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Abstract—Pervasive computing systems often use middleware 

as a means to communicate with the changing environment. 

However, the interactions with the context-aware middleware 

as well as the interactions among applications sharing the same 

middleware may introduce faults that are difficult to reveal by 

existing testing techniques. Our previous work proposed the 

notion of context diversity as a metric to measure the degree of 

changes in test inputs for pervasive software. In this paper, we 

present a case study on how much context diversity for test 

cases relates to fault-based mutants in pervasive software. Our 

empirical results show that conventional mutation operators 

can generate sufficient candidate mutants to support test effec-

tiveness evaluation of pervasive software, and test cases with 

higher context diversity values tend to have higher mean 

mutation scores. On the other hand, for test cases sharing the 

same context diversity, their mutation scores can vary signifi-

cantly in terms of standard derivations. 

Keywords—context diversity; mutation analysis; pervasive 

computing  

I. INTRODUCTION 

Pervasive computing systems provide smart services to 
users by capturing environment attributes as contexts and 
adjusting software behaviors according to changes in context 
values. For example, a smart phone may collect the user’s 
location and activity information to decide the notification 
mode of incoming calls: it may vibrate silently when the user 
is in a meeting, but may beep loudly when the user is watch-
ing a football match. 

The development of pervasive software, however, is 
challenging. First, the software needs to manage the contexts, 
including the collection of diverse context information from 
various sources, cleaning up noisy contexts, classifying the 
contexts into different categories in an application-usable 
manner, interpreting low-level contexts, and reasoning about 
the contexts to provide semantic-level information for the 
application. Second, the software also needs to communicate 
with its computing environment dynamically, such as to 
retrieve changing contexts from data sensing components, 
record generated contexts to data storage components, and 
exchange contexts with other components wirelessly. To 
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ease these development obstacles, many context-aware 
studies [2][4][5][25][35][36] proposed the use of middleware 
to transparently acquire, disseminate, and interpret the con-
texts on behalf of the applications over ad hoc networks. 

Although such a middleware-centric multi-tier architec-
ture favors the development and configuration of pervasive 
software, it also brings new challenges to quality assurance. 
An application may subscribe to its interested contexts and 
define adaptation rules to specify when to activate adaptive 
actions. Accordingly, the middleware assembles these sub-
scribed contexts and evaluates adaptation rules to decide 
whether it should trigger such actions. In this way, the 
explicit interactions between the application and middleware 
distribute the application logic over multiple tiers, and hence 
the faulty states of a program execution may be propagated 
among multiple architectural levels. Moreover, applications 
sharing the same context-aware middleware may interact 
implicitly through their own features, generally known as 
feature interactions [16]. As a result, the adaptation rules of 
multiple applications may conflict with one another when 
manipulating the same stream of context values. In [31], we 
argued that the changes in context values captured in a test 
input may play a key role in addressing these testing 
challenges brought by context-aware properties of pervasive 
software, and proposed to study context diversity as a metric 
to measure context changes inherent in test inputs. 

In addition, fault-based mutants produced by various 
mutation operators have been widely used in empirical 
studies in program testing [3][15][21]. They can accurately 
simulate the effectiveness of a testing technique over real-life 
faults [1]. Since no mutation operator for pervasive applica-
tions has been proposed in the literature, researchers may use 
existing mutation operators to produce mutants for pervasive 
software. Thus, a natural research question would be: What 
is the quality of mutants generated by existing mutation 
operators that are not targeted for pervasive software? 

In this paper, we present a case study that investigated 
selective properties of faults in multi-tier pervasive software 
and examined the relationships between context diversity 
and mutation analysis. We measured the “quality of mutants” 
from three different dimensions, namely, the number of 
mutants generated, the ratio of equivalent mutants to all 
generated mutants, and the ease of killing mutants. We also 
investigate the trend on the number of mutants killed by 
individual test cases according to various context diversity 
values. It helps researchers understand more about the 
relationship between faults and context-aware inputs when 
developing verification and validation strategies. 
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The contribution of this work is two-fold: (1) It confirms 
that traditional mutation operators can generate a sufficient 
number of candidate mutants to support the statistical analy-
sis of experiments on pervasive software testing. (2) It re-
veals that test cases with higher context diversity values tend 
to have higher mean mutation scores, but for test cases with 
the same context diversity, their mutation scores can vary 
significantly in terms of standard derivation values.  

The rest of the paper is organized as follows: Section II 
introduces the preliminaries of our work. Section III states 
the research questions to be explored. Section IV explains 
the experimental setup, and Section V presents the findings 
and analysis results. Section VI reviews related work, fol-
lowed by a conclusion in Section VII. 

II. PRELIMINARIES 

This section recapitulates the background of our case study. 

A. Terminology in Mutation Analysis 

To generate faulty versions automatically, one may apply 
a set of mutation operators to the code to produce mutants, 
which are variants of the correct program containing at most 
one fault. This technique to generate faulty versions is called 
mutant generation. The process to analyze when mutants fail 
and which test cases trigger such failures is referred to as 
mutation analysis [1]. 

Formally, given a set of mutation operators {1, 2, ... 

n}, each i is a function that takes a program P as input and 

produces a set of mutants i(P). The program P is referred to 
as the golden version, which is regarded as being free from 
major faults. The output of a specific execution of a mutant 
M (or the golden version P) on a test case t is denoted by M(t) 
(or P(t), respectively). Then, a test case t is said to kill a 
mutant M if M(t) ≠ P(t) [22] (which means that the mutant M 
generates an output different from that of the golden version 
P when M and P take t as input), and t is referred to as failed 
test case with respect to M. The mutation score of a test case 
t with respect to a set of mutants {M1, M2, …, Mn} is defined 
as the percentage of the mutants killed by t.  

For each mutant M, we define its perceived failure rate 

as FR(M) =  
 {𝑡∈𝑇𝑃 𝑀(𝑡)≠𝑃(𝑡)}|

|𝑇𝑃|
, which is the ratio of the 

number of failed test cases |{t ∈ TP | M(t) ≠ P(t)}| to the test 
pool size |TP|. For example, a mutant with the perceived 
failure rate of 0.2 means that 20% of the test cases in the test 
pool can kill this mutant, and the probability of 10 random 
test cases to kill it is 1 − (1 − 0.2)

10
 = 99.99%. Based on the 

perceived failure rate, every mutant is classified as an 
equivalent, must-fail, or normal mutant. A mutant M is said 
to be an equivalent mutant (with respect to the golden 
version P) if its perceived failure rate is 0.0, which means 
that no test case in the entire test pool can kill M. A mutant 
M is said to be a must-fail mutant if its perceived failure rate 
is 1.0, which means that every test case in the test pool will 
kill this mutant. Mutants with perceived failure rates within 
the range of (0.0, 1.0) are referred to be normal mutants. 
Both must-fail mutants and normal mutants are non-
equivalent mutants. 

B. Terminology of Pervasive Software 

Pervasive software often monitors continuously the 
values of captured contexts. A context variable v is a charac-
terization of contexts. We model it as a tuple (field1, field2, 
…, fieldu) such that each fieldw (w = 1, 2, …, u) is an 
environment attribute used by the pervasive software [18]. A 
context instance ins(v) is an instantiated context variable 
such that every field in v has been instantiated. It is a tuple 
(f1, f2, …, fu) such that each fw (w = 1, 2, …, u) takes the form 
of (fieldw = valuew: typew, timestamp), where valuew, typew, 
and timestamp are the instantiation value, data type, and 
sampling time for fieldw, respectively. For ease of 
presentation, we will write valuew instead of (fieldw = valuew: 
typew, time). A context stream cstream(v), serving as test 
inputs of pervasive software, is a time series of the form 

𝑖𝑛𝑠(𝑣)𝑡1 , 𝑖𝑛𝑠(𝑣)𝑡2 , …, 𝑖𝑛𝑠(𝑣)𝑡𝑚 , where each 𝑖𝑛𝑠(𝑣)𝑡𝑠  (s 

= 1, 2, …, m and ts < ts+1) in cstream(v) is a context instance 
sampled at time ts. 

Let us give an example. Suppose a smart phone has a 
two-dimensional context variable (location, activity). When a 
user presents a report in a meeting room, the context variable 
is initialized as a context instance (meeting room, present a 
report). As time goes on, the context stream sequence may 
capture a series of activities, such as (meeting room, present 
a report), (meeting room, listen to music), and (home, sleep). 

C. Terminology of Context Diversity 

Context diversity [30] CD(cstream(v)) is a metric that 
measures the amount of context changes inherent in a 
context stream cstream(v). More precisely, we compute the 
Hamming distance [13] between every pair of consecutive 
instances in a given context stream. It is formulated as 

 𝐻𝐷 𝑖𝑛𝑠 𝑣 𝑖 , 𝑖𝑛𝑠 𝑣 𝑖+1 
𝑙−1

𝑖=1
 

where HD(ins(v)i, ins(v)i+1) is the Hamming distance [13] 
between a pair of context instances ins(v)i and ins(v)i+1 in the 
context stream cstream(v), and l is the length of the context 
stream cstream(v). Take the context stream introduced in 
Section II.B for an example. The sum of Hamming distances 
for the location dimension of the context variable is 1, and 
that for the activity dimension is 2. The context diversity of 
the sequence is, therefore, 3. 

A higher context diversity of a test case can result either 
from a longer context stream or from more intensive context 
changes. To facilitate identifying the impact of context 
changes to the effectiveness of test cases, we partition all test 
cases into equivalence classes, each class containing test 
cases with the same context stream length. We refer to each 
class as a length-equivalent class in the rest of the paper. 

III. RESEARCH QUESTIONS 

We present in this section the research questions to 
investigate in our case study. 

RQ1: Do mutation operators for traditional programs 
generate high-quality mutants for pervasive software? Since 
there are no specific mutation operators for pervasive soft-
ware, it is desirable to explore whether it is favorable to use 
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traditional mutation operators in the setting of pervasive 
software. By answering this research question, we may be 
able to identify the applicability of mutation analysis to 
middleware-based pervasive software. 

RQ2: Is there any correlation between context diversity 
and mutation score of a test case? In our previous work [30], 
we argued that context changes contained in individual test 
cases play a key role in testing context-aware properties of 
pervasive software, and proposed the concept of context 
diversity to capture such information. However, we did not 
explore the kind of context diversity (namely, higher or 
lower diversity) that can contribute more to the improvement 
of test effectiveness. More importantly, it is desirable to 
determine whether test cases with higher context diversity 
caused by more intensive context changes contribute to 
better test effectiveness when the context stream length is 
fixed. By addressing this research question, it can provide 
guidance to the selection of more efficient test cases. 

IV. EXPERIMENTAL SETUP 

We describe the set up of the experiment in this section. 

A. Subject 

We used WalkPath as the middleware-based pervasive 
software in our empirical study. It was also used as the 
subject in [18][19]. It consists of a middleware Cabot [35] 
and an application that implements LANDMARC, an RFID-
based location sensing algorithm [23]. Cabot tracks a 
person’s walking path in indoor space equipped with RFID 
sensors. The person’s current location is obtained via 
LANDMARC by capturing and analyzing the RFID context. 
WalkPath utilizes the location data as incoming contexts and 
optionally accepts or repairs them through a set of Context-
Inconsistency-Resolution (CIR) services [35] provided by 
Cabot. When a person moves, the application senses their 
location from the surroundings and reacts accordingly. The 
whole system is written in Java. 

In our case study, WalkPath was modeled in three 
architectural levels, namely the application, middleware, and 
interface levels. The application level defined the adaptive 
behaviors, the middleware level managed the context and 
evaluated the adaptation rules subscribed by the application, 
and the interface level consisted of a caller, callee, or 
callback statement to enable interactions between the 
application and the middleware. 

To ensure that the experiment would end within manage-
able time, we downsized the middleware to contain only 
critical components (such as context acquisition, context 
reference, and inconsistency resolution) to support pervasive 
software capability for the execution of WalkPath, and 
removed other components such as context remote-
transmission and database access. The application, the 
middleware, and the interface contained 231, 483, and 83 
non-commented lines of code (LOCs), respectively. Thus, 
the total size of the adapted WalkPath was 797 LOCs. 

B. Mutation Operators and Fault-Based Mutants 

To the best of our knowledge, no mutation operator 
specific to pervasive software has been proposed in the 

literature. We chose to use the mutation operators proposed 
for Java programs to produce faulty versions for WalkPath. 
According to [30], there are 12 method-level and 29 class-
level mutation operators for Java programs, but one class-
level mutation operator (AMC) tended to create either 
equivalent mutants or mutants failing to be compiled, and 
was excluded from the analysis in [20]. After skipping AMC, 
we used MuClipse

1
 to generate fault-based mutants 

according to all the remaining 40 mutation operators. We 
used all the generated faults in our study. 

We then applied the entire test pool to obtain execution 
statistics for every mutant. For each mutant, we collected 
diverse statistics information for further analysis, such as the 
sets of failed test cases and their context diversity 
distributions. 

C. Classification Criteria 

We classified all the 40 mutation operators according to 
their respective fault natures [9], namely, missing constructs, 
wrong constructs, and extraneous constructs. A fault is 
categorized as a missing construct if a variable assignment 
or initialization, logical condition, parameter or expression 
in a function call, or part of an algorithm or program module 
is missing or incomplete. Faults due to wrong or extraneous 
constructs are similarly defined. The classification results 
are shown in Table I. We observe that, out of the 40 
mutation operators, 12 are used to delete program constructs, 
18 are applied to replace or modify program constructs, and 
the remaining 10 are employed to insert program constructs. 

TABLE I.  CLASSIFICATION OF MUTATION OPERATORS 

BY FAULT NATURE. 

Fault Nature Mutation Operators Count 

Missing 

Construct 

AOD, COD, LOD, IHD, IOD, ISD, IPC, 

PCD, OMD, JTD, JSD, JID 
12 

Wrong 

Construct 

AOR, ROR, COR, SOR. LOR, ASR, 
IOP, IOR, PMD, PPD, PCC, PRV, 

OMR, OAC, EOA, EOC, EAM, EMM 

18 

Extraneous 
Construct 

AOI, COI, LOI, IHI, ISI, PNC, PCI, JTI, 
JSI, JDC 

10 

Total 40 

 
After partitioning the mutation operators, we examined 

the locations of the mutants they produced. We labeled each 
mutant according to one of the three architectural levels. 
This enabled us to study the distributions of the mutants 
over the architectural tiers. The results will be discussed in 
Section V.A.  

D. Test Pool and Context Streams 

In our experiment, we reused an existing test pool for 
WalkPath, which contained 20,000 different test cases, each 
consisting of real-world data captured via RFID readers and 
used in previous experiments [18][19]. The test pool was 
shown to be capable of generating test sets that fulfill 
different data-flow testing criteria [18][19]. 

A test case for WalkPath consists of a sequence of 
locations as inputs. In WalkPath, Cabot tracks a user’s loca-
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tion and reports the estimated coordinates to the application. 
After receiving the coordinates, the application invokes CIR 
services of Cabot to detect potentially inconsistent contexts. 
After the user has ended the walk, the application reports the 
trace of the user’s locations. In our experiment, we used the 
sequence of location data as the context stream for WalkPath. 

E. Test Effectiveness Measure 

The effectiveness of a test case c is simulated by its 
mutation score [24]. More formally, given a mutation 

operator i and a program P, Nmi(P) represents the number 

of normal mutants generated by applying i to P, and Kmi(P) 
denotes the number of normal mutants from Nmi(P) killed by 
c. The test effectiveness of c with respect to mutants gener-

ated by the mutation operator i is measured by 
𝐾𝑚 𝑖(𝑃)

𝑁𝑚 𝑖(𝑃)
, and 

the test effectiveness of c with respect to a set of mutants 

{Nm1(P), Nm2(P), …, Nmn(P)} is measured by 
 𝐾𝑚 𝑖(𝑃)
𝑛
𝑖=1

 𝑁𝑚 𝑖(𝑃)
𝑛
𝑖=1

. 

Our metric to measure the effectiveness of a test case is 
similar to that in other work such as [24]. 

V. DATA ANALYSIS OF EMPIRICAL STUDY 

We present our empirical findings in this section. 

A. Answering RQ1: Quality of Generated Mutants 

We categorize all the generated mutants according to the 
architectural levels and fault natures and show the results in 
Table II. We observe that, MuClipse does generate a large 
number of mutants (4884) for pervasive software. On the 
other hand, the total number of mutants labeled with miss-
ing constructs is very small (only 11 out of 4884). This 
result contradicts the presence of widely-observed omission 
faults in real-world practices [9][33] as well as the experi-
ments results in [20], which reports that the mutation 
operators IOD, JID, and JTD can generate 496, 115, and 
203 missing construct mutants when applied to 264 BCEL 
classes

2
. After examining our code in detail, we found that 

this inconsistency may be caused by the following factors: 
(1) The inheritance features for object-oriented software are 
not widely-used in the adapted WalkPath, which makes it 

                                                           
2 Available at http://jakarta.apache.org/bcel/ 

hard for IOD to find overriding methods to delete. (2) Many 
member variables of classes are modified by the keyword 
“final” in the adapted WalkPath, which makes it hard for 
JID to delete initializations of member variables. (3) The 
keyword “this” is omitted as long as the omission does not 
cause compilation errors in the currently adapted WalkPath, 
which makes it hard for JTD to find the keyword “this” to 
delete.  

Neither equivalent mutants nor must-fail mutants are 
good candidates for test effectiveness evaluation because 
they may underestimate and overestimate the effectiveness 
of testing techniques, respectively. Thus, a desirable mutant 
tool should generate a large number of (normal) mutants 
that are neither equivalent nor must-fail. 

TABLE III.  EQUIVALENT AND NON-EQUIVALENT MUTANTS 

GENERATED BY MUCLIPSE. 

Architectural 

Level 

Equivalent 

Mutants 

Non-equivalent 

Mutants 
Total 

Must-fail 

Mutants 

Normal 

Mutants 

Application 
1946 

(39.84%) 

592 

(12.12%) 

1393 

(28.52%) 

3931 

(80.49%) 

Middleware 
277  

(5.67%) 

14  

(0.29%) 

500 

(10.24%) 

791 

(16.20%) 

Interface 
57  

(1.17%) 

64  

(1.31%) 

41 

(0.84%) 

162 

(3.32%) 

Total 
2280 

(46.68%) 

670 

(13.72%) 

1934 

(39.60%) 

4884 

(100%) 

 

 

Figure 1. Perceived failure rates of mutants in various architectural levels. 

We present the number of equivalent, must-fail and 
normal mutants generated by MuClipse in Table III. It 
shows that 46.68% (2280 out of 4884) of the mutants pro-
duced by MuClipse are equivalent mutants. The ratio of 
equivalent mutants in Dahm [7] was lower than ours. They 
reported that the ratio of equivalent mutants is 31.59% (187 
out of 592) when applying the same set of mutation opera-
tors to traditional Java programs. As mentioned in Section 
II.A, we only considered the final outputs of the golden 
version and the mutants to identify the equivalent mutants. 
On the other hand, Dahm [7] used a different oracle (weak 
mutation [14]) to determine equivalent mutations. The 
inconsistent results suggest that it is necessary to further 
investigate the equivalent mutant problem by varying the 
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TABLE II.  CLASSIFICATION OF MUTANTS 

BY ARCHITECTURAL LEVEL AND FAULT NATURE. 

Fault 

Nature 

Archi- 

tectural 

Level 

Missing 

Con-

struct 

Wrong 

Con-

struct 

Extraneous 

Construct 
Total 

Application 
3 

(0.06%) 

1490 

(30.51%) 

2438 

(49.92%) 

3931 

(80.49%) 

Middleware 
3 

(0.06%) 

379 

(7.76%) 

409 

(8.37%) 

791 

(16.20%) 

Interface 
5 

(0.10%) 

81 

(1.66%) 

76 

(1.56%) 

162 

(3.32%) 

Total 
11 

(0.23%) 

1950 

(39.93%) 

2923 

(59.85%) 

4884 

(100%) 
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strength of the oracle used to kill mutants. In addition, the 
higher equivalent mutant ratios (in relation to traditional 
software) may also confirm the intuition that pervasive 
software can be more observable than traditional software 
because it generates contexts to the external computation 
environment. 

Second, 13.72% (670 out of 4884) generated mutants 
were must-fail mutants. The two above-mentioned statistics 
showed that 60.40% of the mutants were unsuitable for test 
effectiveness evaluation owing to their extreme perceived 
failure rates (namely, a low perceived failure rate of 0.0 for 
equivalent mutants and a high perceived failure rate of 1.0 
for must-fail mutants).  

Owing to page constraint, we only present the detailed 
statistics of faults based on the classification of their 
architecture levels in Figure 1 and Figure 2, and skip the 
corresponding results based on the classification of fault 
natures. Figure 1 partitions all the 1934 (39.6%) normal 
mutants into three architectural levels, and compares their 
results with the overall result, which we refer to as “all 
levels”. The figure shows that, for the all-levels category 

(that is, the leftmost bar), the minimum, median, mean, 
maximum, and standard deviation of perceived failure rates 
are 0.00005, 0.11428, 0.23235, 0.784350, and 0.25267, 
respectively. The corresponding values for the application 
level are 0.00005, 0.11925, 0.26289, 0.784350, and 0.26896, 
respectively. For the middleware level, they are 0.00005, 
0.08515, 0.13979, 0.77265, and 0.16726, respectively, and 
for the interface level, they are 0.01980, 0.20895, 0.32358, 
0.77410, and 0.26623, respectively. In terms of the mean 
perceived failure rates, MuClipse tends to generate mutants 
with high perceived failure rates at all four levels. Take a 
mutant with the mean perceived failure rate of 0.13979 at 
the middleware level as an example. It only needs 20 test 
cases to kill this mutant with a probability of 1 − (1 − 
0.13979)

20
 = 95%. 

Figure 2 groups these 1934 normal mutants at various 
architectural levels based on their perceived failure rates and 
provides us with more detailed analysis of the characteris-
tics of the generated mutants. Figure 2(a) shows that, for all 
normal mutants in the application level, 41.0% (571 out of 
1393) have perceived failure rates of no more than 0.1, 

  
(a) Application level (1393 normal mutants in total) (b) Middleware level (500 normal mutants in total) 

  
(c) Interface level (41 normal mutants in total) (d) All levels (1934 normal mutants in total) 

Figure 2. Perceived failure rates of normal mutants in various architectural levels for WalkPath. 
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which means that a test suite with 30 test cases has a 
probability of 1 − (1 − 0.1)

30
 = 95.77% to kill 59.0% (822 

out of 1393) of the mutants. When manifesting the range 
(0.0, 0.1] for these 571 mutants, we find that 3.3% (46 out 
of 1393) of the mutants having a perceived failure rate 
within the range of (0.00, 0.01], and 4.8% (67 out of 1393) 
of the normal mutants within the perceived failure rate range 
of (0.05, 0.06]. If we regard perceived failure rates no more 
than 0.06 as a cut off, then application-, middleware-, and 
interface-level mutants can contribute 23.12% (322 out of 
1393, with a mean perceived failure rate and a standard 
derivation of 0.033 and 0.0179, respectively), 44.80% (224 
out of 500, with a mean perceived failure rate and a standard 
derivation of 0.028 and 0.0184, respectively), and 4.88% (2 
out of 41, with a mean perceived failure rate and a standard 
derivation of 0.020 and 0.0000, respectively) of the fault 
candidates. In other words, if we assume that 0.06 is the 
upper bound for perceived failure rates of mutants in test 
effectiveness evaluation, then MuClipse can provide 28.34% 
(548) of the fault candidates among 1934 normal mutants. 
The ratio is not high, but the number of normal mutants 
whose perceived failure rates are within the range of (0.00, 
0.06] can be large enough for test effectiveness evaluation. 

In summary, in order to answer research question RQ1, 
we measured “the quality of mutants” generated by 
traditional mutation operators for pervasive software from 
the number of mutants generated, the ratio of equivalent 
mutants, and the ease of killing mutants. The results show 
that traditional mutation operators can generate a large 
number (4884) of compilable mutants for pervasive 
software, among which 46.68% (2280 out of 4884) are 
equivalent mutants and 11.22% (548 out of 4884) have 
perceived failure rates within the range of (0.00, 0.06] that 
can be fault candidates used in test effectiveness evaluation. 
The middleware-level can contribute most to fault 
candidates in terms of fault percentage (44.80%), while the 
application-level can generate the largest number (322) of 
fault candidates. In other words, traditional mutation opera-
tors can generate sufficient candidate mutants to support 
statistical analysis for experiments in pervasive software 
testing. In addition, our results also suggest that the specific 
setting of the adapted WalkPath may cause traditional 
mutation operators to fail to simulate widely-observed omis-
sion faults in practice, and our oracle used in killing mutants 
may also contribute to the relatively high proportion of 
equivalent mutants. Therefore, further experimental studies 
involving in more subjects and different oracles will be 
required to address the limitations related to this case study. 

B. Answering RQ2: Correlation between Context Diversity 

and Mutation Score 

To study the correlation between the context diversity 
and mutation score of a test case, we partitioned the set of 
all mutants according to the architectural level and fault 
nature. We divided the mutants into the application, 
middleware, and interface levels. For the purpose of 
comparison, we also considered all the mutants as one group, 
denoted by the “all” level. Similarly, we classified mutants 
into missing constructs, extraneous constructs, wrong 

constructs, and all constructs. Under each architectural level 
or fault nature, we grouped all the test cases sharing the 
same context diversity value into the same set, and used the 
corresponding context diversity value as the identifier of 
this set. For each such set, we computed the mean mutation 
score for all the test cases in the set. The results for various 
architectural levels and fault natures are shown in Figure 3 
and Figure 4, respectively. 

 

 
Figure 3. Mutation scores of test cases 

for mutants in various architectural levels. 

We observe from Figure 3 that, at each architectural 
level, the mean mutation scores of test cases increase when 
the test cases have higher context diversity. This indicates 
that there is a positive correlation between the context diver-
sity and mutation score of a test case at each level. To verify 
whether such a positive correlation indeed exists, we further 
conducted the Pearson correlation test. As shown in Table 
IV, all Pearson correlation coefficients are larger than 0.9. 
This confirms that, for mutants in every architectural level, 
there is a strong correlation between the context diversity 
and mutation score of a test case. Furthermore, from Figure 
3, there is a large difference of mean mutation scores 
between two levels. For instance, for test cases attaining a 
context diversity of 13, the differences in mean mutation 
scores between the application level and the interface level 
can be more than 20%. 

 
TABLE IV.  PEARSON CORRELATION COEFFICIENTS (PCC) 

AT VARIOUS ARCHITECTURAL LEVELS.  

 All  

Levels 

Application 

Level 

Middleware 

Level 

Interface 

Level 

PCC 0.9527 0.9472 0.9573 0.9400 

 
We also observe from Figure 4 that, the mutation score of 

a test case generally increases as the context diversity of the 
test case increases. We also conducted a Pearson correlation 
test and the results are shown in Table V. All Pearson 
correlation coefficients in the table are also larger than 0.9. 
This further confirms that, for mutants with any of the four 
fault natures, there is a positive correlation between the 
context diversity and mutation score of a test case. Again, the 
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differences in mutation scores among fault natures are 
observably significant. 

 

 

 
Figure 4. Mutation scores of test cases on mutants 

with various fault natures. 

It is worth noting that, although test cases with higher 
context diversity values tend to have higher mean mutation 
scores, for test cases sharing the same context diversity 
values, their mutation scores vary significantly in terms of 
standard derivations. (We omit the detailed data owing to 
space constraints.). Further dynamic analysis will be required 
to find out how a testing method may apply context diversity 
effectively in practice. 

One may wonder whether a longer context stream or 
more intensive context changes may contribute more to 
mutation scores of test cases. Thus, it is natural to ask how 
the amount of context changes correlates with mutation 
scores when the context stream length is fixed. To investi-
gate this problem, we further partitioned all the test cases 
into length-equivalent classes (see Section II.C for the 
corresponding definition). Owing to the page limit and the 
large amount of data, we only present the all-levels category. 

Out of the 24 length-equivalent classes, 12 sets with 
context stream lengths 11 − 14, 19 − 22, and 23 − 26 give 
similar results to either the set with length 7 − 10  or the set 
with length 15 − 18. For ease of presentation, we only show 
12 representative sets with context stream lengths 7 − 10, 15 
− 18, and 27 − 30 in Figure 5. For each plot in the figure, 
the x-axis represents the context diversity while the y-axis 
shows the mean mutation score of the test cases having the 
same context diversity length. To extract the implicit 
correlation between the context diversity and mutation score 
of a test case, we used a linear model y = ax + b to fit the 
raw data, in which x and y were substituted by the context 
diversity and mutation score, respectively, and a and b were 
parameters to be solved by the model. We show 12 fitted 

lines (each representing one length-equivalent class) in 
Figure 5 and their corresponding fitness parameters in Table 
VI. 

We observe that every line in Figure 5 has a positive 
slope. Take the line labeled with “length = 7” as an example. 
It shows that the average mutation score increases from 
0.288 to 0.598 when the context diversity of test cases 
increases from 10 to 20. This observation is also confirmed 
by the data from Table VI, where all the values in the 
column “a” representing the slopes of corresponding lines 
are larger than 0. Since all the test cases on the line have the 
same context stream length, the only identified independent 
variable that can contribute to the increase in context diver-
sity of these test cases is the context change. That is, the 
amount of context changes does have positive correlations 
with the effectiveness of test cases in terms of mean muta-
tion scores.  

Furthermore, we observe from Figure 5 that, in most 
cases (except the lines labeled with “length = 9”, “length 
=28”, and “length = 29”), the slopes of the lines decrease 
with context stream length. For instance, when comparing 
between the lines labeled with “length = 7” and “length = 8” 
in Figure 5, we find that the former line is steeper than the 
latter. This can be further confirmed by the data from Table 
VI, where the value of “a” decreases from 0.031 to 0.020 
when the length increases from 7 to 8, and this trend holds 
except the data with lengths 9, 28, and 29. Both observa-
tions may suggest that the positive correlation between the 
context changes and mutation scores of test cases become 
weaker with the increase of the context stream length. 

TABLE VI.  CURVE-FITTING PARAMETERS FOR DATA IN FIGURE 5 

Length 𝒂 𝒃 Sum of Square of Errors 

7 0.031 –0.022 0.000 

8 0.020 0.020 0.011 

9 0.027 –0.027 0.003 

10 0.018 0.042 0.004 

15 0.010 0.106 0.003 

16 0.011 0.086 0.001 

17 0.011 0.099 0.001 

18 0.007 0.150 0.011 

27 0.005 0.193 0.004 

28 0.017 –0.024 0.002 

29 0.009 0.085 0.029 

30 0.002 0.294 0.027 

 

On the other hand, we observe from Figure 5 a mixed 
result for the correlation between the context stream length 
and mutation score of test cases with the same context 
diversity. Some pairs of lines show a positive correlation 
between the context stream lengths and mutation scores of 
test cases when their context diversity is fixed. For example, 
given any specific context diversity, test cases on the line 
labeled with “length = 27” always achieve lower mutation 
scores than those on the line labeled with “length = 30”. 
However, counterexamples exist to falsify such positive 
correlation for a fixed context diversity. For instance, given 
a fixed context diversity larger than 4, test cases on the line 

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25

M
u

ta
ti

o
n

 s
co

re

Context diversity

All

Extraneous constructs

Wrong constructs

Missing constructs

Table V. PEARSON CORRELATION COEFFICIENTS (PCC) 

FOR VARIOUS FAULT NATURES. 

 All 

Constructs 

Missing 

Construct 

Wrong 

Construct 

Extraneous 

Construct 

PCC 0.9527 0.9409 0.9615 0.9637 

157



 

 

labeled with “length = 7” always obtain higher mutation 
scores than those on the line labeled with “length = 10”. 
This observation may imply that, after a given context 
diversity has been obtained, further increase of the context 
stream length does not necessarily improve the mutation 
scores of test cases. 

(*) If the lengths of the context streams are fixed, the 
context diversity may have a positive correlation with 
the mutation scores of test cases. However, as the 
lengths of context streams increase, the correlation 
between context changes and mutation scores may 
become weaker, even though it still remains positive. In 
addition, given a context diversity value, increasing the 
context stream length does not necessarily improve the 
mutation scores of test cases. 

To confirm the significance of the correlation, we 
conducted Pearson correlation tests on all groups of data. 
We found that there was a mild to strong positive correla-
tion between the context changes and mutation scores of test 
cases. This empirical result may further help researchers 
develop new verification and validation techniques.  

In summary, in order to answer research question RQ2, 
we have studied the correlation between the context diver-
sity and mutation scores of a test case. We have at least 
three observations based on the empirical results. First, there 
is a strong positive correlation between the context diversity 
and mutation scores of test cases, which implies that test 
cases with higher context diversity values seem to present 
higher mean mutation scores. On the other hand, another 
observation that the large variances for the mutation scores 
of test cases sharing the same context diversity also suggests 
that such an improvement in test effectiveness is not stable. 
Second, the correlation between context diversity and 
mutation scores holds if the context stream length is fixed, 
and as the context stream lengths increase, the correlation 
becomes weaker but still remains positive. Third, after a 
given context diversity has been obtained, further increase 
of the context stream length does not necessarily result in 
higher mutation scores.  

C. Threats to Validity 

Threats to construct validity. Construct validity relates 
to whether our defined metrics really measure the properties 
we intend to capture. We applied the most commonly used 
metric, mutation score, as a measure for test effectiveness. 
Other metrics such as the time needed to generate a test 
suite killing all mutants may produce different results. We 
used 40 mutation operators for Java programs to generate a 
large variety of mutants for WalkPath. Other mutation 
operators for different programming languages may produce 
different results. We measured the quality of generated 
mutants in terms of the number of generated mutants, the 
ratio of equivalent mutants to all generated mutants, and the 
ease of killing mutants. The use of other metrics to measure 
the quality of mutants may result in a different conclusion 
for RQ1. We have used a linear model y = ax + b to fit the 
raw data for studying the correlation between context 
changes and mutation scores of test cases. Other nonlinear 

regression models such as the exponential model y = ax
b
 + c 

in [1][17] or the logistic model y = 
𝑒𝑥

1+𝑒𝑥  in [11] may produce 

different results for RQ2. 
Threats to internal validity. Internal validity refers to the 

possibility that uncontrolled factors other than our defined 
metrics (including the mutation operators in RQ1 and the 
context diversity in RQ2) are responsible for the results. In 
our experiment, we have used an existing test pool that 
contains 20,000 RFID data collected in real-life settings for 
non-testing experiments, and this test pool has been shown 
to be large enough in terms of constructing adequate test 
suites that obtain high coverage with respect to data-flow-
based testing criteria [18][19]. The use of different test 
pools may give different empirical results. To reduce human 
errors, we implemented a tool to collect the statistics about 
the context diversity and mutation scores of test cases, as 
well as the perceived failure rates of mutants. We verified 
the tool against small programs and spot-checked the results 
of larger programs.  

Threats to external validity. External validity is con-
cerned with the extent that we can generalize our empirical 
results to other subject programs. A major threat of the expe-
riment is probably that we used only one subject WalkPath in 
this case study (although it has been studied extensively in 
[18][19]). The middleware-based programming model for 
WalkPath is representative for pervasive software, and we 
have explained the necessity of such layered system 
architecture in Section I. On the other hand, the results for 
RQ1 would probably vary according to the specific 
development process, especially because the natures of the 
faults may vary at different verification phases. For instance, 
specific settings of WalkPath (such as infrequently-used 
inheritance features, widely-used field modifier “final”, the 
omission of keyword “this”, and so on ) may make the 
mutation operators fail to generate sufficient missing 
construct mutants. It will be very important, therefore, to 
replicate the study on other subject programs using other 
mutation operators and oracles in order to yield more 
generalizable results for RQ1. 

VI. RELATED WORK 

Two seminal papers on mutation testing, which used mu-
tants to measure the adequacy of test suites, are Hamlet [12] 
and DeMillo et al. [8]. A premise of mutation testing is that 
test cases which detect simple faults can also detect a large 
percentage of complex faults composed from simple faults. 
Offutt et al. [24] have provided empirical support for this 
important premise. To define and generate simple faults 
systemically, many different sets of mutation operators and 
corresponding mutation tools have been proposed for 
different programming languages, such as Proteum [10] for 
C programs and MuJava [20] and MuClipse [29] for Java 
programs. Although empirical results in [1] have shown that 
the effectiveness of test suites in killing mutants can 
accurately measure the effectiveness of test suites in finding 
real faults, it has been reported that the number of mutants 
generated by mutation operators are usually too large. To 
solve this practical difficulty in applying mutant testing, 
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various ways of speeding up mutant testing have been 
proposed, including equivalent mutant elimination [28] and 
finding a sufficient set of mutation operators [22]. On the 
other hand, we have conducted mutant analysis in the perva-
sive software setting and found that traditional mutation 
operators that are not specific to pervasive applications can 
still support the testing of pervasive software in generating 
sufficient mutants. 

Our work is also related with the quality assurance of 
pervasive software. Noting that the output of a test case for 
pervasive applications can be too transient to record, Chan et 
al. [6] advocated the use of metamorphic relations among 
different contexts to address the test oracle problem. 
Observing that layered architecture disseminated the 
complete application logic of pervasive software into 
multiple tiers, Lu et al. [18][19] proposed to assemble 
context-aware entities (including adaptation rules and 
context management components such as CIR services) into 
a traditional control-flow-graph model and developed new 
coverage-based testing criteria to dynamically verify the 
definition and use of variables in pervasive software. Wang 
et al. [34] developed another set of coverage-based testing 
techniques for concurrent pervasive software. Lai et al. [17] 
also proposed a set of coverage-based testing strategies to 
reveal synchronization faults when nesC programs readjust 
its behaviors to the new context. Roman et al. [26] proposed 
Mobile UNITY as a model to represent mobile applications 
and verify them against the specified properties. Sama et al. 
[27] further developed fault models for context-aware 
applications. None of these techniques took advantage of 
context diversity inherent in individual test cases for 
pervasive software. Our work, therefore, complements these 
techniques. 

VII. CONCLUSION 

In this paper, we have presented two research questions 
to investigate the applicability of applying traditional 
mutation operators to generate mutants for pervasive 
software, and the correlation between the context diversity 
and mutation score of a test case. Our empirical results 
confirm that these mutation operators can generate sufficient 
numbers of candidate mutants (548 out of 4884 with 
perceived failure rates within the range of (0.00, 0.06]) to 
support the statistical analysis of pervasive software testing 
experiments. We have also found that test cases with higher 
context diversity tend to have higher mean mutation scores. 

On the other hand, for test cases with the same context 
diversity values, the mutation scores can vary significantly. 
The positive correlation between context diversity and mean 
mutation scores holds if the context stream length is fixed. 
However, as the context stream length increases, the 
correlation becomes weaker, even though it still remains 
positive. Moreover, we have observed that an increase in the 
context stream length does not necessarily result in higher 
mutation scores of test cases after a given context diversity 
has been obtained. These findings suggest that, in order to 
improve test effectiveness, it would be a good idea to select 
test cases with higher context diversity (when different test 
cases have different context stream lengths) or more 
intensive context changes (when different test cases have the 
same context stream length). We have obtained preliminary 
results in [32] and will report them in more details soon. As 
future work, we will extend our empirical study to include 
more subjects, different mutation operators, and diverse 
oracles to kill mutants. We will also study how to refine 
context diversity so that it will more stably contribute to the 
mutation scores of test cases. 
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