
Title Testing Hoava-Lifshitz gravity using thin accretion disk
properties

Author(s) Harko, T; Kovács, Z; Lobo, FSN

Citation Physical Review D: Particles, Fields, Gravitation and Cosmology
, 2009, v. 80 n. 4 article no. 044021

Issued Date 2009

URL http://hdl.handle.net/10722/91855

Rights Creative Commons: Attribution 3.0 Hong Kong License
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Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was

proposed by Hořava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in

IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary

cosmological constant, which represent the generalization of the standard Schwarzschild–(anti) de Sitter

solution, have also been obtained for the Hořava-Lifshitz theory. The exact asymptotically flat

Schwarzschild-type solution of the gravitational field equations in Hořava gravity contains a quadratic

increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it

depends on one arbitrary integration constant. The IR-modified Hořava gravity seems to be consistent with

the current observational data, but in order to test its viability more observational constraints are

necessary. In the present paper we consider the possibility of observationally testing Hořava gravity by

using the accretion disk properties around black holes. The energy flux, the temperature distribution, the

emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard

general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to

the possibility of directly testing Hořava gravity models by using astrophysical observations of the

emission spectra from accretion disks.

DOI: 10.1103/PhysRevD.80.044021 PACS numbers: 04.50.Kd, 04.70.Bw, 97.10.Gz

I. INTRODUCTION

Recently, Hořava proposed a renormalizable gravity
theory in four dimensions which reduces to Einstein grav-
ity with a nonvanishing cosmological constant in IR but
with improved UV behaviors [1,2]. The latter theory ad-
mits a Lifshitz scale invariance in time and space, exhib-
iting a broken Lorentz symmetry at short scales, while at
large distances higher derivative terms do not contribute,
and the theory reduces to standard general relativity (GR).
Since then various properties and characteristics of the
Hořava gravities have been extensively analyzed, ranging
from formal developments [3], cosmology [4], dark energy
[5] and dark matter [6], and spherically symmetric solu-
tions [7–10]. Although a generic vacuum of the theory is an
anti–de Sitter (AdS) one, particular limits of the theory
allow for the Minkowski vacuum. In this limit post-
Newtonian coefficients coincide with those of the pure
GR. Thus, the deviations from the conventional GR can
be tested only beyond the post-Newtonian corrections, that
is for a system with strong gravity at astrophysical scales.

In this context, IR-modified Hořava gravity seems to be
consistent with the current observational data, but in order
to test its viability more observational constraints are nec-
essary. In Ref. [11], potentially observable properties of

black holes in the Hořava-Lifshitz gravity with Minkowski
vacuum were considered, namely, the gravitational lensing
and quasinormal modes. It was shown that the bending
angle is seemingly smaller in the considered Hořava-
Lifshitz gravity than in GR, and the quasinormal modes
of black holes are longer lived, and have larger real oscil-
lation frequency in the Hořava-Lifshitz gravity than in GR.
In Ref. [12], by adopting the strong field limit approach,
the properties of strong field gravitational lensing in the
deformed Hořava-Lifshitz black hole were considered, and
the angular position and magnification of the relativistic
images were obtained. Compared with the Reissner-
Nordström black hole, a significant difference in the pa-
rameters was found. Thus, it was argued this may offer a
way to distinguish a deformed Hořava-Lifshitz black hole
from a Reissner-Nordström black hole. In Ref. [13], the
behavior of the effective potential was analyzed, and the
timelike geodesic motion in the Hořava-Lifshitz spacetime
was also explored. In this paper, we further explore the
possibility of testing the viability of Hořava-Lifshitz grav-
ity using thin accretion disk properties.
Recent observations suggest that around almost all of the

active galactic nuclei, or black hole candidates, there exist
gas clouds surrounding the central compact object, to-
gether with an associated accretion disk, on a variety of
scales from one-tenth of a parsec to a few hundred parsecs
[14]. These gas clouds are assumed to form a geometrically
and optically thick torus (or warped disk), which absorbs
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most of the ultraviolet radiation and the soft x rays. The gas
exists in either the molecular or the atomic phase. The most
powerful evidence for the existence of super massive black
holes comes from the very long baseline interferometry
(VLBI) imaging of molecular H2O masers in the active
galaxy NGC 4258 [15]. This imaging, produced by
Doppler shift measurements assuming Keplerian motion
of the masering source, has allowed a quite accurate esti-
mation of the central mass, which has been found to be a
3:6� 107M� super massive dark object, within 0.13 pc.
Hence, important astrophysical information can be ob-
tained from the observation of the motion of the gas
streams in the gravitational field of compact objects.

The mass accretion around rotating black holes was
studied in general relativity for the first time in [16]. By
using an equatorial approximation to the stationary and
axisymmetric spacetime of rotating black holes, steady-
state thin disk models were constructed, extending the
theory of nonrelativistic accretion [17]. In these models
hydrodynamical equilibrium is maintained by efficient
cooling mechanisms via radiation transport, and the accret-
ing matter has a Keplerian rotation. The radiation emitted
by the disk surface was also studied under the assumption
that blackbody radiation would emerge from the disk in
thermodynamical equilibrium. The radiation properties of
the thin accretion disks were further analyzed in [18,19],
where the effects of the photon capture by the hole on the
spin evolution were presented as well. In these works the
efficiency with which black holes convert rest mass into
outgoing radiation in the accretion process was also
computed.

More recently, the emissivity properties of the accretion
disks were investigated for exotic central objects, such as
wormholes [20,21], and nonrotating or rotating quark,
boson, or fermion stars, brane-world black holes or grav-
astars [22–28]. The radiation power per unit area, the
temperature of the disk, and the spectrum of the emitted
radiation were given, and compared with the case of a
Schwarzschild black hole of an equal mass. The physical
properties of matter forming a thin accretion disk in the
static and spherically symmetric spacetime metric of vac-
uum fðRÞ modified gravity models were also analyzed
[29]. Particular signatures can appear in the electromag-
netic spectrum, thus leading to the possibility of directly
testing modified gravity models by using astrophysical
observations of the emission spectra from accretion disks.

It is the purpose of the present paper to study the thin
accretion disk models applied for black holes in Hořava-
Lifshitz gravity models, and carry out an analysis of the
properties of the radiation emerging from the surface of the
disk. As compared to the standard general relativistic case,
significant differences appear in the energy flux and elec-
tromagnetic spectrum for Hořava black holes, thus leading
to the possibility of directly testing the Hořava-Lifshitz
theory by using astrophysical observations of the emission
spectra from accretion disks.

This paper is organized as follows. In Sec. II, we present
the action and specific solutions of static and spherically
symmetric spacetimes. In Sec. III, we review the formalism
and the physical properties of the thin disk accretion onto
compact objects. In Sec. IV, we analyze the basic proper-
ties of matter forming a thin accretion disk around vacuum
black holes in Hořava gravity, and compare the results with
the Schwarzschild solution. We discuss and conclude our
results in Sec. V.

II. BLACK HOLES IN HOŘAVA GRAVITY

In this section, we briefly review the Hořava-Lifshitz
theory, where differential geometry of foliations represents
the proper mathematical setting for the class of gravity
theories studied by Hořava [2]. As foliations can be
equipped with a Riemannian structure, the dynamical var-
iables in Hořava-Lifshitz gravity is the lapse function N,
the shift vector Ni, and the three-dimensional spatial met-
ric gij. Thus, it is useful to use the Arnowitt-Deser-Misner

formalism, where the four-dimensional metric is parame-
trized by the following:

ds2 ¼ �N2c2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ: (1)

In this context, the Einstein-Hilbert action is given by

S ¼ 1

16�G

Z
d4x

ffiffiffi
g

p
NðKijK

ij � K2 þ Rð3Þ � 2�Þ; (2)

where G is Newton’s constant, and Rð3Þ is the three-
dimensional curvature scalar for gij. The extrinsic curva-

ture, Kij, is defined as

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (3)

where the dot denotes a derivative with respect to t, and ri

is the covariant derivative with respect to the spatial metric
gij.

The IR-modified Hořava action is given by

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ � �2

2�4
CijC

ij

þ �2�

2�2
�ijkRð3Þ

il rjR
ð3Þl
k � �2�2

8
Rð3Þ
ij R

ð3Þij

þ �2�2

8ð3�� 1Þ
�
4�� 1

4
ðRð3ÞÞ2 ��WR

ð3Þ þ 3�2
W

�

þ �2�2!

8ð3�� 1ÞR
ð3Þ
�
; (4)

where �, �, �,�,!, and�W are constant parameters.Cij is
the Cotton tensor, defined as

Cij ¼ �iklrkðRð3Þj
l � 1

4R
ð3Þ�j

l Þ: (5)

Note that the last term in Eq. (4) represents a ‘‘soft’’
violation of the ‘‘detailed balance’’ condition, which modi-
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fies the IR behavior. This IR modification term, �4Rð3Þ,
generalizes the original Hořava model (we have used the
notation of Ref. [8]). Note that now these solutions with an
arbitrary cosmological constant represent the analogs of
the standard Schwarzschild–(A)dS solutions, which were
absent in the original Hořava model [8].

The fundamental constants of the speed of light c,
Newton’s constant G, and the cosmological constant �
are defined as

c2 ¼ �2�2j�W j
8ð3�� 1Þ2 ; G ¼ �2c2

16�ð3�� 1Þ ;

� ¼ 3

2
�Wc

2:

(6)

Throughout this work, we consider the static and spheri-
cally symmetric metric given by

ds2 ¼ �N2ðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d	2Þ; (7)

where NðrÞ and fðrÞ are arbitrary functions of the radial
coordinate, r.

Imposing the specific case of � ¼ 1, which reduces to
the Einstein-Hilbert action in the IR limit, one obtains the
following solution of the vacuum field equations in Hořava
gravity:

N2 ¼ f ¼ 1þ ð!��WÞr2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½!ð!� 2�WÞr3 þ 
�

q
;

(8)

where 
 is an integration constant [8].
By considering 
 ¼ ��2=�W and ! ¼ 0 the solution

given by Eq. (8) reduces to the Lu, Mei, and Pope solution
[9], given by

f ¼ 1��Wr
2 � �ffiffiffiffiffiffiffiffiffiffiffiffi��W

p ffiffiffi
r

p
: (9)

Alternatively, considering now 
 ¼ 4!M and �W ¼ 0,
one obtains the Kehagias and Sfetsos’s (KS) asymptoti-
cally flat solution [10], given by

f ¼ 1þ!r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3 þ 4!MÞ

q
; (10)

which is the only asymptotically flat solution in the family
of solutions (8). We shall use the Kehagias-Sfetsos solution
for analyzing the accretion disk properties. Note that there
is an outer (event) horizon, and an inner (Cauchy) horizon
at

r� ¼ M½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ð2!M2Þ

q
�: (11)

To avoid a naked singularity at the origin, one also needs to
impose the condition

!M2 � 1
2: (12)

Note that in the GR regime, i.e., !M2 � 1, the outer

horizon approaches the Schwarzschild horizon, rþ ’ 2M,
and the inner horizon approaches the central singularity,
r� ’ 0.

III. ELECTROMAGNETIC RADIATION
PROPERTIES OF THIN ACCRETION DISKS

To set the stage, we present the general formalism of
electromagnetic radiation properties of thin accretion disks
in a general static, spherically symmetric spacetime.

A. Spacetime metric and geodesic equations

In this work we analyze the physical properties and
characteristics of particles moving in circular orbits around
general relativistic compact spheres in a static and spheri-
cally symmetric geometry given by the following metric:

ds2 ¼ gttdt
2 þ grrdr

2 þ g��d�
2 þ g		d	

2: (13)

Here the metric components gtt, grr, g��, and g		 depend

only on the radial coordinate r. In a static and spherically
symmetric spacetime two constants of motion for particles
do exist, the specific energy ~E and of the specific angular
momentum ~L, respectively. The geodesic equations of
motion in the equatorial plane (� ¼ �=2) can be written
in terms of these constants of motion as

gtt _t ¼ � ~E; (14)

g		
_	 ¼ ~L; (15)

� gttgrr _r
2 þ VeffðrÞ ¼ ~E2; (16)

where the effective potential term is defined as

VeffðrÞ ¼ �gtt

�
1þ ~L2

g		

�
: (17)

For stable circular orbits in the equatorial plane the
following conditions must hold: VeffðrÞ ¼ 0 and Veff;rðrÞ ¼
0, respectively. These conditions provide the specific en-
ergy, the specific angular momentum, and the angular
velocity � of particles moving in circular orbits for the
case of static general relativistic compact spheres, given by

~E ¼ � gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � g		�

2
q ; (18)

~L ¼ g		�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � g		�

2
q ; (19)

� ¼ d	

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffi�gtt;r
g		;r

s
: (20)

The marginally stable orbit around the central object can
be determined from the condition Veff;rrðrÞ ¼ 0. This con-
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dition provides the following relation:

~E 2g		;rr þ ~L2gtt;rr þ ðgttg		Þ;rr ¼ 0: (21)

By inserting Eqs. (18)–(20) into Eq. (21), and solving
this equation for r, we obtain the marginally stable orbit for
the explicitly given metric coefficients gtt, gt	, and g		.

For a Schwarzschild black hole we have gtt ¼ �ð1�
2M=rÞ, grr ¼ �g�1

tt , and g		 ¼ r2, and the geodesic

equation (16) for the radial coordinate r becomes

_r 2 þ VeffðrÞ ¼ ~E2 (22)

with the effective potential given by

VeffðrÞ ¼
�
1� 2M

r

��
1þ ~L2

r2

�
: (23)

Equations (18)–(20) lead to the form

~E ¼ rðr� 2MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3M

p ; (24)

~L ¼ R5�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3M

p ; (25)

� ¼
ffiffiffiffiffi
M

r3

s
; (26)

for the specific energy, the specific angular momentum,
and the angular velocity for the Schwarzschild metric.
Since for the KS solution, given by Eq. (10), gtt ¼
�fðrÞ, grr ¼ �g�1

tt , and g		 ¼ r2, the effective potential

in Hořava-Lifshitz theory can be written as

VeffðrÞ ¼
�
1þ!r2 � fM;!ðrÞ

��
1þ ~L2

r2

�
; (27)

with fM;!ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r!ð!r3 þ 4MÞp

, whereas the specific en-

ergy, the specific angular momentum, and the angular
velocity are given by

~E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2!� fM;!

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ð!��2Þ � fM;!

q ; (28)

~L ¼ r2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ð!��2Þ � fM;!

q ; (29)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rfM;! �M�!r3

r
ffiffiffiffiffiffiffiffiffiffi
fM;!

p
vuut : (30)

The effective potentials of the Schwarzschild black hole
and of the KS solution are compared for the same geomet-
rical mass in Fig. 1. As previously shown in [11], VeffðrÞ for
the KS solution approaches the Schwarzschild potential for
increasing values of !.

B. Properties of thin accretion disks

For a thin accretion disk we assume that its vertical size
is negligible, as compared to its horizontal extension, i.e.,
the disk height H, defined by the maximum half thickness
of the disk, is always much smaller than the characteristic
radius r of the disk, H 	 r. The thin disk is in hydro-
dynamical equilibrium, and the pressure gradient and a
vertical entropy gradient in the accreting matter are negli-
gible. The efficient cooling via the radiation over the disk
surface prevents the disk from cumulating the heat gener-
ated by stresses and dynamical friction. In turn, this equi-
librium causes the disk to stabilize its thin vertical size. The
thin disk has an inner edge at the marginally stable orbit of
the compact object potential, and the accreting plasma has
a Keplerian motion in higher orbits.
In steady-state accretion disk models, the mass accretion

rate _M0 is assumed to be a constant that does not change
with time. The physical quantities describing the orbiting
plasma are averaged over a characteristic time scale, e.g.,
�t, over the azimuthal angle�	 ¼ 2� for a total period of
the orbits, and over the height H [16–18]. In the standard
accretion disk theory the integration of the total divergence
of the energy-momentum tensor of the plasma forming the
disk provides the disk structure equations. The radiation
flux F emitted by the surface of the accretion disk can be
derived from the conservation equations for the mass,
energy, and angular momentum, respectively, and it is
expressed in terms of the specific energy, angular momen-
tum, and of the angular velocity of the particles orbiting in
the disk as [16,18]

FðrÞ ¼� _M0

4�
ffiffiffiffiffiffiffi�g

p �;r

ð ~E��~LÞ2
Z r

rms

ð ~E��~LÞ ~L;rdr; (31)

 0.9

 0.95

 1

 1.05

 1.1
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V e
ff
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FIG. 1 (color online). The effective potential VeffðrÞ of the
orbiting particles for the Kehagias-Sfetsos solution and for the
Schwarzschild black hole with the same total mass M for the
specific angular momentum ~L ¼ 4M. The parameter ! of the
Kehagias-Sfetsos solution is set to 0:5M�2, 1M�2, and 5M�2,
respectively.
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where _M0 is the mass accretion rate, measuring the rate at
which the rest mass of the particles flows inward through
the disk with respect to the coordinate time t, and rms is
the marginally stable orbit obtained from Eq. (21),
respectively.

Another important characteristic of the mass accretion
process is the efficiency with which the central object
converts rest mass into outgoing radiation. This quantity
is defined as the ratio of the rate of the radiation of energy
of photons escaping from the disk surface to infinity, and
the rate at which mass energy is transported to the central
compact general relativistic object, both measured at in-
finity [16,18]. If all the emitted photons can escape to
infinity, the efficiency is given in terms of the specific
energy measured at the marginally stable orbit rms,

� ¼ 1� ~Ems: (32)

For Schwarzschild black holes the efficiency is about
6%, whether the photon capture by the black hole is
considered, or not. Ignoring the capture of radiation by
the hole, � is found to be 42% for extremely rotating Kerr
black holes (a
 ¼ 1), whereas with photon capture the
efficiency is 40% [19].

The accreting matter in the steady-state thin disk model
is supposed to be in thermodynamical equilibrium.
Therefore the radiation emitted by the disk surface can
be considered as a perfect blackbody radiation, where the
energy flux is given by FðrÞ ¼ �T4ðrÞ (� is the Stefan-
Boltzmann constant), and the observed luminosity Lð�Þ
has a redshifted blackbody spectrum [24]:

Lð�Þ ¼ 4�d2Ið�Þ ¼ 8

�c2
cos

Z rf

ri

Z 2�

0

�3
erd	dr

expðh�e=TÞ � 1
:

(33)

Here d is the distance to the source, Ið�Þ is the thermal
energy flux radiated by the disk,  is the disk inclination
angle, and ri and rf indicate the position of the inner and

outer edge of the disk, respectively. We take ri ¼ rms and
rf ! 1, since we expect the flux over the disk surface

vanishes at r ! 1 for any kind of asymptotically flat
geometry. The emitted frequency is given by �e ¼ �ð1þ
zÞ, where the redshift factor can be written as

1þ z ¼ 1þ�r sin	 sinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2�gt	 ��2g		

q ; (34)

where we have neglected the light bending [30,31].

IV. ELECTROMAGNETIC SIGNATURES OF
ACCRETION DISKS AROUND KEHAGIAS-

SFETSOS BLACK HOLES

As a first step in the study of the accretion disk proper-
ties, we obtain Eqs. (28)–(30) for the specific energy ~E, the
specific angular momentum ~L, and the angular velocity �

of any particle orbiting around a KS black hole. By insert-
ing Eqs. (28)–(30) into the flux integral Eq. (31), we can
derive the radial profile of the emitted photon energy flux
over the whole surface of the disk in the KS potential.
Equation (31) is derived by integrating the conservation
laws for the mass, energy, and angular momentum, which
are invariant for Hořava gravity, since the extra terms in the
action Eq. (4) do not give any contribution to the total
divergence of the stress energy tensor.
The profiles for the energy flux are presented, for differ-

ent values of !, in Fig. 2. For the sake of comparison we
also present the flux distribution over a disk rotating around
a Schwarzschild black hole.
Similar to the case of the effective potential, the devia-

tion of FðrÞ for the KS geometry from the standard
Schwarzschild flux increases as ! tends to 0:5M�2. The
left edge of the flux profiles, shifting from r=M ¼ 6 to
lower radii, shows that the distance of the inner edge of the
accretion disk and the event horizon of the KS black hole
remains almost the same as for the Schwarzschild geome-
try (see Table I). For ! ¼ 0:5M�2 the degenerate event
horizon of the KS black hole is at r ¼ M, and the margin-
ally stable orbit approaches r=M ¼ 5. The maximal flux

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 5  6  7  8  10  20  50  100

F
(r

)/
F

m
ax

r/M

Schwarzschild BH
ω=0.5 M -2

ω=1.0 M -2

ω=5.0 M -2

FIG. 2 (color online). The energy radiated by a disk around the
Kehagias-Sfetsos and Schwarzschild black holes with the same
total mass M. The parameter ! of the Kehagias-Sfetsos solution
is set to 0:5M�2, 1M�2, and 5M�2, respectively, and the flux
values are normalized by Fmax ¼ 1:37� 10�5 _M0=M

2, the maxi-
mal flux value for the Schwarzschild black hole.

TABLE I. The marginally stable orbit and the efficiency for
Kehagias-Sfetsos and Schwarzschild black hole geometries. The
last line corresponds to the standard general relativistic
Schwarzschild black hole.

! [M�2] rms [M] �

0.5 5.2441 0.0630

1.0 5.6644 0.0597

5.0 5.9536 0.0576

� � � 6.0000 0.0572
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value also increases for smaller values of !. When !M2

reaches its lower limit at 0.5, the maximum value of the
flux is already a factor of 1.4 higher than the maximum
value Fmax ¼ 1:37� 10�5 _M0=M

2 corresponding to the
Schwarzschild solution. Similar to the inner edge of the
disk, the flux maximum is shifted to lower and lower radii
by decreasing !.

These features can also be observed in the temperature
profiles presented in Fig. 3. However, the differences in the
temperature amplitudes are not so big as they are in the
case of the flux distribution.

In Fig. 4, the spectral energy distribution, calculated
with the use of Eqs. (33) and (34), respectively, shows a
more interesting difference between the disk spectra of the
KS black hole and of the Schwarzschild black hole, re-

spectively. The disk spectra are very similar for both the
KS and the Schwarzschild black holes in the region with
� � 1016 Hz. The cutoff frequencies of the spectra are
also of the order of  1016 Hz for all cases, but they are
somewhat higher for the KS black holes than for the
Schwarzschild case, which separates the two classes. For
the KS solution the spectral properties do not exhibit any
significant differences with the variation of !: the spectra
are essentially the same for any value of !. Although the
amplitude and the cutoff frequency of the spectra are
maximal in the limit ! ¼ 0:5M�2, the differences in these
quantities are negligible even for ! ¼ 1000M�2.
Table I shows the conversion efficiency � of the accreted

mass into radiation for both KS and Schwarzschild black
holes. For a given configuration with a fixed value of !, �
is somewhat higher in the accretion process driven by KS
black holes, as compared to the Schwarzschild geometry.
This means that KS black holes always convert more
efficiently mass into radiation than a standard general
relativistic, static black hole does. The most efficient
mechanism is provided by the KS black holes for the
minimal value of!, where efficiency is 6.3%. For!M2 �
1, the values of � and rms approach those of the
Schwarzschild black hole, as expected.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the basic physi-
cal properties of matter forming a thin accretion disk in the
vacuum spacetime metric of the Hořava-Lifshitz gravity
models. The physical parameters of the disk—effective
potential, flux, and emission spectrum profiles—have
been explicitly obtained for several values of the parameter
! characterizing the vacuum solution of the generalized
field equations. All the astrophysical quantities, related to
the observable properties of the accretion disk, can be
obtained from the black hole metric. Because of the dif-
ferences in the spacetime structure, the Hořava-Lifshitz
theory black holes present some very important differences
with respect to the disk properties, as compared to the
standard general relativistic Schwarzschild case.
The determination of the accretion rate for an astrophys-

ical object can give strong evidence for the existence of a
surface of the object. A model in which Sgr A*, the 3:7�
106M� super massive black hole candidate at the Galactic
center, may be a compact object with a thermally emitting
surface was considered in [32]. For very compact surfaces
within the photon orbit, the thermal assumption is likely to
be a good approximation because of the large number of
rays that are strongly gravitationally lensed back onto the
surface. Given the very low quiescent luminosity of Sgr A*
in the near infrared, the existence of a hard surface, even in
the limit in which the radius approaches the horizon, places
a severe constraint on the steady mass accretion rate onto
the source, _M � 10�12M� yr�1. This limit is well below
the minimum accretion rate needed to power the observed
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submillimeter luminosity of Sgr A*, _M � 10�10M� yr�1.
Thus, from the determination of the accretion rate it fol-
lows that Sgr A* does not have a surface, that is, it must
have an event horizon.

Therefore, the study of the accretion processes by com-
pact objects is a powerful indicator of their physical nature.
Since the energy flux, the temperature distribution of the
disk, the spectrum of the emitted blackbody radiation, as
well as the conversion efficiency show, in the case of the
Hořava-Lifshitz theory vacuum solutions, significant dif-
ferences as compared to the general relativistic case, the

determination of these observational quantities could dis-
criminate, at least in principle, between standard general
relativity and Hořava-Lifshitz theory, and constrain the
parameter of the model.
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