
Title Motion and edge adaptive interpolation de-interlacing algorithm

Author(s) Wong, KKY; Chin, FYL; Chung, RHY; Chow, KP; Yuk, SC

Citation
The 10th WSEAS international conference on Computers
(ICCOMP'06), Athens, Greece, 13-15 July 2006. In Proceedings of
ICCOMP, 2006, p. 1030-1035

Issued Date 2006

URL http://hdl.handle.net/10722/93077

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37920588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Motion and Edge Adaptive Interpolation De-interlacing Algorithm

Kwan-Yee K. Wong1, Francis Y.L. Chin2, Ronald H.Y. Chung3, K.P. Chow4 and S.C. Yuk5

Department of Computer Science
The University of Hong Kong

Pokfulam Rd., Hong Kong Special Administrative Region
Hong Kong

kykwong@cs.hku.hk1, chin@cs.hku.hk2, hychung@cs.hku.hk3, chow@cs.hku.hk4, scyuk@cs.hku.hk5

Abstract: - This paper presents a new motion and edge adaptive de-interlacing algorithm, which is efficient
and artifacts-free. It is novel in the sense that it introduces a way to properly interpolate the two (odd and
even) field images according to the information provided by the simplest form of motion detection and edge
orientation estimation methods. The proposed algorithm was evaluated by three video sequences, namely,
“Akiyo”, “Silent”, “Foreman”. Experimental results confirm that the proposed algorithm performs, both
objectively and subjectively, much better than other similar algorithms. These promising results indicate that
the proposed interpolation approach has good potential to realize even better de-interlacing algorithms, if more
sophisticated motion detection and edge orientation estimation methods are employed.

Key-Words: - De-interlacing Methods, Motion Adaptive Interpolation, Edge Dependent Interpolation.

1 Introduction
Interlaced scanning technique has been exclusively
adopted in television (TV) systems since the
invention of TV over 70 years ago. It has been
widely accepted as a practical technique with
reasonable tradeoff among three factors: bandwidth,
flicker, and resolution. The present-day technologies
in communication and computing, however, are
efficient and powerful enough to handle video
sequence in the progressive scanning manner. As a
result, recent advances in High Definition TV
(HDTV) and Personal Computers (PCs) call for
progressive scanning. To ensure interoperability
between the interlaced scanning format in TV and
the progressive scanning format in HDVT and PCs,
the need for conversion between the two scanning
format is increasing. This process of interlace-to-
progressive scanning conversion is called de-
interlacing.

 An intuitive and trivial way for de-interlacing is
to interleave the two consecutive fields back into a
progressive frame. Since a time difference exists
between the two fields, visual artifacts, such as the
most appealing line crawling effect at moving edges
as shown in Fig. 1, can severely degrade the visual
quality of the reconstructed progressive frame. Over
the last decade, many de-interlacing algorithms with
different computational requirements and
corresponding performances have been proposed to
improve the visual quality of the de-interlaced
progress frame.

 The most commonly used de-interlacing
algorithms can be broadly divided into two
categories: spatial methods [1-2], motion adaptive
methods [3-4]. Spatial methods are usually the
simplest and the most efficient methods, which are
favorable for hardware implementation. Essentially,
spatial methods employ interpolation techniques,
and exploit the correlation between vertically
neighboring samples in a field when interpolating
pixels. The simplest form of these algorithms is line
doubling (or line repetition), which simply replicates
the odd field to the even field in reconstructing the
progressive frame. In a sense, this is equivalent to
upsampling from only the odd field and hence it
suffers from aliasing problem. As a result, it also
introduces another visual artifact, jagged edge,
although it can completely remove line crawling
artifact. To deal with the aliasing problem, edge
dependent interpolation technique [5] can be
employed to interpolate the missing pixels from
neighboring scan lines, such that the interpolated
values are most visually aligned to edge
orientations. However, this is applicable only when
the edge orientations can be correctly estimated. The
computational complexity, unfortunately, usually
increases with the correctness of the estimation.

 Motion adaptive methods, on the other hand,
make the interpolation adaptive to motion as static
regions can never suffer from the line crawling
effect. They are considered to be superior to spatial
methods in the sense that they preserve vertical
resolution by interleaving the odd field and even

 2

field for static regions, while they sacrifice vertical
resolution by interpolation only for moving regions.
However, motion adaptive algorithms suffer from
the switching artifact, when inaccurate motion
detection leads to incorrect decision in switching
between the interleaving and interpolation modes.

 (a) (b)

 (c) (d)

 (e) (f)

Fig 1. (a) Progressive frame n, (b) Progressive frame n + 1, (c)
Odd field of progressive frame n, (d) Even field of progressive
frame n + 1, (e) Reconstructed progressive frame by
interleaving the odd and even fields, (f) Enlarged portion in (e)
showing line crawling effect.

 Noting the merits and shortfalls of spatial
methods and motion adaptive methods, we revisit
the problem of de-interlacing and propose a new de-
interlacing algorithm based on the motion adaptive
interpolation approach which addresses the
switching artifact problem suffered by the motion
adaptive methods, while suppressing the aliasing
problem found in the spatial methods. In particular,

the motion and edge adaptive interpolation approach
proposed in the new algorithm demonstrates that
efficient and artifact-free de-interlacing method is
realizable from simple motion and edge orientation
detection techniques. The proposed algorithm has
been tested with three standard test sequences and
experimental results confirm that it gives the best
objective performance, peak-signal-to-noise ratio
(PSNR) for all the test sequences, when compared
with three other similar algorithms. The
reconstructed progressive frames (de-interlaced
frames) obtained from the proposed algorithm also
appear to be artifacts-free with visually best
performance.

 This paper is organized as follows. Section 2
first defines the de-interlacing problem statement,
followed by Section 3 which presents our proposed
de-interlacing algorithm. Section 4 provides the
experimental results, discussions on the data
gathered and the performance comparison of
different algorithms. Finally, Section 5 concludes
the whole paper.

2 De-interlacing Problem Statement

Let Fp(x, y, 2n) and Fp(x, y, 2n + 1) be the luminance
of the pixel at the spatial coordinate (x, y) in the 2n-
th and (2n + 1)-th frames of a progressive video
sequence, respectively. In TV systems, a sequence
of progressive frames will first be decomposed into
a sequence of alternating odd and even fields, Fo and
Fe, respectively, defined as follows:
Fo(x, y, n) = Fp (x, 2y, 2n) , (1)
Fe(x, y, n) = Fp (x, 2y + 1, 2n + 1) , (2)
for 0 ≤ x < W and 0 ≤ y < ⎣H/2⎦, where W and H
denote the width and height of the progressive
frame, respectively.

 Given a flow of field images, an interlaced frame
Fi(x, y, 2n) which interleaves the odd and even fields

Fig. 2. Relationship between Fo(·,·,n), Fe(·,·,n) and Fi(·,·,2n). Fd(x,y,2n) is reconstructed by interpolating the pixels
within N(x, y, 2n).

Fi(·,·,2n)

. . ..

. . ..

N(x,y,2n)

Fi(x,y,2n) Fd(x,y,2n)

.

.

.

Fo(·,·,n)

Fe(·,·,n)

.. ..

..

..

Fd(·,·,2n)
I(N(x,y,2n))

Pixels in odd scan
Pixels in even scan
Interpolated Pixels in Fd

Keys

 3

is thus defined as:

⎪
⎩

⎪
⎨

⎧

≠
−

=
=

02mod),
2

)1(,(

02mod),
2

,(
)2,,(

yifnyxF

yifnyxF
nyxF

e

o

i
 . (3)

As illustrated above, a sequence of field images is
essentially a flow of vertically decimated
progressive images with twice the temporal
sampling rate of Fi.

 With these understandings, the de-interlacing
problem can then be formulated as finding some
ways to reconstruct a progressive frame Fd(x, y, 2n),
from Fi(x, y, 2n), such that it is as close to Fp(x, y,
2n), both subjectively and objectively, as possible.

 Although the de-interlacing problem formulated
here considers only the luminance component of an
image, it is straightforward to extend the same
concept in handling images with chrominance
components.

3 Proposed Motion and Edge
Adaptive Interpolation De-interlacing
Method

Motion adaptive interpolation can generally be
considered as the problem of interpolating even field
samples in Fd(x, y, 2n) from Fi(x, y, 2n) while
keeping the odd field samples unaltered. This
follows from (1) and (3) which shows that Fi(x, y,
2n) = Fp(x, y, 2n) whenever y is divisible by two. As
such, the way for motion adaptive interpolation
methods to construct Fd(x, y, 2n) can be formulated
as:

⎩
⎨
⎧

≠
=

=
02mod))2,,((
02mod)2,,(

)2,,(
yifnyxNI
yifnyxF

nyxF i
d

, (4)

where N(x, y, 2n) denotes the set of neighboring
pixels to the current pixel at spatial coordinates (x,
y) in Fi(·,·,2n), and I(·) is the interpolation function
that interpolates the missing even scan line pixels in
Fd from N(x, y, 2n).

 To get rid of severe blurring effect, we propose
to limit the number of neighboring pixels to be
considered in N(x, y, 2n). In particular, we define it
as:

{ }1|'|,1|':|)2,','()2,,(≤−≤−= yyxxnyxFnyxN i . (5)
In a sense, N(x, y, 2n) consists of the luminance
values of the pixels that is within a window of size 3
× 3, centered at (x, y). It limits the neighborhood of
the interpolated pixel to the pixels within the current

scan line and immediate neighboring scan lines as
depicted in Fig. 2.

We suggest the interpolation function to be defined
like this:

)2,1,(
)2,,()1(

)2,1,())2,,((

nykxF
nyxF

nykxFnyxNI

il

ilu

iu

+−+
−−+

−+=

α
αα

α
, (6)

where αu, αl are the interpolation coefficients that
can vary according to the motion intensity estimated
at the current pixel (x, y), while Fi(x+k, y-1, 2n) and
Fi(x-k, y+1, 2n) denote the interpolating pixels,
selected according to edge orientations, from the
upper and lower odd field scan-lines, with k = 1, 0, -
1 for 45°, 90° and -45° edge orientations,
respectively. We employ the method in [7] for edge
orientation estimation. Fig. 3 illustrates the selection
of interpolating pixels based on edge orientations.

3.1 Motion Detection

To illustrate the robustness of the proposed
algorithm and to ensure efficient operations, we
employ the simplest form of motion detector in our

Fi(x,y,2n)

… …

Fi(x+k,y-1,2n) = Fi(x-1,y-1,2n)

Fi(x-k,y+1,2n)= Fi(x+1,y+1,2n)

- 45° edge direction
k = -1

(b)

Fi(x,y,2n)
… …

Fi(x+k,y-1,2n) = Fi(x,y-1,2n)

Fi(x-k,y+1,2n) = Fi(x,y+1,2n)

90° edge direction

k = 0

(c)

Fi(x,y,2n)

… …

Fi(x+k,y-1,2n)= Fi(x+1,y-1,2n)

Fi(x-k,y+1,2n) = Fi(x-1,y+1,2n)

45° edge direction

k = 1

(a)

Fig. 3. Edge dependent interpolations (a) 45° directional
interpolation, (b) -45° directional interpolation, and (c) 90°
directional interpolation.

 4

algorithm. Specifically, the motion intensity is
defined as the mean-absolute-difference (MAD)
over a 3x3 window from the previous interlaced
frame, which is defined as:

∑∑
−= −= −++−

++
=

1

1

1

1))1(2,,(
)2,,(

9
1)2,,(

i j i

i

njyixF
njyixF

nyxMAD .

 (7)
In order to make the motion detector less sensitive to
noises and errors, we smooth the motion intensity
along the temporal domain and thus the actual
motion intensity function is defined as follows:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−+

−≥
=

otherwisenyxMDnyxMAD

nyxMDnyxMADifnyxMAD

nyxMD

2
))1(2,,()2,,(

))1(2,,()2,,()2,,(

)2,,(

 (8)

Defined in this way, the motion intensity function
will be responsive to sudden increase in motion,
while smoothing out erroneous detection for slow
movement which MAD sometimes fails to catch.

3.2 Proposed Interpolation Coefficients

We propose to use the following coefficients for the
proposed de-interlacing algorithm

22

2

)2,,(2
)2,,(
TnyxMD

nyxMD
lu +
== αα , (9)

where the parameter T is a configurable parameter
that controls the sensitivity of the coefficients to the
motion intensity. The relation of T to αu, αl can be
best illustrated in Fig. 4.
 As shown in Fig. 4, the coefficients αu and αl
increase with motion intensity. The parameter T
controls the rate of increase of αu and αl, where a
larger T indicates a smaller sensitivity of αu and αl
to the increase in the motion intensity. With αu and
αl defined this way, the interpolation coefficient for
the current scan line becomes:

22

2

22

2

)2,,(2)2,,(2
)2,,(211

TnyxMD
T

TnyxMD
nyxMD

lu +
=

+
−=−− αα

 (10)
which indicates that the contribution from the
current scan line will decreases with the motion
intensity.

 By this formulation of interpolation coefficients,
the algorithm blends the interpolation with
interleaving results according to the motion intensity
instead of abrupt switching between the two modes
of operation. This can help to remove the switching
artifact that is sensitive to human vision systems.

α u & α l vs MD (x , y , 2n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300

MD (x , y , 2n)

T=8 T=16 T=32 T=64

Fig. 4. αu, αl vs MD(x, y, 2n) for different values of T.

4 Experimental Results

We evaluated the performance of our algorithm on
three video sequences, namely “Akiyo”, “Silent”,
and “Foreman”. These sequences are chosen
because they represent different classes of motions,
which give a complete evaluation of the algorithm
under different scenarios. Fig. 5 shows one
representative frame for each sequence. “Akiyo” is a
sequence with almost completely static background
and very slow head and shoulder motions. From this
sequence, we can evaluate how well our algorithms
preserve the details in static background. “Silent” is
also a sequence with static background, but with
faster movements in foreground objects. In
particular, “Silent” sequence contains fast hands and
fingers movements, which can trigger switching
artifacts. Finally, “Foreman” is a sequence with
large foreground and camera panning motions. As
such, jagged edge artifact can easily appear in de-
interlaced frame as the motion adaptive interpolation
filter tends to reduce the vertical resolution, which
induces aliasing problem. Each test sequence
consists of 300 progressive frames, and we extracted
odd and even fields in alternating frames and
interleaved the two fields to produce 150 interlaced
frames. By doing so, the quality of the de-interlaced
frames can be evaluated by the objective measure,
Peak-Signal-to-Noise Ratio (PSNR), where the
corresponding progressive frames can serve as the
ground truth for PSNR calculations.

 The performance of our algorithm was evaluated
against three other algorithms, namely Line
Doubling Algorithm (LDA), Line Averaging
Algorithm (LAA), and Motion Detection Based
Interpolation (MDI). In particular, MDI algorithm is
essentially a special case of our proposed algorithm,
with the following defined interpolation coefficients:

⎩
⎨
⎧ ≥

==
otherwise

ThresholdnyxMDif motion
lu 0

)2,,(5.0
αα , (11)

 5

where Thresholdmotion is the threshold for
differentiating high intensity motions from lower
ones.

 In order to make a fair comparison and to
illustrate the effectiveness of our coefficients
adaptation scheme, we also incorporated the same
edge dependent interpolation (EDI) to both LAA
and MDI. In addition to that, we employed the same
motion detector in both the MDI and our algorithm,
which is defined in (10). The parameters T and
Thresholdmotion for the proposed algorithm and MDI
are both set to 32.

Table 1 summarizes the average PSNR
improvements of each algorithm, over the
corresponding interlaced sequence, for each test
sequence. It can be seen from the table that the
newly proposed algorithm achieved the best PSNR
improvements. The ranking for all the algorithms
according to the PSNR improvements is consistent
among all the test sequences, with MDI being the
second best algorithm, while LAA got the worst
performance. For sequences with static background
such as “Akiyo” and “Silent”, we can see that LAA
and LDA did not have PSNR improvement at all
over the corresponding interlaced sequences,
indicating that they were not objectively better after
the de-interlacing operations. In particular, it is not
surprising that LDA had the worst performance
because it did not take edge orientation into account
for de-interlacing. As for our proposed algorithm
and MDI, their better performance can be justified
by that fact that they preserved as much details as
possible in static area, while performing the
necessary interpolation operations only for those
moving regions.

For the sequence “Foreman”, in which fast

foreground and camera panning motions dominate,
LAA and LDA did show positive average PSNR
improvements because virtually all pixels in the
even field need interpolation, which is inline with
the strategy of LAA and LDA. It is interesting to
note that LAA performed better than MDI for the
foreman sequence, indicating MDI might suffer
from switching artifact, which we will describe later.
Our proposed algorithm and MDI still performed
well for this sequence, indicating that the
incorporation of motion information for de-
interlacing can help boosting up the video quality.

Table 1: Average PSNR Improvement of each algorithm for the
five test sequences, over the corresponding interlaced
sequences.
Seq. / Algorithm Proposed MDI LAA LDA

Akiyo 0.581 0.078 -3.989 -9.921
Silent 6.478 5.359 -0.802 -4.679
Foreman 5.550 4.612 4.817 0.827

 Fig. 6(c) to 6(f) show the de-interlaced results of
a frame in the “Foreman” sequence for each
algorithms. The progressive frame and the interlaced
frame, shown in Fig.6 (a) and 6(b) respectively, are
also included for subjective evaluation. From Fig.
6(b), it shows that there is slow camera panning
motion in this frame as indicated by the small
movements in the background, while there are small
movements in the facial and head regions and fast
movements of fingers. LDA suffered severely from
jagged edge artifact as depicted in Fig 6(c), while
LAA performed significantly better due to the edge
dependent interpolation scheme as illustrated in Fig.
6(d). LAA did not suffer from switching artifacts,
and generate quite visually pleasant de-interlaced
frames. However, it cannot preserve the details in
static regions, notably in the text overlay regions in
the top-left corner of the image. MDI, on the other
hand, does not suffer much from jagged edge
artifact, and the characters “SIEMENS” in the top-
left corner of the image is clearly visible, indicating
its ability to switch between interpolation and
interleaving mode. However, it suffered from
switching artifact, which is noticeable in the eyes,
mouth and fingers regions. The de-interlaced frame
from the proposed algorithm appears to be the best,
in the sense that it correctly preserves the static text
overlay regions, and suppresses unwanted switching
artifacts for moving regions. This shows that the
proposed coefficients adaptation scheme presented
in Section 3.2 works well enough to enable smooth

(a) (b)

(c)
Fig. 5. Representative frame in each sequence (a) Akiyo,
(b) Silent, (c) Foreman.

 6

transition from interpolation to interleaving mode,
and vice versa.

5 Conclusion

In this paper, a new motion and edge adaptive
interpolation de-interlacing framework is proposed.
Although the new algorithm only employs the
simplest form of motion detection and edge
orientation estimation methods, it enables smooth
transition from interpolation to interleaving mode
based on a novel interpolation coefficients
adaptation scheme. Experimental results show that
the proposed algorithm has the best objective
performance as indicated in average PSNR
improvements, while offering the visually best de-
interlaced frames with no noticeable artifact when
compared with similar algorithms. Besides, due to
its simplicity, this algorithm is computationally
efficient, which is a plus for hardware
implementation.

References:
[1] M. Byun, M.K. Park, and M.G. Kang, “EDI-

based deinterlacing using edge patterns,” in
Proc. ICIP05, Genoa, Italy, Sep. 2005, pp.
1018-1021.

[2] S. H. Hong, R. H. Park, S. Yang, and J.Y. Kim,
"Edge-preserving spatial deinterlacing for still

images using block-based region
classification," in 2006 Digest of Technical
Papers Int. Conf. Consumer Electronics, Las
Vegas, NV, USA, Jan. 2006, pp. 85-86.

[3] S.F. Lin, Y.L. Chang, and L.G. Chen, “Motion
adaptive interpolation with horizontal motion
detection for deinterlacing,” in IEEE Trans. on
Consumer Elec., vol. 49, no. 4, Nov. 2003, pp.
1256-1265.

[4] S.C. Tai, C.S. Yu, and F.J. Chang, “A motion
and edge adaptive deinterlacing algorithm,” in
Proc. ICME2004, Taipei, Taiwan, Jun. 2004,
pp. 659-662.

[5] T. Doyle and M. Looymans, “Progressive scan
conversion using edge information,” in Signal
Processing of HDTV II, L. Chiariglione, Ed.
Amsterdam, The Netherlands: Elsevier, 1990,
pp. 711-721.

Acknowledgment
This research was jointly sponsored by Multivision
Intelligence Surveillance Limited and the
Innovation and Technology Commission of the
Government of the Hong Kong Special
Administrative Region, under the Grant UIM/167.

(a) (c)

Fig. 6. De-interlaced frames comparison: (a) Original progressive frame, (b) Interlaced frame, (c) De-interlaced frame by LDA,
(d) De-interlaced frame by LAA, (e) De-interlaced frame by MDI, (f) De-interlaced frame by proposed algorithm.

(b)

(d) (e) (f)

