numerical results [7]-[8] have shown that timing errors in a
cooperative system can jeopardize the reliability of commu-
nications. Especially, the benefit of cooperation would even
vanish in terms of diversity gain [9] and system capacity [10]
when the timing errors are large. All these results demon-
strate that appropriate counter-measures to the asynchronous
reception in distributed MIMO systems are absolutely neces-
sary.

This paper develops a general framework for the multiple
timing offsets compensation problem in cooperative systems.
A re-synchronization filter is proposed to compensate the in-
tersymbol interference (ISI) caused by the temporal asynchro-
nism at the destination terminal. A general method to deal
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with the re-synchronization filter design problem is developed
by using the weighted regularized least squares (WRLS) ap-
proach, with the optimal regularization parameter chosen by
the L-curve technique. It is shown that the symbol error rate
(SER) after the compensation fundamentally improves and
approaches the ideal case when the timing misalignment is
relatively mild.

The rest of this paper is organized as follows. In Section
2, a general system model for the considered scenario is pre-
sented. Design of the re-synchronization filter is discussed in
Section 3 with an in-depth analysis over the proposed method.
Section 4 provides numerical results to validate the proposed
re-synchronization scheme. Finally, the paper is concluded in
Section 5.

Notation : The superscripts (·)∗, (·)H and (·)T denote the
conjugate, the conjugate transpose and the transpose opera-
tors respectively. Notation I is the identity matrix, while ||x||
represents the L2 norm of vector x.

2. SYSTEM MODEL

In a cooperative system as shown in Fig. 1, the destination
node (denoted as D) receives signals from multiple distributed
users (denoted as Rk). Different Rk cooperatively transmit
data to D, where the common strategies include distributed
space-time coding [7], and transmit maximal ratio combining
(MRC) [9] etc., which requires perfect timing synchroniza-
tion among users. However, due to the hardware inconsis-
tencies and diverse locations, the signals from different Rk

arriving at D are not synchronized to each other.
The received signal (within 0 ≤ t ≤ LoT ) at D can be

readily expressed as

d(t) =
K∑

k=1

hk

Lo+Lg−1∑
i=−Lg

rk(i)g(t− iT − εkT ) + n(t),

where hk is the complex channel coefficient from Rk to D
and is assumed to be zero mean, circular complex Gaussian
random variable with unit variance. The term n(t) is the
zero mean, circular complex additive white Gaussian noise
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Fig. 1. A typical cooperative scenario

(AWGN) with variance No. Notation T is the symbol dura-
tion, rk(i) is the complex valued symbol from Rk with sym-
bol energy E{|rk(i)|2} = Ek; εk ∈ [0, 1) is the unknown
timing offset normalized to the symbol duration and g(t) is
the pulse shaping filter. Symbol Lo represents the observa-
tion interval while Lg is the approximated effective duration
of the tail of g(t) on one side.

Upon reception, the signal is oversampled at D by a ratio
Q ≥ 2 and thus the sample interval is Ts = T/Q. By stacking
LoQ received samples, the received vector is given by [11]

d =
[
Aε1 Aε2 · · ·AεK

]
︸ ︷︷ ︸

,Aε


h1r1

h2r2

...
hKrK


︸ ︷︷ ︸

,Γ

+n

= AεΓ + n (1)

where

d ,[d(0), d(Ts), · · · , d((LoQ− 1)Ts)]T

n ,[n(0), n(Ts), · · · , n((LoQ− 1)Ts)]T

Aεk
,[a−Lg

(εk), · · · ,a0(εk), · · · ,aLo+Lg−1(εk)]

ai(εk) ,[g(−iT − εkT ), g(−iT + Ts − εkT ),

· · · , g(−iT + (LoQ− 1)Ts − εkT )]T

rk ,[rk(−Lg), · · · , rk(0), · · · , rk(Lo + Lg − 1)]T .

Note that the phase offsets between transmitters and re-
ceiver are not explicitly specified in the system model (1), be-
cause they can be incorporated into the unknown channel co-
efficients while keeping the formulation of the system model
unchanged.

In this paper, it is assumed that εk and hk have been es-
timated and we focus on how to compensate the time asyn-
chronism at D.

3. RESYNCHRONIZATION FILTER DESIGN

At destination D, asynchronous signals from different users
Rk overlap with each other. Hence there is no unique optimal
sampling instant since the optimal instants for distinct users
are different.

To cope with this problem, one way is to treat the signals
from asynchronous users as signals passing through different
paths in a multipath channel, then a joint maximum likelihood
sequence estimator (JMLSE) can be used to jointly decode the
data from all the users [7]. Although JMLSE, in principle, can
be applied to scenarios with any number of users, its imple-
mentation complexity becomes prohibitive when the number
of users is greater than two.

A more direct method to resynchronize the multiple users
is to design a re-synchronization filter at D to realign the asyn-
chronous signals as first demonstrated in [12]. Unfortunately,
general guidelines for choosing the optimal design parameters
and comprehensive performance analysis studies are missing
in [12]. In the following, we will present a general frame-
work for the re-synchronization filter design and show that
the scheme in [12] is a special case of the proposed frame-
work.

3.1. Problem Statement

After the multiple timing offsets ε , [ε1, · · · , εK ]T and chan-
nels h , [h1, · · · , hK ]T have been estimated at D, the re-
maining issue is how to employ the estimates to compensate
the offsets to obtain ISI-free reception. Mathematically, this
problem can be solved by designing a re-synchronization fil-
ter f such that after the convolution with the received signal
(1), the ISI components are minimized.

This process is actually an equalization for the fractional
timing offset distortion and equivalent to the minimization
problem

min
f

E
{wwwΓ̂

H(
AH

ε̂ f − b
)www2}

, (2)

where the expectation is taken with respect to data realiza-
tion. The vector b , [δH

1 , · · · , δH
K ]H and δ1 = · · · = δK ,

[Rgg(−Lg−Mo), · · · , Rgg(0), · · · , Rgg(Lg +Mo)]H stands
for the ideal zero-ISI sampled waveform after matched filter-
ing, where Mo = (Lo − 1)/2 (for the sake of discussion, Lo

is taken to be an odd number) and Rgg(τ) is the autocorrela-
tion function of g(t) at t = τT . The expression of Γ̂ in (2) is
the Γ in (1) with hk replaced by ĥk and can be equivalently
expressed as

Γ̂ =

ĥ1I 0
. . .

0 ĥKI


︸ ︷︷ ︸

,H

 r1

...
rK


︸ ︷︷ ︸

,r

= Hr. (3)
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Fig. 2. An example of the singular values distribution of the
ill-conditioned matrix Aε with Lo = 65, Lg = 4 and Q = 2

Thus, (2) can be reformulated as the following weighted least
squares (WLS) problem

min
f

(
AH

ε̂ f − b
)H

Π
(
AH

ε̂ f − b
)
. (4)

The symbol Π , HRHH represents the positive definite
m×m weighting matrix with m = K(Lo + 2Lg), and R =
E{rrH} is given by

R ,

R1,1 · · · R1,K

...
. . .

...
RK,1 · · · RK,K


with the sub-matrix Ri,j = E{rirH

j } being the correlation
matrix between ri and rj . Note that once the transmission
scheme and cooperative strategy are fixed, the correlation ma-
trix can be determined and made available at both the trans-
mitter and the receiver.

Generally speaking, the solution to (4) is the WLS solu-
tion f = (Aε̂ΠAH

ε̂ )−1Aε̂Πb. However, because the timing
offsets can be represented as εk = εo + ∆k, where εo is the
common offset and ∆k includes the travel delay difference,
the columns of AH

ε̂ are quite similar to each other. Hence,
(4) is an ill-posed problem. As opposed to a rank-deficient
problem, there are no general rules to determine which singu-
lar values of an ill-conditioned matrix to discard [14], as there
is no significant gap between the singular values (an example
of the singular value distribution of AH

ε̂ is shown in Fig. 2),
leading to the amplification of any perturbation that exists in
the system.

In the following, we present a general framework that em-
ploys the regularization theory to design a filter which mini-
mizes the residual ISI power.

3.2. Regularized Filtering

We hereby propose the weighted regularized least squares
(WRLS) [15] (also known as scaled Tikhonov regularization)
method to deal with the ill-posed problem in (4). To simplify
our notation in the following analysis, the optimization prob-
lem in (4) is re-expressed compactly as

min
f

(
GΠf − bΠ

)H(
GΠf − bΠ

)
, (5)

where GΠ = Π
1
2 AH

ε̂ and bΠ = Π
1
2 b, with Π

1
2 representing

the Cholesky square root of the weighting matrix Π. Now the
WRLS problem can be stated as

min
f

[(
GΠf − bΠ

)H(
GΠf − bΠ

)
+ λ2 fHLHLf

]
, (6)

where fHLHLf controls the properties of the regularized so-
lution norm by choosing different regularization matrices L
(e.g., identity matrix for minimum energy, first derivative for
maximum flatness [14]); the variable λ stands for the regular-
ization parameter that balances the minimization of the two
terms. When λ = 0, formulation (6) reduces to the WLS
problem in (4). In order to find the solution of (6), we rewrite
(6) as

min
f

wwwww
(
GΠ

λL

)
f −

(
bΠ

0

) wwwww
2

.

For a fixed λ, the solution is readily obtained as

fλ = (GH
Π GΠ + λ2LHL)−1GH

Π bΠ. (7)

Notice that in (7), if λ is too large, the solution is over-
regularized and the residual error may be overwhelming,
while if it is too small, the solution becomes under-regularized
and the stability of the solution is highly affected. As can be
seen, the performance of the regularized solution fλ depends
heavily on the regularization parameter λ (the choice of L
is relatively straightforward as different L present different
physical meanings).

3.2.1. Choice of Regularization Parameter λ

As discussed previously, the value of λ could significantly
affect the performance of the re-synchronization filter. There-
fore, choosing an appropriate λ is very important. A concep-
tually simple tool for the analysis of discrete ill-posed prob-
lems is the L-curve technique [14], which is a plot of the dis-
crete smoothing norm ‖ Lfλ ‖2 of the regularized solution
versus the corresponding residual norm ‖ GΠfλ − bΠ ‖2 for
different λ. The L-curve clearly displays the compromise be-
tween minimization of these two quantities as illustrated in
Fig. 3 (with L = I).

The L-curve corner, defined as the maximum curvature
point on the curve

(
log ‖ GΠfλ − bΠ ‖, log ‖ Lfλ ‖

)
, ap-

pears to be a good compromise that balances the regulariza-
tion errors and perturbation errors in the regularized solution



10
-0.6

10
-0.4

10
-0.2

10
0

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

=1.4363=1.0298=0.73833=0.10029

=1.7547e-005

=1.1931e-007

=1.1315e-009

=1.4967e-011

=1.0177e-013

=9.9105e-015

residual norm || G f - b ||2

so
lu

tio
n 

no
rm

 ||
 f

 ||
2

L-curve

=0.00025131

Fig. 3. An example of L-curve

fλ [14]. Therefore, we will take this point for the regulariza-
tion parameter λ. In order to find the λ that corresponds to
the L-curve corner, let ρ = ‖ GΠfλ − bΠ ‖ and ξ = ‖ Lfλ ‖.
Then the curvature κ(λ) is given by [14]

κ(λ) = 2
ξρ

ξ′
λ2ξ′ρ + 2λξρ + λ4ξξ′

(λ2ξ2 + ρ2)3/2
(8)

where ξ′ = 4fH
λ (GH

Π GΠ + λ2LHL)−1GH
Π (GΠfλ −bΠ)/λ.

Note that when channel and timing offset realizations are
given, ρ, ξ and ξ′ can be computed. Therefore, the regular-
ization parameter λ with maximum curvature in (8) can be
located (e.g., by exhaustive search).

3.2.2. Special Case - Least Squares with a Quadratic Con-
straint

The re-synchronization filter design was first discussed in [12]
using the LS with a quadratic constraint (the Fixed SNR Loss
or the Fixed Fidelity Loss methods). Note that there is no
weighting matrix Π in the original method in [12]. In the
following, we incorporate the weighting matrix Π to make
the discussion more general, and setting Π = I will reduce
the formulation back to that of [12]. The methods in [12] can
be stated as

• Fixed SNR Loss Requirement

min ‖ GΠf − bΠ ‖2 s.t. ‖ Lf ‖2 ≤ α (9)

• Fixed Fidelity Loss Requirement

min ‖ Lf ‖2 s.t. ‖ GΠf − bΠ ‖2 ≤ β. (10)

The constraints α and β are design parameters that bound the
norm of the solution and the errors respectively. In the fol-
lowing, we derive the relationship between the regularization
framework and these two methods. In order to do this, the
generalized singular value decomposition (GSVD) of the ma-
trix pair (GΠ,L) is needed

GΠ = UΣY−1, L = VMY−1 (11)

where Σ = diag(σ1, · · · , σn), M = diag(µ1, · · · , µn) are
the singular values of GΠ and L respectively with n = LoQ.
Matrices U and V represent the unitary singular vector ma-
trices of GΠ and L (i.e. UHU = VHV = I), while Y is
a nonsingular matrix that satisfies YHGH

Π GΠY = Σ2 and
YHLHLY = M2. With the GSVD of (GΠ,L), the regular-
ized solution fλ (7) is expressed as

fλ = Y(Σ2 + λ2M2)−1ΣUHbΠ. (12)

For the WLS with Fixed SNR Loss requirement (9), the
solution would occur on the boundary ‖ Lf ‖2= α [12]. Sub-
stituting (12) into the boundary, we have

‖ VMY−1 ·Y(Σ2 + λ2M2)−1ΣUHbΠ ‖= α.

After some tedious but straightforward manipulations, the re-
lationship between λ and α is given by

n∑
i=1

(σiµi)2

(σ2
i + λ2µ2

i )2
b?

Π(i)2 = α2 (13)

where b?
Π = UHbΠ. From (13), it can be seen that once a

threshold value α is specified, there exists a corresponding λ
in the regularization framework.

For the WLS with Fixed Fidelity Loss requirement (10),
we can follow the same method to obtain a similar relation-
ship as

n∑
i=1

( µ2
i b

?
Π(i)

λ̃2σ2
i + µ2

i

)2

= β2, with λ̃ =
1
λ

(14)

From (13) and (14), it is clear that WLS with a quadratic
constraint method is a special case of the proposed framework
when the constraint values α, β are optimally chosen.

Although WLS with a quadratic constraint methods are
equivalent to the regularization method under some circum-
stances, generally there is no guideline for choosing optimal
α and β. Furthermore, because the elements of GΠ depend
on different timing offset and channel realizations, there is
no single λ that is in general optimized for all the scenarios.
Thus, fixing the values of α and β in LS with a quadratic con-
straint as in [12] can fail substantially (more details can be
found in the next section).
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tion, |∆k| < 0.1T for K = 2.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance of the proposed resynchro-
nization filter is demonstrated by Monte Carlo simulations,
where each point is obtained by averaging over 104 runs. In
all simulations, the QPSK modulation is used. Due to the
space limit, only the results under the scenario using space-
time block coding (STBC) are shown in this paper because
other schemes such as transmit maximal ratio combining
(MRC) provide similar results.

Specifically, Alamouti Scheme is employed for the K =
2 case, and the rate-1/2 orthogonal STBC for four antennas
[13] is used for the K = 4 case to cooperatively transmit
data. Thus the symbol energy of each Rk should satisfy E1 =
· · · = EK , ER. In both cases, it can be easily shown
that the correlation matrix is diagonal as R = ERI and the
weighting matrix becomes

Π , ER

|ĥ1|2I 0
. . .

0 |ĥK |2I

 . (15)

The pulse shaping filter g(t) is assumed as root-raised co-
sine waveform with roll-off factor 0.22 and normalized en-
ergy

∫∞
−∞ g2(t)dt = 1. The regularization matrix L is taken

to be I such that ‖ Lf ‖2 represents the energy of the filter.
The channel coefficients are modeled as independent identi-
cally distributed (i.i.d.) complex Gaussian random variables
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Fig. 5. Symbol Error Rate (SER) performance of the Regu-
larized Filter and the filter designed by LS with a quadratic
constraint with α = 4, 2, 1 under QPSK modulation, |∆k| <
0.3T for K = 4.

with zero mean and unit variance. The SNR is defined as the
average transmit signal-to-noise ratio as SNRD = ER/No at
D. The block length is fixed to Lo = 65 and Lg = 4.

In Fig. 4, the performance of the proposed regularized fil-
ter is illustrated against several LS methods with K = 2 and
travel delay differences |∆k| < 0.1T , where the ∆k is gener-
ated uniformly between −0.1 to 0.1 for each simulation run.
It can be seen that the performance of the regularized filter
overlaps with the ideal case (i.e., ∆k = 0) while the ordi-
nary LS solution provides disappointing results due to the ill-
conditioned nature of the problem. On the other hand, for the
LS with a quadratic constraint [12], it is obvious that the non-
optimal quadratic constraint parameters α lead to significant
performance degradation, especially in the case with α = 4.
Because similar results are obtained for both the Fixed SNR
Loss method and the Fixed Fidelity Loss method, only the
performances of Fixed SNR Loss method are presented.

In Fig. 5, the regularized filter is compared against the
LS methods with K = 4 and travel delay differences up
to |∆k| < 0.3T . When the timing mismatch is severe, the
choice of α becomes more critical for the LS filter. For ex-
ample, it is observed that the performance gaps between the
LS filters with different α are much larger than those in the
previous case with a small ∆k. On the other hand, the pro-
posed regularized filter with optimally located parameter λ
still remains close to the ideal case, outperforming the LS fil-
ters with parameters α chosen empirically or in an ad hoc
way.



5. CONCLUSIONS

In this paper, the re-synchronization of multiple timing offsets
in a cooperative system has been considered. We have unified
the framework of re-synchronization filter design and derived
the relationship between LS filter with a quadratic constraint
and the regularized filter. Compared to the existing method,
the proposed framework automatically determines the opti-
mal design constraints given different realizations of channels
and offsets. Numerical results have illustrated that the pro-
posed filter outperforms the existing method no matter under
mild or severe timing mismatch, which salvages the perfor-
mance loss due to temporal asynchronism.
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