
Title Correlating context-awareness and mutation analysis for
pervasive computing systems

Author(s) Wang, H; Zhai, K; Tse, TH

Citation Proceedings - International Conference On Quality Software,
2010, p. 151-160

Issued Date 2010

URL http://hdl.handle.net/10722/93279

Rights International Conference on Quality Software Proceedings.
Copyright © IEEE, Computer Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37920764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Correlating Context-Awareness and Mutation Analysis

for Pervasive Computing Systems

*

Huai Wang, Ke Zhai, and T.H. Tse

†

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

{hwang, kzhai, thtse}@cs.hku.hk

Abstract—Pervasive computing systems often use middleware

as a means to communicate with the changing environment.

However, the interactions with the context-aware middleware

as well as the interactions among applications sharing the same

middleware may introduce faults that are difficult to reveal by

existing testing techniques. Our previous work proposed the

notion of context diversity as a metric to measure the degree of

changes in test inputs for pervasive software. In this paper, we

present a case study on how much context diversity for test

cases relates to fault-based mutants in pervasive software. Our

empirical results show that conventional mutation operators

can generate sufficient candidate mutants to support test effec-

tiveness evaluation of pervasive software, and test cases with

higher context diversity values tend to have higher mean

mutation scores. On the other hand, for test cases sharing the

same context diversity, their mutation scores can vary signifi-

cantly in terms of standard derivations.

Keywords—context diversity; mutation analysis; pervasive

computing

I. INTRODUCTION

Pervasive computing systems provide smart services to
users by capturing environment attributes as contexts and
adjusting software behaviors according to changes in context
values. For example, a smart phone may collect the user’s
location and activity information to decide the notification
mode of incoming calls: it may vibrate silently when the user
is in a meeting, but may beep loudly when the user is watch-
ing a football match.

The development of pervasive software, however, is
challenging. First, the software needs to manage the contexts,
including the collection of diverse context information from
various sources, cleaning up noisy contexts, classifying the
contexts into different categories in an application-usable
manner, interpreting low-level contexts, and reasoning about
the contexts to provide semantic-level information for the
application. Second, the software also needs to communicate
with its computing environment dynamically, such as to
retrieve changing contexts from data sensing components,
record generated contexts to data storage components, and
exchange contexts with other components wirelessly. To

* This research is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project nos. 716507 and

717308).

† All correspondence should be addressed to Prof. T. H. Tse at Department

of Computer Science, The University of Hong Kong, Pokfulam, Hong
Kong. Tel: (+852) 2859 2193. Email: thtse@cs.hku.hk.

ease these development obstacles, many context-aware
studies [2][4][5][25][35][36] proposed the use of middleware
to transparently acquire, disseminate, and interpret the con-
texts on behalf of the applications over ad hoc networks.

Although such a middleware-centric multi-tier architec-
ture favors the development and configuration of pervasive
software, it also brings new challenges to quality assurance.
An application may subscribe to its interested contexts and
define adaptation rules to specify when to activate adaptive
actions. Accordingly, the middleware assembles these sub-
scribed contexts and evaluates adaptation rules to decide
whether it should trigger such actions. In this way, the
explicit interactions between the application and middleware
distribute the application logic over multiple tiers, and hence
the faulty states of a program execution may be propagated
among multiple architectural levels. Moreover, applications
sharing the same context-aware middleware may interact
implicitly through their own features, generally known as
feature interactions [16]. As a result, the adaptation rules of
multiple applications may conflict with one another when
manipulating the same stream of context values. In [31], we
argued that the changes in context values captured in a test
input may play a key role in addressing these testing
challenges brought by context-aware properties of pervasive
software, and proposed to study context diversity as a metric
to measure context changes inherent in test inputs.

In addition, fault-based mutants produced by various
mutation operators have been widely used in empirical
studies in program testing [3][15][21]. They can accurately
simulate the effectiveness of a testing technique over real-life
faults [1]. Since no mutation operator for pervasive applica-
tions has been proposed in the literature, researchers may use
existing mutation operators to produce mutants for pervasive
software. Thus, a natural research question would be: What
is the quality of mutants generated by existing mutation
operators that are not targeted for pervasive software?

In this paper, we present a case study that investigated
selective properties of faults in multi-tier pervasive software
and examined the relationships between context diversity
and mutation analysis. We measured the “quality of mutants”
from three different dimensions, namely, the number of
mutants generated, the ratio of equivalent mutants to all
generated mutants, and the ease of killing mutants. We also
investigate the trend on the number of mutants killed by
individual test cases according to various context diversity
values. It helps researchers understand more about the
relationship between faults and context-aware inputs when
developing verification and validation strategies.

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE

DOI 10.1109/QSIC.2010.57

151

The contribution of this work is two-fold: (1) It confirms
that traditional mutation operators can generate a sufficient
number of candidate mutants to support the statistical analy-
sis of experiments on pervasive software testing. (2) It re-
veals that test cases with higher context diversity values tend
to have higher mean mutation scores, but for test cases with
the same context diversity, their mutation scores can vary
significantly in terms of standard derivation values.

The rest of the paper is organized as follows: Section II
introduces the preliminaries of our work. Section III states
the research questions to be explored. Section IV explains
the experimental setup, and Section V presents the findings
and analysis results. Section VI reviews related work, fol-
lowed by a conclusion in Section VII.

II. PRELIMINARIES

This section recapitulates the background of our case study.

A. Terminology in Mutation Analysis

To generate faulty versions automatically, one may apply
a set of mutation operators to the code to produce mutants,
which are variants of the correct program containing at most
one fault. This technique to generate faulty versions is called
mutant generation. The process to analyze when mutants fail
and which test cases trigger such failures is referred to as
mutation analysis [1].

Formally, given a set of mutation operators {1, 2, ...

n}, each i is a function that takes a program P as input and

produces a set of mutants i(P). The program P is referred to
as the golden version, which is regarded as being free from
major faults. The output of a specific execution of a mutant
M (or the golden version P) on a test case t is denoted by M(t)
(or P(t), respectively). Then, a test case t is said to kill a
mutant M if M(t) ≠ P(t) [22] (which means that the mutant M
generates an output different from that of the golden version
P when M and P take t as input), and t is referred to as failed
test case with respect to M. The mutation score of a test case
t with respect to a set of mutants {M1, M2, …, Mn} is defined
as the percentage of the mutants killed by t.

For each mutant M, we define its perceived failure rate

as FR(M) =
 {𝑡∈𝑇𝑃 𝑀(𝑡)≠𝑃(𝑡)}|

|𝑇𝑃|
, which is the ratio of the

number of failed test cases |{t ∈ TP | M(t) ≠ P(t)}| to the test
pool size |TP|. For example, a mutant with the perceived
failure rate of 0.2 means that 20% of the test cases in the test
pool can kill this mutant, and the probability of 10 random
test cases to kill it is 1 − (1 − 0.2)

10
 = 99.99%. Based on the

perceived failure rate, every mutant is classified as an
equivalent, must-fail, or normal mutant. A mutant M is said
to be an equivalent mutant (with respect to the golden
version P) if its perceived failure rate is 0.0, which means
that no test case in the entire test pool can kill M. A mutant
M is said to be a must-fail mutant if its perceived failure rate
is 1.0, which means that every test case in the test pool will
kill this mutant. Mutants with perceived failure rates within
the range of (0.0, 1.0) are referred to be normal mutants.
Both must-fail mutants and normal mutants are non-
equivalent mutants.

B. Terminology of Pervasive Software

Pervasive software often monitors continuously the
values of captured contexts. A context variable v is a charac-
terization of contexts. We model it as a tuple (field1, field2,
…, fieldu) such that each fieldw (w = 1, 2, …, u) is an
environment attribute used by the pervasive software [18]. A
context instance ins(v) is an instantiated context variable
such that every field in v has been instantiated. It is a tuple
(f1, f2, …, fu) such that each fw (w = 1, 2, …, u) takes the form
of (fieldw = valuew: typew, timestamp), where valuew, typew,
and timestamp are the instantiation value, data type, and
sampling time for fieldw, respectively. For ease of
presentation, we will write valuew instead of (fieldw = valuew:
typew, time). A context stream cstream(v), serving as test
inputs of pervasive software, is a time series of the form

𝑖𝑛𝑠(𝑣)𝑡1 , 𝑖𝑛𝑠(𝑣)𝑡2 , …, 𝑖𝑛𝑠(𝑣)𝑡𝑚 , where each 𝑖𝑛𝑠(𝑣)𝑡𝑠 (s

= 1, 2, …, m and ts < ts+1) in cstream(v) is a context instance
sampled at time ts.

Let us give an example. Suppose a smart phone has a
two-dimensional context variable (location, activity). When a
user presents a report in a meeting room, the context variable
is initialized as a context instance (meeting room, present a
report). As time goes on, the context stream sequence may
capture a series of activities, such as (meeting room, present
a report), (meeting room, listen to music), and (home, sleep).

C. Terminology of Context Diversity

Context diversity [30] CD(cstream(v)) is a metric that
measures the amount of context changes inherent in a
context stream cstream(v). More precisely, we compute the
Hamming distance [13] between every pair of consecutive
instances in a given context stream. It is formulated as

 𝐻𝐷 𝑖𝑛𝑠 𝑣 𝑖 , 𝑖𝑛𝑠 𝑣 𝑖+1
𝑙−1

𝑖=1

where HD(ins(v)i, ins(v)i+1) is the Hamming distance [13]
between a pair of context instances ins(v)i and ins(v)i+1 in the
context stream cstream(v), and l is the length of the context
stream cstream(v). Take the context stream introduced in
Section II.B for an example. The sum of Hamming distances
for the location dimension of the context variable is 1, and
that for the activity dimension is 2. The context diversity of
the sequence is, therefore, 3.

A higher context diversity of a test case can result either
from a longer context stream or from more intensive context
changes. To facilitate identifying the impact of context
changes to the effectiveness of test cases, we partition all test
cases into equivalence classes, each class containing test
cases with the same context stream length. We refer to each
class as a length-equivalent class in the rest of the paper.

III. RESEARCH QUESTIONS

We present in this section the research questions to
investigate in our case study.

RQ1: Do mutation operators for traditional programs
generate high-quality mutants for pervasive software? Since
there are no specific mutation operators for pervasive soft-
ware, it is desirable to explore whether it is favorable to use

152

traditional mutation operators in the setting of pervasive
software. By answering this research question, we may be
able to identify the applicability of mutation analysis to
middleware-based pervasive software.

RQ2: Is there any correlation between context diversity
and mutation score of a test case? In our previous work [30],
we argued that context changes contained in individual test
cases play a key role in testing context-aware properties of
pervasive software, and proposed the concept of context
diversity to capture such information. However, we did not
explore the kind of context diversity (namely, higher or
lower diversity) that can contribute more to the improvement
of test effectiveness. More importantly, it is desirable to
determine whether test cases with higher context diversity
caused by more intensive context changes contribute to
better test effectiveness when the context stream length is
fixed. By addressing this research question, it can provide
guidance to the selection of more efficient test cases.

IV. EXPERIMENTAL SETUP

We describe the set up of the experiment in this section.

A. Subject

We used WalkPath as the middleware-based pervasive
software in our empirical study. It was also used as the
subject in [18][19]. It consists of a middleware Cabot [35]
and an application that implements LANDMARC, an RFID-
based location sensing algorithm [23]. Cabot tracks a
person’s walking path in indoor space equipped with RFID
sensors. The person’s current location is obtained via
LANDMARC by capturing and analyzing the RFID context.
WalkPath utilizes the location data as incoming contexts and
optionally accepts or repairs them through a set of Context-
Inconsistency-Resolution (CIR) services [35] provided by
Cabot. When a person moves, the application senses their
location from the surroundings and reacts accordingly. The
whole system is written in Java.

In our case study, WalkPath was modeled in three
architectural levels, namely the application, middleware, and
interface levels. The application level defined the adaptive
behaviors, the middleware level managed the context and
evaluated the adaptation rules subscribed by the application,
and the interface level consisted of a caller, callee, or
callback statement to enable interactions between the
application and the middleware.

To ensure that the experiment would end within manage-
able time, we downsized the middleware to contain only
critical components (such as context acquisition, context
reference, and inconsistency resolution) to support pervasive
software capability for the execution of WalkPath, and
removed other components such as context remote-
transmission and database access. The application, the
middleware, and the interface contained 231, 483, and 83
non-commented lines of code (LOCs), respectively. Thus,
the total size of the adapted WalkPath was 797 LOCs.

B. Mutation Operators and Fault-Based Mutants

To the best of our knowledge, no mutation operator
specific to pervasive software has been proposed in the

literature. We chose to use the mutation operators proposed
for Java programs to produce faulty versions for WalkPath.
According to [30], there are 12 method-level and 29 class-
level mutation operators for Java programs, but one class-
level mutation operator (AMC) tended to create either
equivalent mutants or mutants failing to be compiled, and
was excluded from the analysis in [20]. After skipping AMC,
we used MuClipse

1
 to generate fault-based mutants

according to all the remaining 40 mutation operators. We
used all the generated faults in our study.

We then applied the entire test pool to obtain execution
statistics for every mutant. For each mutant, we collected
diverse statistics information for further analysis, such as the
sets of failed test cases and their context diversity
distributions.

C. Classification Criteria

We classified all the 40 mutation operators according to
their respective fault natures [9], namely, missing constructs,
wrong constructs, and extraneous constructs. A fault is
categorized as a missing construct if a variable assignment
or initialization, logical condition, parameter or expression
in a function call, or part of an algorithm or program module
is missing or incomplete. Faults due to wrong or extraneous
constructs are similarly defined. The classification results
are shown in Table I. We observe that, out of the 40
mutation operators, 12 are used to delete program constructs,
18 are applied to replace or modify program constructs, and
the remaining 10 are employed to insert program constructs.

TABLE I. CLASSIFICATION OF MUTATION OPERATORS

BY FAULT NATURE.

Fault Nature Mutation Operators Count

Missing

Construct

AOD, COD, LOD, IHD, IOD, ISD, IPC,

PCD, OMD, JTD, JSD, JID
12

Wrong

Construct

AOR, ROR, COR, SOR. LOR, ASR,
IOP, IOR, PMD, PPD, PCC, PRV,

OMR, OAC, EOA, EOC, EAM, EMM

18

Extraneous
Construct

AOI, COI, LOI, IHI, ISI, PNC, PCI, JTI,
JSI, JDC

10

Total 40

After partitioning the mutation operators, we examined

the locations of the mutants they produced. We labeled each
mutant according to one of the three architectural levels.
This enabled us to study the distributions of the mutants
over the architectural tiers. The results will be discussed in
Section V.A.

D. Test Pool and Context Streams

In our experiment, we reused an existing test pool for
WalkPath, which contained 20,000 different test cases, each
consisting of real-world data captured via RFID readers and
used in previous experiments [18][19]. The test pool was
shown to be capable of generating test sets that fulfill
different data-flow testing criteria [18][19].

A test case for WalkPath consists of a sequence of
locations as inputs. In WalkPath, Cabot tracks a user’s loca-

1 Available at http://muclipse.sourceforge.net.

153

tion and reports the estimated coordinates to the application.
After receiving the coordinates, the application invokes CIR
services of Cabot to detect potentially inconsistent contexts.
After the user has ended the walk, the application reports the
trace of the user’s locations. In our experiment, we used the
sequence of location data as the context stream for WalkPath.

E. Test Effectiveness Measure

The effectiveness of a test case c is simulated by its
mutation score [24]. More formally, given a mutation

operator i and a program P, Nmi(P) represents the number

of normal mutants generated by applying i to P, and Kmi(P)
denotes the number of normal mutants from Nmi(P) killed by
c. The test effectiveness of c with respect to mutants gener-

ated by the mutation operator i is measured by
𝐾𝑚 𝑖(𝑃)

𝑁𝑚 𝑖(𝑃)
, and

the test effectiveness of c with respect to a set of mutants

{Nm1(P), Nm2(P), …, Nmn(P)} is measured by
 𝐾𝑚 𝑖(𝑃)
𝑛
𝑖=1

 𝑁𝑚 𝑖(𝑃)
𝑛
𝑖=1

.

Our metric to measure the effectiveness of a test case is
similar to that in other work such as [24].

V. DATA ANALYSIS OF EMPIRICAL STUDY

We present our empirical findings in this section.

A. Answering RQ1: Quality of Generated Mutants

We categorize all the generated mutants according to the
architectural levels and fault natures and show the results in
Table II. We observe that, MuClipse does generate a large
number of mutants (4884) for pervasive software. On the
other hand, the total number of mutants labeled with miss-
ing constructs is very small (only 11 out of 4884). This
result contradicts the presence of widely-observed omission
faults in real-world practices [9][33] as well as the experi-
ments results in [20], which reports that the mutation
operators IOD, JID, and JTD can generate 496, 115, and
203 missing construct mutants when applied to 264 BCEL
classes

2
. After examining our code in detail, we found that

this inconsistency may be caused by the following factors:
(1) The inheritance features for object-oriented software are
not widely-used in the adapted WalkPath, which makes it

2 Available at http://jakarta.apache.org/bcel/

hard for IOD to find overriding methods to delete. (2) Many
member variables of classes are modified by the keyword
“final” in the adapted WalkPath, which makes it hard for
JID to delete initializations of member variables. (3) The
keyword “this” is omitted as long as the omission does not
cause compilation errors in the currently adapted WalkPath,
which makes it hard for JTD to find the keyword “this” to
delete.

Neither equivalent mutants nor must-fail mutants are
good candidates for test effectiveness evaluation because
they may underestimate and overestimate the effectiveness
of testing techniques, respectively. Thus, a desirable mutant
tool should generate a large number of (normal) mutants
that are neither equivalent nor must-fail.

TABLE III. EQUIVALENT AND NON-EQUIVALENT MUTANTS

GENERATED BY MUCLIPSE.

Architectural

Level

Equivalent

Mutants

Non-equivalent

Mutants
Total

Must-fail

Mutants

Normal

Mutants

Application
1946

(39.84%)

592

(12.12%)

1393

(28.52%)

3931

(80.49%)

Middleware
277

(5.67%)

14

(0.29%)

500

(10.24%)

791

(16.20%)

Interface
57

(1.17%)

64

(1.31%)

41

(0.84%)

162

(3.32%)

Total
2280

(46.68%)

670

(13.72%)

1934

(39.60%)

4884

(100%)

Figure 1. Perceived failure rates of mutants in various architectural levels.

We present the number of equivalent, must-fail and
normal mutants generated by MuClipse in Table III. It
shows that 46.68% (2280 out of 4884) of the mutants pro-
duced by MuClipse are equivalent mutants. The ratio of
equivalent mutants in Dahm [7] was lower than ours. They
reported that the ratio of equivalent mutants is 31.59% (187
out of 592) when applying the same set of mutation opera-
tors to traditional Java programs. As mentioned in Section
II.A, we only considered the final outputs of the golden
version and the mutants to identify the equivalent mutants.
On the other hand, Dahm [7] used a different oracle (weak
mutation [14]) to determine equivalent mutations. The
inconsistent results suggest that it is necessary to further
investigate the equivalent mutant problem by varying the

0

0.2

0.4

0.6

0.8

1

All Application Middleware Interface

P
er

ce
iv

ed
 f

ai
lu

re
 r

at
e

TABLE II. CLASSIFICATION OF MUTANTS

BY ARCHITECTURAL LEVEL AND FAULT NATURE.

Fault

Nature

Archi-

tectural

Level

Missing

Con-

struct

Wrong

Con-

struct

Extraneous

Construct
Total

Application
3

(0.06%)

1490

(30.51%)

2438

(49.92%)

3931

(80.49%)

Middleware
3

(0.06%)

379

(7.76%)

409

(8.37%)

791

(16.20%)

Interface
5

(0.10%)

81

(1.66%)

76

(1.56%)

162

(3.32%)

Total
11

(0.23%)

1950

(39.93%)

2923

(59.85%)

4884

(100%)

154

strength of the oracle used to kill mutants. In addition, the
higher equivalent mutant ratios (in relation to traditional
software) may also confirm the intuition that pervasive
software can be more observable than traditional software
because it generates contexts to the external computation
environment.

Second, 13.72% (670 out of 4884) generated mutants
were must-fail mutants. The two above-mentioned statistics
showed that 60.40% of the mutants were unsuitable for test
effectiveness evaluation owing to their extreme perceived
failure rates (namely, a low perceived failure rate of 0.0 for
equivalent mutants and a high perceived failure rate of 1.0
for must-fail mutants).

Owing to page constraint, we only present the detailed
statistics of faults based on the classification of their
architecture levels in Figure 1 and Figure 2, and skip the
corresponding results based on the classification of fault
natures. Figure 1 partitions all the 1934 (39.6%) normal
mutants into three architectural levels, and compares their
results with the overall result, which we refer to as “all
levels”. The figure shows that, for the all-levels category

(that is, the leftmost bar), the minimum, median, mean,
maximum, and standard deviation of perceived failure rates
are 0.00005, 0.11428, 0.23235, 0.784350, and 0.25267,
respectively. The corresponding values for the application
level are 0.00005, 0.11925, 0.26289, 0.784350, and 0.26896,
respectively. For the middleware level, they are 0.00005,
0.08515, 0.13979, 0.77265, and 0.16726, respectively, and
for the interface level, they are 0.01980, 0.20895, 0.32358,
0.77410, and 0.26623, respectively. In terms of the mean
perceived failure rates, MuClipse tends to generate mutants
with high perceived failure rates at all four levels. Take a
mutant with the mean perceived failure rate of 0.13979 at
the middleware level as an example. It only needs 20 test
cases to kill this mutant with a probability of 1 − (1 −
0.13979)

20
 = 95%.

Figure 2 groups these 1934 normal mutants at various
architectural levels based on their perceived failure rates and
provides us with more detailed analysis of the characteris-
tics of the generated mutants. Figure 2(a) shows that, for all
normal mutants in the application level, 41.0% (571 out of
1393) have perceived failure rates of no more than 0.1,

(a) Application level (1393 normal mutants in total) (b) Middleware level (500 normal mutants in total)

(c) Interface level (41 normal mutants in total) (d) All levels (1934 normal mutants in total)

Figure 2. Perceived failure rates of normal mutants in various architectural levels for WalkPath.

41.0%25.8%

2.4%

2.1%

3.0%

3.0%

6.0%

16.7%
0.0%

0.0%

0 200 400 600

(0.0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]

(0.9,1.0]

Number of mutants

P
er

v
ei

v
ed

 f
a

il
u

re
 r

a
te

 r
a

n
g

e

56.2%18.4%

11.0%

7.0%

1.4%

0.8%

3.0%

2.2%

0.0%

0.0%

0 100 200 300

(0.0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]

(0.9,1.0]

Number of mutants

P
er

v
ei

v
ed

 f
a

il
u

re
 r

a
te

 r
a

n
g

e

22.0%

22.0%

14.6%

9.7%

0.0%

7.3%

2.4%

22.0%0.0%

0.0%

0 5 10 15 20 25

(0.0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]

(0.9,1.0]

Number of mutants

P
er

v
ei

v
ed

 f
a

il
u

re
 r

a
te

 r
a

n
g

e

44.5%
23.8%

4.9%

3.5%

2.5%

2.5%

5.1%

13.2%0%

0%

0 200 400 600 800 1000

(0.0,0.1]

(0.1,0.2]

(0.2,0.3]

(0.3,0.4]

(0.4,0.5]

(0.5,0.6]

(0.6,0.7]

(0.7,0.8]

(0.8,0.9]

(0.9,1.0]

Number of mutants

P
e
r
v

e
iv

e
d

 f
a

il
u

r
e
 r

a
te

 r
a

n
g

e

3.3%

2.0%

4.7%

2.7%

5.6%

4.8%

4.2%

2.8%

4.4%

6.5%

(0.00,0.01]

(0.01,0.02]

(0.02,0.03]

(0.03,0.04]

(0.04,0.05]

(0.05,0.06]

(0.06,0.07]

(0.07,0.08]

(0.08,0.09]

(0.09,0.10]

8.4%

11.4%
3.8%
3.6%

13.8%
3.8%

2.4%
2.4%

4.2%
2.4%

(0.00,0.01]
(0.01,0.02]
(0.02,0.03]
(0.03,0.04]

(0.04,0.05]
(0.05,0.06]
(0.06,0.07]
(0.07,0.08]
(0.08,0.09]
(0.09,0.10]

zoom in

zoom in

zoom in
 zoom in

0.0%

4.9%

0.0%

0.0%

0.0%

0.0%

0.0%

9.8%2.4%

4.9%

(0.00,0.01]

(0.01,0.02]

(0.02,0.03]

(0.03,0.04]

(0.04,0.05]

(0.05,0.06]

(0.06,0.07]

(0.07,0.08]

(0.08,0.09]

(0.09,0.10]

4.6%

4.5%

4.3%

2.9% 7.6%

4.4%

3.6%

2.9%

4.3%

5.4%

(0.00,0.01]

(0.01,0.02]

(0.02,0.03]

(0.03,0.04]

(0.04,0.05]

(0.05,0.06]

(0.06,0.07]

(0.07,0.08]

(0.08,0.09]

(0.09,0.10]

155

which means that a test suite with 30 test cases has a
probability of 1 − (1 − 0.1)

30
 = 95.77% to kill 59.0% (822

out of 1393) of the mutants. When manifesting the range
(0.0, 0.1] for these 571 mutants, we find that 3.3% (46 out
of 1393) of the mutants having a perceived failure rate
within the range of (0.00, 0.01], and 4.8% (67 out of 1393)
of the normal mutants within the perceived failure rate range
of (0.05, 0.06]. If we regard perceived failure rates no more
than 0.06 as a cut off, then application-, middleware-, and
interface-level mutants can contribute 23.12% (322 out of
1393, with a mean perceived failure rate and a standard
derivation of 0.033 and 0.0179, respectively), 44.80% (224
out of 500, with a mean perceived failure rate and a standard
derivation of 0.028 and 0.0184, respectively), and 4.88% (2
out of 41, with a mean perceived failure rate and a standard
derivation of 0.020 and 0.0000, respectively) of the fault
candidates. In other words, if we assume that 0.06 is the
upper bound for perceived failure rates of mutants in test
effectiveness evaluation, then MuClipse can provide 28.34%
(548) of the fault candidates among 1934 normal mutants.
The ratio is not high, but the number of normal mutants
whose perceived failure rates are within the range of (0.00,
0.06] can be large enough for test effectiveness evaluation.

In summary, in order to answer research question RQ1,
we measured “the quality of mutants” generated by
traditional mutation operators for pervasive software from
the number of mutants generated, the ratio of equivalent
mutants, and the ease of killing mutants. The results show
that traditional mutation operators can generate a large
number (4884) of compilable mutants for pervasive
software, among which 46.68% (2280 out of 4884) are
equivalent mutants and 11.22% (548 out of 4884) have
perceived failure rates within the range of (0.00, 0.06] that
can be fault candidates used in test effectiveness evaluation.
The middleware-level can contribute most to fault
candidates in terms of fault percentage (44.80%), while the
application-level can generate the largest number (322) of
fault candidates. In other words, traditional mutation opera-
tors can generate sufficient candidate mutants to support
statistical analysis for experiments in pervasive software
testing. In addition, our results also suggest that the specific
setting of the adapted WalkPath may cause traditional
mutation operators to fail to simulate widely-observed omis-
sion faults in practice, and our oracle used in killing mutants
may also contribute to the relatively high proportion of
equivalent mutants. Therefore, further experimental studies
involving in more subjects and different oracles will be
required to address the limitations related to this case study.

B. Answering RQ2: Correlation between Context Diversity

and Mutation Score

To study the correlation between the context diversity
and mutation score of a test case, we partitioned the set of
all mutants according to the architectural level and fault
nature. We divided the mutants into the application,
middleware, and interface levels. For the purpose of
comparison, we also considered all the mutants as one group,
denoted by the “all” level. Similarly, we classified mutants
into missing constructs, extraneous constructs, wrong

constructs, and all constructs. Under each architectural level
or fault nature, we grouped all the test cases sharing the
same context diversity value into the same set, and used the
corresponding context diversity value as the identifier of
this set. For each such set, we computed the mean mutation
score for all the test cases in the set. The results for various
architectural levels and fault natures are shown in Figure 3
and Figure 4, respectively.

Figure 3. Mutation scores of test cases

for mutants in various architectural levels.

We observe from Figure 3 that, at each architectural
level, the mean mutation scores of test cases increase when
the test cases have higher context diversity. This indicates
that there is a positive correlation between the context diver-
sity and mutation score of a test case at each level. To verify
whether such a positive correlation indeed exists, we further
conducted the Pearson correlation test. As shown in Table
IV, all Pearson correlation coefficients are larger than 0.9.
This confirms that, for mutants in every architectural level,
there is a strong correlation between the context diversity
and mutation score of a test case. Furthermore, from Figure
3, there is a large difference of mean mutation scores
between two levels. For instance, for test cases attaining a
context diversity of 13, the differences in mean mutation
scores between the application level and the interface level
can be more than 20%.

TABLE IV. PEARSON CORRELATION COEFFICIENTS (PCC)

AT VARIOUS ARCHITECTURAL LEVELS.

 All

Levels

Application

Level

Middleware

Level

Interface

Level

PCC 0.9527 0.9472 0.9573 0.9400

We also observe from Figure 4 that, the mutation score of

a test case generally increases as the context diversity of the
test case increases. We also conducted a Pearson correlation
test and the results are shown in Table V. All Pearson
correlation coefficients in the table are also larger than 0.9.
This further confirms that, for mutants with any of the four
fault natures, there is a positive correlation between the
context diversity and mutation score of a test case. Again, the

0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25

M
u

ta
ti

o
n

 s
co

re
Context diversity

All

Application

156

differences in mutation scores among fault natures are
observably significant.

Figure 4. Mutation scores of test cases on mutants

with various fault natures.

It is worth noting that, although test cases with higher
context diversity values tend to have higher mean mutation
scores, for test cases sharing the same context diversity
values, their mutation scores vary significantly in terms of
standard derivations. (We omit the detailed data owing to
space constraints.). Further dynamic analysis will be required
to find out how a testing method may apply context diversity
effectively in practice.

One may wonder whether a longer context stream or
more intensive context changes may contribute more to
mutation scores of test cases. Thus, it is natural to ask how
the amount of context changes correlates with mutation
scores when the context stream length is fixed. To investi-
gate this problem, we further partitioned all the test cases
into length-equivalent classes (see Section II.C for the
corresponding definition). Owing to the page limit and the
large amount of data, we only present the all-levels category.

Out of the 24 length-equivalent classes, 12 sets with
context stream lengths 11 − 14, 19 − 22, and 23 − 26 give
similar results to either the set with length 7 − 10 or the set
with length 15 − 18. For ease of presentation, we only show
12 representative sets with context stream lengths 7 − 10, 15
− 18, and 27 − 30 in Figure 5. For each plot in the figure,
the x-axis represents the context diversity while the y-axis
shows the mean mutation score of the test cases having the
same context diversity length. To extract the implicit
correlation between the context diversity and mutation score
of a test case, we used a linear model y = ax + b to fit the
raw data, in which x and y were substituted by the context
diversity and mutation score, respectively, and a and b were
parameters to be solved by the model. We show 12 fitted

lines (each representing one length-equivalent class) in
Figure 5 and their corresponding fitness parameters in Table
VI.

We observe that every line in Figure 5 has a positive
slope. Take the line labeled with “length = 7” as an example.
It shows that the average mutation score increases from
0.288 to 0.598 when the context diversity of test cases
increases from 10 to 20. This observation is also confirmed
by the data from Table VI, where all the values in the
column “a” representing the slopes of corresponding lines
are larger than 0. Since all the test cases on the line have the
same context stream length, the only identified independent
variable that can contribute to the increase in context diver-
sity of these test cases is the context change. That is, the
amount of context changes does have positive correlations
with the effectiveness of test cases in terms of mean muta-
tion scores.

Furthermore, we observe from Figure 5 that, in most
cases (except the lines labeled with “length = 9”, “length
=28”, and “length = 29”), the slopes of the lines decrease
with context stream length. For instance, when comparing
between the lines labeled with “length = 7” and “length = 8”
in Figure 5, we find that the former line is steeper than the
latter. This can be further confirmed by the data from Table
VI, where the value of “a” decreases from 0.031 to 0.020
when the length increases from 7 to 8, and this trend holds
except the data with lengths 9, 28, and 29. Both observa-
tions may suggest that the positive correlation between the
context changes and mutation scores of test cases become
weaker with the increase of the context stream length.

TABLE VI. CURVE-FITTING PARAMETERS FOR DATA IN FIGURE 5

Length 𝒂 𝒃 Sum of Square of Errors

7 0.031 –0.022 0.000

8 0.020 0.020 0.011

9 0.027 –0.027 0.003

10 0.018 0.042 0.004

15 0.010 0.106 0.003

16 0.011 0.086 0.001

17 0.011 0.099 0.001

18 0.007 0.150 0.011

27 0.005 0.193 0.004

28 0.017 –0.024 0.002

29 0.009 0.085 0.029

30 0.002 0.294 0.027

On the other hand, we observe from Figure 5 a mixed
result for the correlation between the context stream length
and mutation score of test cases with the same context
diversity. Some pairs of lines show a positive correlation
between the context stream lengths and mutation scores of
test cases when their context diversity is fixed. For example,
given any specific context diversity, test cases on the line
labeled with “length = 27” always achieve lower mutation
scores than those on the line labeled with “length = 30”.
However, counterexamples exist to falsify such positive
correlation for a fixed context diversity. For instance, given
a fixed context diversity larger than 4, test cases on the line

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25

M
u

ta
ti

o
n

 s
co

re

Context diversity

All

Extraneous constructs

Wrong constructs

Missing constructs

Table V. PEARSON CORRELATION COEFFICIENTS (PCC)

FOR VARIOUS FAULT NATURES.

 All

Constructs

Missing

Construct

Wrong

Construct

Extraneous

Construct

PCC 0.9527 0.9409 0.9615 0.9637

157

labeled with “length = 7” always obtain higher mutation
scores than those on the line labeled with “length = 10”.
This observation may imply that, after a given context
diversity has been obtained, further increase of the context
stream length does not necessarily improve the mutation
scores of test cases.

(*) If the lengths of the context streams are fixed, the
context diversity may have a positive correlation with
the mutation scores of test cases. However, as the
lengths of context streams increase, the correlation
between context changes and mutation scores may
become weaker, even though it still remains positive. In
addition, given a context diversity value, increasing the
context stream length does not necessarily improve the
mutation scores of test cases.

To confirm the significance of the correlation, we
conducted Pearson correlation tests on all groups of data.
We found that there was a mild to strong positive correla-
tion between the context changes and mutation scores of test
cases. This empirical result may further help researchers
develop new verification and validation techniques.

In summary, in order to answer research question RQ2,
we have studied the correlation between the context diver-
sity and mutation scores of a test case. We have at least
three observations based on the empirical results. First, there
is a strong positive correlation between the context diversity
and mutation scores of test cases, which implies that test
cases with higher context diversity values seem to present
higher mean mutation scores. On the other hand, another
observation that the large variances for the mutation scores
of test cases sharing the same context diversity also suggests
that such an improvement in test effectiveness is not stable.
Second, the correlation between context diversity and
mutation scores holds if the context stream length is fixed,
and as the context stream lengths increase, the correlation
becomes weaker but still remains positive. Third, after a
given context diversity has been obtained, further increase
of the context stream length does not necessarily result in
higher mutation scores.

C. Threats to Validity

Threats to construct validity. Construct validity relates
to whether our defined metrics really measure the properties
we intend to capture. We applied the most commonly used
metric, mutation score, as a measure for test effectiveness.
Other metrics such as the time needed to generate a test
suite killing all mutants may produce different results. We
used 40 mutation operators for Java programs to generate a
large variety of mutants for WalkPath. Other mutation
operators for different programming languages may produce
different results. We measured the quality of generated
mutants in terms of the number of generated mutants, the
ratio of equivalent mutants to all generated mutants, and the
ease of killing mutants. The use of other metrics to measure
the quality of mutants may result in a different conclusion
for RQ1. We have used a linear model y = ax + b to fit the
raw data for studying the correlation between context
changes and mutation scores of test cases. Other nonlinear

regression models such as the exponential model y = ax
b
 + c

in [1][17] or the logistic model y =
𝑒𝑥

1+𝑒𝑥 in [11] may produce

different results for RQ2.
Threats to internal validity. Internal validity refers to the

possibility that uncontrolled factors other than our defined
metrics (including the mutation operators in RQ1 and the
context diversity in RQ2) are responsible for the results. In
our experiment, we have used an existing test pool that
contains 20,000 RFID data collected in real-life settings for
non-testing experiments, and this test pool has been shown
to be large enough in terms of constructing adequate test
suites that obtain high coverage with respect to data-flow-
based testing criteria [18][19]. The use of different test
pools may give different empirical results. To reduce human
errors, we implemented a tool to collect the statistics about
the context diversity and mutation scores of test cases, as
well as the perceived failure rates of mutants. We verified
the tool against small programs and spot-checked the results
of larger programs.

Threats to external validity. External validity is con-
cerned with the extent that we can generalize our empirical
results to other subject programs. A major threat of the expe-
riment is probably that we used only one subject WalkPath in
this case study (although it has been studied extensively in
[18][19]). The middleware-based programming model for
WalkPath is representative for pervasive software, and we
have explained the necessity of such layered system
architecture in Section I. On the other hand, the results for
RQ1 would probably vary according to the specific
development process, especially because the natures of the
faults may vary at different verification phases. For instance,
specific settings of WalkPath (such as infrequently-used
inheritance features, widely-used field modifier “final”, the
omission of keyword “this”, and so on) may make the
mutation operators fail to generate sufficient missing
construct mutants. It will be very important, therefore, to
replicate the study on other subject programs using other
mutation operators and oracles in order to yield more
generalizable results for RQ1.

VI. RELATED WORK

Two seminal papers on mutation testing, which used mu-
tants to measure the adequacy of test suites, are Hamlet [12]
and DeMillo et al. [8]. A premise of mutation testing is that
test cases which detect simple faults can also detect a large
percentage of complex faults composed from simple faults.
Offutt et al. [24] have provided empirical support for this
important premise. To define and generate simple faults
systemically, many different sets of mutation operators and
corresponding mutation tools have been proposed for
different programming languages, such as Proteum [10] for
C programs and MuJava [20] and MuClipse [29] for Java
programs. Although empirical results in [1] have shown that
the effectiveness of test suites in killing mutants can
accurately measure the effectiveness of test suites in finding
real faults, it has been reported that the number of mutants
generated by mutation operators are usually too large. To
solve this practical difficulty in applying mutant testing,

158

various ways of speeding up mutant testing have been
proposed, including equivalent mutant elimination [28] and
finding a sufficient set of mutation operators [22]. On the
other hand, we have conducted mutant analysis in the perva-
sive software setting and found that traditional mutation
operators that are not specific to pervasive applications can
still support the testing of pervasive software in generating
sufficient mutants.

Our work is also related with the quality assurance of
pervasive software. Noting that the output of a test case for
pervasive applications can be too transient to record, Chan et
al. [6] advocated the use of metamorphic relations among
different contexts to address the test oracle problem.
Observing that layered architecture disseminated the
complete application logic of pervasive software into
multiple tiers, Lu et al. [18][19] proposed to assemble
context-aware entities (including adaptation rules and
context management components such as CIR services) into
a traditional control-flow-graph model and developed new
coverage-based testing criteria to dynamically verify the
definition and use of variables in pervasive software. Wang
et al. [34] developed another set of coverage-based testing
techniques for concurrent pervasive software. Lai et al. [17]
also proposed a set of coverage-based testing strategies to
reveal synchronization faults when nesC programs readjust
its behaviors to the new context. Roman et al. [26] proposed
Mobile UNITY as a model to represent mobile applications
and verify them against the specified properties. Sama et al.
[27] further developed fault models for context-aware
applications. None of these techniques took advantage of
context diversity inherent in individual test cases for
pervasive software. Our work, therefore, complements these
techniques.

VII. CONCLUSION

In this paper, we have presented two research questions
to investigate the applicability of applying traditional
mutation operators to generate mutants for pervasive
software, and the correlation between the context diversity
and mutation score of a test case. Our empirical results
confirm that these mutation operators can generate sufficient
numbers of candidate mutants (548 out of 4884 with
perceived failure rates within the range of (0.00, 0.06]) to
support the statistical analysis of pervasive software testing
experiments. We have also found that test cases with higher
context diversity tend to have higher mean mutation scores.

On the other hand, for test cases with the same context
diversity values, the mutation scores can vary significantly.
The positive correlation between context diversity and mean
mutation scores holds if the context stream length is fixed.
However, as the context stream length increases, the
correlation becomes weaker, even though it still remains
positive. Moreover, we have observed that an increase in the
context stream length does not necessarily result in higher
mutation scores of test cases after a given context diversity
has been obtained. These findings suggest that, in order to
improve test effectiveness, it would be a good idea to select
test cases with higher context diversity (when different test
cases have different context stream lengths) or more
intensive context changes (when different test cases have the
same context stream length). We have obtained preliminary
results in [32] and will report them in more details soon. As
future work, we will extend our empirical study to include
more subjects, different mutation operators, and diverse
oracles to kill mutants. We will also study how to refine
context diversity so that it will more stably contribute to the
mutation scores of test cases.

REFERENCES

[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
mutation analysis for assessing and comparing testing coverage
criteria. IEEE Transactions on Software Engineering, 32 (8):
608–624, 2006.

[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli.
Context-aware middleware for resource management in the
wireless Internet. IEEE Transactions on Software Engineering,
29 (12): 1086–1099, 2003.

[3] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to
empirically investigate test coverage criteria based on statechart.
In Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004), pages 86–95. IEEE Computer Society
Press, Los Alamitos, CA, 2004.

[4] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: context-
aware reflective middleware system for mobile applications.
IEEE Transactions on Software Engineering, 29 (10): 929–944,
2003.

[5] A. T. S. Chan and S.-N. Chuang. MobiPADS: a reflective
middleware for context-aware mobile computing. IEEE Transac-
tions on Software Engineering, 29 (12): 1072–1085, 2003.

[6] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau.
Integration testing of context-sensitive middleware-based applica-
tions: a metamorphic approach. International Journal of Software
Engineering and Knowledge Engineering, 16 (5): 677–703, 2006.

Figure 5. Correlation between context changes and mutation scores.

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Context Diversity

M
u
ta

ti
o
n
 S

co
re

 length=7

length=8

length=9

length=10

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Context Diversity

M
u

ta
ti
o

n
 S

co
re

 length=15

length=16

length=17

length=18

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Context Diversity

M
u
ta

ti
o
n
 S

co
re

 length=27

length=28

length=29

length=30

159

[7] M. Dahm. Byte code engineering with the JavaClass API.
Technical Report B-17-98, Institut fuer Informatik, Freie Univer-
sitaet Berlin, Berlin, Germany, 1999.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: help for the practicing programmer. IEEE Computer,
11 (4): 34–41, 1978.

[9] J. A. Duraes and H. S. Madeira. Emulation of software faults: a
field data study and a practical approach. IEEE Transactions on
Software Engineering, 32 (11): 849–867, 2006.

[10] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E.
Delamaro. Proteum/FSM: a tool to support finite state machine
validation based on mutation testing. In Proceedings of the 19th
International Conference of the Chilean Computer Science
Society (SCCC 1999), pages 96–104. IEEE Computer Society
Press, Los Alamitos, CA, 1999.

[11] P. G. Frankl and S. N. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE
Transactions on Software Engineering, 19 (8): 774–787, 1993.

[12] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering, 3 (4): 279–290, 1977.

[13] R. W. Hamming. Error detecting and error correcting codes. Bell
System Technical Journal, 29 (1): 147–160, 1950.

[14] R. Hierons, M. Harman, and S. Danicic. Using program slicing to
assist in the detection of equivalent mutants. Software Testing,
Verification and Reliability, 9 (4): 233–262, 1999.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments
on the effectiveness of dataflow- and controlflow-based test
adequacy criteria. In Proceedings of the 16th International Confe-
rence on Software Engineering (ICSE 1994), pages 191–200.
IEEE Computer Society Press, Los Alamitos, CA, 1994.

[16] D. O. Keck and P. J. Kuehn. The feature and service interaction
problem in telecommunications systems: a survey. IEEE
Transactions on Software Engineering, 24 (10): 779–796, 1998.

[17] Z. Lai, S. C. Cheung, and W. K. Chan. Inter-context control-flow
and data-flow test adequacy criteria for nesC applications. In
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (SIGSOFT 2008/FSE-
16), pages 94–104. ACM Press, New York, NY, 2008.

[18] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an RFID-
based experimentation. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT 2006/FSE-14), pages 242–252. ACM
Press, New York, NY, 2006.

[19] H. Lu, W. K. Chan, and T. H. Tse. Testing pervasive software in
the presence of context inconsistency resolution services. In
Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pages 61–70. ACM Press, New York,
NY, 2008.

[20] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: an automated class
mutation system. Software Testing, Verification and Reliability,
15 (2): 97–133, 2005.

[21] A. M. Memon, I. Banerjee, and A. Nagarajan. What test oracle
should I use for effective GUI testing?. In Proceedings of the
18th IEEE International Conference on Automated Software
Engineering (ASE 2003), pages 164–173. IEEE Computer
Society Press, Los Alamitos, CA, 2003.

[22] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient
mutation operators for measuring test effectiveness. In
Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pages 351–360. ACM Press, New
York, NY, 2008.

[23] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. LANDMARC:
indoor location sensing using active RFID. ACM Wireless
Networks, 10 (6): 701–710, 2004.

[24] J. Offutt. Investigations of the software testing coupling effect.
ACM Transactions on Software Engineering and Methodology, 1
(1): 5–20, 1992.

[25] G.-C. Roman, P. J. McCann, and J. Y. Plun. Mobile UNITY:
reasoning and specification in mobile computing. ACM Transac-
tions on Software Engineering and Methodology, 6 (3): 250–282,
1997.

[26] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure for
active spaces. IEEE Pervasive Computing, 1 (4): 74–83, 2002.

[27] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and Z.
Wang. Context-aware adaptive applications: fault patterns and
their automated identification. IEEE Transactions on Software
Engineering, 2010. doi: 10.1109/TSE.2010.35.

[28] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In Proceedings of the
2009 ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2009), pages 69–80. ACM Press,
New York, NY, 2009.

[29] B. H. Smith and L. Williams. An empirical evaluation of the
MuJava mutation operators. In Proceedings of the Testing:
Academic and Industrial Conference: Practice And Research
Techniques (TAICPART-MUTATION 2007), pages 193–202.
IEEE Computer Society Press, Los Alamitos, CA, 2007.

[30] M. Umar. An Evaluation of Mutation Operators for Equivalent
Mutants. Project report, MSc in Advanced Software Engineering,
Department of Computer Science, King’s College London,
London, UK., 2006.

[31] H. Wang and W. K. Chan. Weaving context sensitivity into test
suite construction. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2009), pages 610–614. IEEE Computer Society Press, Los
Alamitos, CA, 2009.

[32] H. Wang, W. K. Chan, and T. H. Tse. On the construction of
context-aware test suites. Technical Report TR-2010-01.
Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong, 2010.

[33] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming
coincidental correctness: coverage refinement with context
patterns to improve fault localization. In Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009),
pages 45–55. IEEE Computer Society Press, Los Alamitos, CA,
2009.

[34] Z. Wang, S. G. Elbaum, and D. S. Rosenblum. Automated
generation of context-aware tests. In Proceedings of the 29th
International Conference on Software Engineering (ICSE 2007),
pages 406–415. IEEE Computer Society Press, Los Alamitos,
CA, 2007.

[35] C. Xu, S. C. Cheung, W. K. Chan, and C. Y. Ye. Partial
constraint checking for context consistency in pervasive
computing. ACM Transactions on Software Engineering and
Methodology, 19 (3): Article No. 9, 2010.

[36] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta.
Reconfigurable context-sensitive middleware for pervasive com-
puting. IEEE Pervasive Computing, 1 (3): 33–40, 2002.

160

