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Abstract: - This paper presents a new motion and edge adaptive de-interlacing algorithm, which is efficient 
and artifacts-free. It is novel in the sense that it introduces a way to properly interpolate the two (odd and 
even) field images according to the information provided by the simplest form of motion detection and edge 
orientation estimation methods. The proposed algorithm was evaluated by three video sequences, namely, 
“Akiyo”, “Silent”, “Foreman”. Experimental results confirm that the proposed algorithm performs, both 
objectively and subjectively, much better than other similar algorithms. These promising results indicate that 
the proposed interpolation approach has good potential to realize even better de-interlacing algorithms, if more 
sophisticated motion detection and edge orientation estimation methods are employed. 
 
Key-Words: - De-interlacing Methods, Motion Adaptive Interpolation, Edge Dependent Interpolation. 
 
1   Introduction 
Interlaced scanning technique has been exclusively 
adopted in television (TV) systems since the 
invention of TV over 70 years ago. It has been 
widely accepted as a practical technique with 
reasonable tradeoff among three factors: bandwidth, 
flicker, and resolution. The present-day technologies 
in communication and computing, however, are 
efficient and powerful enough to handle video 
sequence in the progressive scanning manner. As a 
result, recent advances in High Definition TV 
(HDTV) and Personal Computers (PCs) call for 
progressive scanning. To ensure interoperability 
between the interlaced scanning format in TV and 
the progressive scanning format in HDVT and PCs, 
the need for conversion between the two scanning 
format is increasing. This process of interlace-to-
progressive scanning conversion is called de-
interlacing. 
 
 An intuitive and trivial way for de-interlacing is 
to interleave the two consecutive fields back into a 
progressive frame. Since a time difference exists 
between the two fields, visual artifacts, such as the 
most appealing line crawling effect at moving edges 
as shown in Fig. 1, can severely degrade the visual 
quality of the reconstructed progressive frame. Over 
the last decade, many de-interlacing algorithms with 
different computational requirements and 
corresponding performances have been proposed to 
improve the visual quality of the de-interlaced 
progress frame. 
 

 The most commonly used de-interlacing 
algorithms can be broadly divided into two 
categories: spatial methods [1-2], motion adaptive 
methods [3-4]. Spatial methods are usually the 
simplest and the most efficient methods, which are 
favorable for hardware implementation. Essentially, 
spatial methods employ interpolation techniques, 
and exploit the correlation between vertically 
neighboring samples in a field when interpolating 
pixels. The simplest form of these algorithms is line 
doubling (or line repetition), which simply replicates 
the odd field to the even field in reconstructing the 
progressive frame. In a sense, this is equivalent to 
upsampling from only the odd field and hence it 
suffers from aliasing problem. As a result, it also 
introduces another visual artifact, jagged edge, 
although it can completely remove line crawling 
artifact. To deal with the aliasing problem, edge 
dependent interpolation technique [5] can be 
employed to interpolate the missing pixels from 
neighboring scan lines, such that the interpolated 
values are most visually aligned to edge 
orientations. However, this is applicable only when 
the edge orientations can be correctly estimated. The 
computational complexity, unfortunately, usually 
increases with the correctness of the estimation. 
 
 Motion adaptive methods, on the other hand, 
make the interpolation adaptive to motion as static 
regions can never suffer from the line crawling 
effect. They are considered to be superior to spatial 
methods in the sense that they preserve vertical 
resolution by interleaving the odd field and even 



 2

field for static regions, while they sacrifice vertical 
resolution by interpolation only for moving regions. 
However, motion adaptive algorithms suffer from 
the switching artifact, when inaccurate motion 
detection leads to incorrect decision in switching 
between the interleaving and interpolation modes. 
 

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
 
Fig 1. (a) Progressive frame n, (b) Progressive frame n + 1, (c) 
Odd field of progressive frame n, (d) Even field of progressive 
frame n + 1, (e) Reconstructed progressive frame by 
interleaving the odd and even fields, (f) Enlarged portion in (e) 
showing line crawling effect. 

 
 Noting the merits and shortfalls of spatial 
methods and motion adaptive methods, we revisit 
the problem of de-interlacing and propose a new de-
interlacing algorithm based on the motion adaptive 
interpolation approach which addresses the 
switching artifact problem suffered by the motion 
adaptive methods, while suppressing the aliasing 
problem found in the spatial methods. In particular, 

the motion and edge adaptive interpolation approach 
proposed in the new algorithm demonstrates that 
efficient and artifact-free de-interlacing method is 
realizable from simple motion and edge orientation 
detection techniques. The proposed algorithm has 
been tested with three standard test sequences and 
experimental results confirm that it gives the best 
objective performance, peak-signal-to-noise ratio 
(PSNR) for all the test sequences, when compared 
with three other similar algorithms. The 
reconstructed progressive frames (de-interlaced 
frames) obtained from the proposed algorithm also 
appear to be artifacts-free with visually best 
performance. 
 
 This paper is organized as follows. Section 2 
first defines the de-interlacing problem statement, 
followed by Section 3 which presents our proposed 
de-interlacing algorithm. Section 4 provides the 
experimental results, discussions on the data 
gathered and the performance comparison of 
different algorithms. Finally, Section 5 concludes 
the whole paper. 
 
2   De-interlacing Problem Statement 
 
Let Fp(x, y, 2n) and Fp(x, y, 2n + 1) be the luminance 
of the pixel at the spatial coordinate (x, y) in the 2n-
th and (2n + 1)-th frames of a progressive video 
sequence, respectively. In TV systems, a sequence 
of progressive frames will first be decomposed into 
a sequence of alternating odd and even fields, Fo and 
Fe, respectively, defined as follows: 
Fo(x, y, n) = Fp (x, 2y, 2n) ,   (1) 
Fe(x, y, n) = Fp (x, 2y + 1, 2n + 1) ,  (2) 
for 0 ≤ x < W and 0 ≤ y < ⎣H/2⎦, where W and H 
denote the width and height of the progressive 
frame, respectively. 
 
 Given a flow of field images, an interlaced frame 
Fi(x, y, 2n) which interleaves the odd and even fields 

Fig. 2. Relationship between Fo(·,·,n), Fe(·,·,n) and Fi(·,·,2n). Fd(x,y,2n) is reconstructed by interpolating the pixels 
within N(x, y, 2n). 
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is thus defined as: 
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As illustrated above, a sequence of field images is 
essentially a flow of vertically decimated 
progressive images with twice the temporal 
sampling rate of Fi. 
 
 With these understandings, the de-interlacing 
problem can then be formulated as finding some 
ways to reconstruct a progressive frame Fd(x, y, 2n), 
from Fi(x, y, 2n), such that it is as close to Fp(x, y, 
2n), both subjectively and objectively, as possible. 
 
 Although the de-interlacing problem formulated 
here considers only the luminance component of an 
image, it is straightforward to extend the same 
concept in handling images with chrominance 
components. 
 
3   Proposed Motion and Edge 
Adaptive Interpolation De-interlacing 
Method 
 
Motion adaptive interpolation can generally be 
considered as the problem of interpolating even field 
samples in Fd(x, y, 2n) from Fi(x, y, 2n) while 
keeping the odd field samples unaltered. This 
follows from (1) and (3) which shows that Fi(x, y, 
2n) = Fp(x, y, 2n) whenever y is divisible by two. As 
such, the way for motion adaptive interpolation 
methods to construct Fd(x, y, 2n) can be formulated 
as: 

⎩
⎨
⎧

≠
=

=
02mod))2,,((
02mod)2,,(

)2,,(
yifnyxNI
yifnyxF

nyxF i
d

, (4) 

where N(x, y, 2n) denotes the set of neighboring 
pixels to the current pixel at spatial coordinates (x, 
y) in Fi(·,·,2n), and I(·) is the interpolation function 
that interpolates the missing even scan line pixels in 
Fd from N(x, y, 2n). 
 
 To get rid of severe blurring effect, we propose 
to limit the number of neighboring pixels to be 
considered in N(x, y, 2n). In particular, we define it 
as: 

{ }1|'|,1|':|)2,','()2,,( ≤−≤−= yyxxnyxFnyxN i . (5) 
In a sense, N(x, y, 2n) consists of the luminance 
values of the pixels that is within a window of size 3 
× 3, centered at (x, y). It limits the neighborhood of 
the interpolated pixel to the pixels within the current 

scan line and immediate neighboring scan lines as 
depicted in Fig. 2. 
 
We suggest the interpolation function to be defined 
like this: 
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where αu, αl are the interpolation coefficients that 
can vary according to the motion intensity estimated 
at the current pixel (x, y), while Fi(x+k, y-1, 2n) and 
Fi(x-k, y+1, 2n) denote the interpolating pixels, 
selected according to edge orientations, from the 
upper and lower odd field scan-lines, with k = 1, 0, -
1 for 45°, 90° and -45° edge orientations, 
respectively. We employ the method in [7] for edge 
orientation estimation. Fig. 3 illustrates the selection 
of interpolating pixels based on edge orientations. 
 

 
3.1 Motion Detection 
 
To illustrate the robustness of the proposed 
algorithm and to ensure efficient operations, we 
employ the simplest form of motion detector in our 

Fi(x,y,2n) 

… …

Fi(x+k,y-1,2n) = Fi(x-1,y-1,2n) 

Fi(x-k,y+1,2n)= Fi(x+1,y+1,2n) 

- 45° edge direction 
k = -1 

(b) 

Fi(x,y,2n) 
… …

Fi(x+k,y-1,2n) = Fi(x,y-1,2n) 

Fi(x-k,y+1,2n) = Fi(x,y+1,2n) 

90° edge direction 
 
k = 0 

(c) 

Fi(x,y,2n) 

… …

Fi(x+k,y-1,2n)= Fi(x+1,y-1,2n) 

Fi(x-k,y+1,2n) = Fi(x-1,y+1,2n) 

45° edge direction 
 
k = 1 

(a) 

Fig. 3. Edge dependent interpolations (a) 45° directional 
interpolation, (b) -45° directional interpolation, and (c) 90° 
directional interpolation. 



 4

algorithm. Specifically, the motion intensity is 
defined as the mean-absolute-difference (MAD) 
over a 3x3 window from the previous interlaced 
frame, which is defined as: 

∑∑
−= −= −++−

++
=

1

1

1

1 ))1(2,,(
)2,,(

9
1)2,,(

i j i

i

njyixF
njyixF

nyxMAD .

 (7) 
In order to make the motion detector less sensitive to 
noises and errors, we smooth the motion intensity 
along the temporal domain and thus the actual 
motion intensity function is defined as follows: 
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Defined in this way, the motion intensity function 
will be responsive to sudden increase in motion, 
while smoothing out erroneous detection for slow 
movement which MAD sometimes fails to catch. 
  
3.2 Proposed Interpolation Coefficients 
 
We propose to use the following coefficients for the 
proposed de-interlacing algorithm 

22

2

)2,,(2
)2,,(
TnyxMD

nyxMD
lu +
== αα , (9) 

where the parameter T is a configurable parameter 
that controls the sensitivity of the coefficients to the 
motion intensity. The relation of T to αu, αl can be 
best illustrated in Fig. 4. 
 As shown in Fig. 4, the coefficients αu and αl 
increase with motion intensity. The parameter T 
controls the rate of increase of αu and αl, where a 
larger T indicates a smaller sensitivity of αu and αl 
to the increase in the motion intensity. With αu and 
αl defined this way, the interpolation coefficient for 
the current scan line becomes: 

22
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 (10) 
which indicates that the contribution from the 
current scan line will decreases with the motion 
intensity. 
 
 By this formulation of interpolation coefficients, 
the algorithm blends the interpolation with 
interleaving results according to the motion intensity 
instead of abrupt switching between the two modes 
of operation. This can help to remove the switching 
artifact that is sensitive to human vision systems. 

 
α u  & α l   vs MD (x , y , 2n )
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Fig. 4. αu, αl vs MD(x, y, 2n) for different values of T. 

 
4   Experimental Results 
 
We evaluated the performance of our algorithm on 
three video sequences, namely “Akiyo”, “Silent”, 
and “Foreman”. These sequences are chosen 
because they represent different classes of motions, 
which give a complete evaluation of the algorithm 
under different scenarios. Fig. 5 shows one 
representative frame for each sequence. “Akiyo” is a 
sequence with almost completely static background 
and very slow head and shoulder motions. From this 
sequence, we can evaluate how well our algorithms 
preserve the details in static background. “Silent” is 
also a sequence with static background, but with 
faster movements in foreground objects. In 
particular, “Silent” sequence contains fast hands and 
fingers movements, which can trigger switching 
artifacts. Finally, “Foreman” is a sequence with 
large foreground and camera panning motions. As 
such, jagged edge artifact can easily appear in de-
interlaced frame as the motion adaptive interpolation 
filter tends to reduce the vertical resolution, which 
induces aliasing problem. Each test sequence 
consists of 300 progressive frames, and we extracted 
odd and even fields in alternating frames and 
interleaved the two fields to produce 150 interlaced 
frames. By doing so, the quality of the de-interlaced 
frames can be evaluated by the objective measure, 
Peak-Signal-to-Noise Ratio (PSNR), where the 
corresponding progressive frames can serve as the 
ground truth for PSNR calculations. 
  
 The performance of our algorithm was evaluated 
against three other algorithms, namely Line 
Doubling Algorithm (LDA), Line Averaging 
Algorithm (LAA), and Motion Detection Based 
Interpolation (MDI). In particular, MDI algorithm is 
essentially a special case of our proposed algorithm, 
with the following defined interpolation coefficients: 

⎩
⎨
⎧ ≥

==
otherwise

ThresholdnyxMDif motion
lu 0

)2,,(5.0
αα , (11) 
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where Thresholdmotion is the threshold for 
differentiating high intensity motions from lower 
ones. 
 

 
 In order to make a fair comparison and to 
illustrate the effectiveness of our coefficients 
adaptation scheme, we also incorporated the same 
edge dependent interpolation (EDI) to both LAA 
and MDI. In addition to that, we employed the same 
motion detector in both the MDI and our algorithm, 
which is defined in (10). The parameters T and 
Thresholdmotion for the proposed algorithm and MDI 
are both set to 32. 
 

Table 1 summarizes the average PSNR 
improvements of each algorithm, over the 
corresponding interlaced sequence, for each test 
sequence. It can be seen from the table that the 
newly proposed algorithm achieved the best PSNR 
improvements. The ranking for all the algorithms 
according to the PSNR improvements is consistent 
among all the test sequences, with MDI being the 
second best algorithm, while LAA got the worst 
performance. For sequences with static background 
such as “Akiyo” and “Silent”, we can see that LAA 
and LDA did not have PSNR improvement at all 
over the corresponding interlaced sequences, 
indicating that they were not objectively better after 
the de-interlacing operations. In particular, it is not 
surprising that LDA had the worst performance 
because it did not take edge orientation into account 
for de-interlacing. As for our proposed algorithm 
and MDI, their better performance can be justified 
by that fact that they preserved as much details as 
possible in static area, while performing the 
necessary interpolation operations only for those 
moving regions. 

 
For the sequence “Foreman”, in which fast 

foreground and camera panning motions dominate, 
LAA and LDA did show positive average PSNR 
improvements because virtually all pixels in the 
even field need interpolation, which is inline with 
the strategy of LAA and LDA. It is interesting to 
note that LAA performed better than MDI for the 
foreman sequence, indicating MDI might suffer 
from switching artifact, which we will describe later. 
Our proposed algorithm and MDI still performed 
well for this sequence, indicating that the 
incorporation of motion information for de-
interlacing can help boosting up the video quality. 

 
Table 1: Average PSNR Improvement of each algorithm for the 
five test sequences, over the corresponding interlaced 
sequences. 
Seq. / Algorithm Proposed MDI LAA LDA 

Akiyo 0.581 0.078 -3.989 -9.921 
Silent 6.478 5.359 -0.802 -4.679 
Foreman 5.550 4.612 4.817 0.827 

 
 Fig. 6(c) to 6(f) show the de-interlaced results of 
a frame in the “Foreman” sequence for each 
algorithms. The progressive frame and the interlaced 
frame, shown in Fig.6 (a) and 6(b) respectively, are 
also included for subjective evaluation. From Fig. 
6(b), it shows that there is slow camera panning 
motion in this frame as indicated by the small 
movements in the background, while there are small 
movements in the facial and head regions and fast 
movements of fingers. LDA suffered severely from 
jagged edge artifact as depicted in Fig 6(c), while 
LAA performed significantly better due to the edge 
dependent interpolation scheme as illustrated in Fig. 
6(d). LAA did not suffer from switching artifacts, 
and generate quite visually pleasant de-interlaced 
frames. However, it cannot preserve the details in 
static regions, notably in the text overlay regions in 
the top-left corner of the image. MDI, on the other 
hand, does not suffer much from jagged edge 
artifact, and the characters “SIEMENS” in the top-
left corner of the image is clearly visible, indicating 
its ability to switch between interpolation and 
interleaving mode. However, it suffered from 
switching artifact, which is noticeable in the eyes, 
mouth and fingers regions. The de-interlaced frame 
from the proposed algorithm appears to be the best, 
in the sense that it correctly preserves the static text 
overlay regions, and suppresses unwanted switching 
artifacts for moving regions. This shows that the 
proposed coefficients adaptation scheme presented 
in Section 3.2 works well enough to enable smooth 

(a) (b) 

(c) 
Fig. 5. Representative frame in each sequence (a) Akiyo, 
(b) Silent, (c) Foreman. 
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transition from interpolation to interleaving mode, 
and vice versa. 
 
5   Conclusion 
 
In this paper, a new motion and edge adaptive 
interpolation de-interlacing framework is proposed. 
Although the new algorithm only employs the 
simplest form of motion detection and edge 
orientation estimation methods, it enables smooth 
transition from interpolation to interleaving mode 
based on a novel interpolation coefficients 
adaptation scheme. Experimental results show that 
the proposed algorithm has the best objective 
performance as indicated in average PSNR 
improvements, while offering the visually best de-
interlaced frames with no noticeable artifact when 
compared with similar algorithms. Besides, due to 
its simplicity, this algorithm is computationally 
efficient, which is a plus for hardware 
implementation. 
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Fig. 6. De-interlaced frames comparison: (a) Original progressive frame, (b) Interlaced frame, (c) De-interlaced frame by LDA, 
(d) De-interlaced frame by LAA, (e) De-interlaced frame by MDI, (f) De-interlaced frame by proposed algorithm. 

(b)

(d) (e) (f) 


