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ABSTRACT

The neutrino-antineutrino annihilation into electron-positron pairs near the

surface of compact general relativistic stars could play an important role in

supernova explosions, neutron star collapse, or for close neutron star binaries

near their last stable orbit. General relativistic effects increase the energy de-

position rates due to the annihilation process. We investigate the deposition of

energy and momentum due to the annihilations of neutrinos and antineutrinos

in the equatorial plane of the rapidly rotating neutron and quark stars, respec-

tively. We analyze the influence of general relativistic effects, and we obtain

the general relativistic corrections to the energy and momentum deposition

rates for arbitrary stationary and axisymmetric space-times. We obtain the

energy and momentum deposition rates for several classes of rapidly rotating

neutron stars, described by different equations of state of the neutron matter,

and for quark stars, described by the MIT bag model equation of state and

in the CFL (Color-Flavor-Locked) phase, respectively. Compared to the New-

tonian calculations, rotation and general relativistic effects increase the total

annihilation rate measured by an observer at infinity. The differences in the

equations of state for neutron and quark matter also have important effects on

the spatial distribution of the energy deposition rate by neutrino-antineutrino

annihilation.

Key words: neutrinos: dense matter – equation of state: stars: rotation:

relativity.
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1 INTRODUCTION

Since the pioneering works of Cooperstein et al. (1986), Cooperstein et al. (1987), and

Goodman et al. (1987), the energy deposition rate from the ν + ν̄ → e+ + e− neutrino

annihilation reaction has been intensively studied. This reaction is of considerable impor-

tance for Type II supernova dynamics, neutron star collapse, or for close neutron star bi-

naries near their last stable orbit. Neutrino-antineutrino annihilation into electrons and

positrons can deposit more than 1051 ergs above the neutrino-sphere of a type II supernova

(Goodman et al. 1987). This energy deposition, together with neutrino-baryon capture, sig-

nificantly increases the neutrino heating in the envelope via the so-called delayed shock

mechanism (Bethe & Wilson 1985; Bethe 1990). For large r the energy deposition rate is

proportional to r−8, where r is the distance from the center of the neutrino-sphere. The ini-

tial estimations of the neutrino annihilation reaction efficiencies were based on a Newtonian

approach, by assuming that 2GM/c2R << 1, where M is the gravitational mass of the star,

and R is the distance scale. However, for a full understanding of the effects of the neutrino

annihilation in strong gravitational fields, general relativistic effects must be taken into ac-

count (Salmonson & Wilson 1999). For a static neutron star, by adopting for the description

of the gravitational field the Schwarzschild metric, the efficiency of the ν + ν̄ → e+ + e−

process is enhanced over the Newtonian values up to a factor of more than 4 in the regime

applicable to Type II supernovae, and by up to a factor of 30 for collapsing neutron stars

(Salmonson & Wilson 1999). The neutrino pair annihilation rate into electron pairs between

two neutron stars in a binary system was calculated by Salmonson & Wilson (2001). A closed

formula for the energy deposition rate at any point between the stars was obtained, where

each neutrino of a pair derives from each star, and this result was compared with that in

which all neutrinos derive from a single neutron star. An approximate generalization of this

formula was also given to include the relativistic effects of gravity. The interstar neutrino

annihilation is a significant contributor to the energy deposition between heated neutron

star binaries.

The neutrino-antineutrino annihilation into electrons and positrons is an important can-

didate to explain the energy source of the gamma ray bursts (GRBs) (Paczynski 1990;

Mészáros & Rees 1992; Ruffert & Janka 1998; Ruffert & Janka 1999; Asano & Iwamoto 2002).

⋆ E-mail: zkovacs@mpifr-bonn.mpg.de

† E-mail: hrspksc@hkucc.hku.hk

‡ E-mail: harko@hkucc.hku.hk
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The semi-analytical study of the gravitational effects on neutrino pair annihilation near the

neutrinosphere and around the thin accretion disk were considered in Asano & Fukuyama

(2000), by assuming that the accretion disk is isothermal, and that the gravitational field

is dominated by the Schwarzschild black hole. General relativistic effects were studied only

near the rotation axis. The energy deposition rate is enhanced by the effect of orbital bend-

ing toward the center. However, the effects of the redshift and gravitational trapping of the

deposited energy reduce the effective energy of the gamma-ray burst’s source. Although each

effect is substantial, the effects partly cancel one another. As a result, the gravitational effects

do not substantially change the energy deposition rate for either the spherically symmetric

case or the disk case (Asano & Fukuyama 2000). Using idealized models of the accretion

disk, Asano & Fukuyama (2001) investigated the relativistic effects on the energy deposition

rate via neutrino pair annihilation near the rotation axis of a Kerr black hole, by assuming

that the neutrinos are emitted from the accretion disk. The bending of neutrino trajectories

and the redshift due to the disk rotation and gravitation were also taken into consideration.

The Kerr parameter, a, affects not only behavior of the neutrinos, but also the inner radius

of the accretion disk. When the deposition energy is mainly contributed by the neutrinos

coming from the central part, the redshift effect becomes dominant as a becomes large,

and the energy deposition rate is reduced compared with that neglecting the relativistic

effects. On the other hand, for a small a, the bending effect becomes dominant and makes

the energy increase by factor of 2, compared with that which neglects the relativistic effects

(Asano & Fukuyama 2001).

The effect of the inclusion of the slow rotation of the star in the general relativistic treat-

ment of the neutrino-antineutrino annihilation into electron positron pairs was considered

in Prasanna & Goswami (2002). It was shown that the inclusion of the rotation results in a

reduction in the heating rate, as compared to the no rotation case. The energy-momentum

deposition rate (MDR) from the ν − ν̄ collisions above a rotating black hole/thin accre-

tion disk system was calculated by Miller et al. (2003), by imaging the accretion disk at a

specified observer using the full geodesic equations, and calculating the cumulative MDR

from the scattering of all pairs of neutrinos and antineutrinos arriving at the observer. The

dominant contribution to the MDR comes from near the surface of the disk with a tilt of

approximately π/4 in the direction of the disk’s rotation. The MDR at large radii is directed

outward in a conic section centered around the symmetry axis and is larger by a factor of 10-

20 than the on-axis values. There is also a linear dependence of the MDR on the black hole
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angular momentum. The deposition of energy and momentum, due to the annihilation of

neutrinos ν and antineutrinos ν̄ in the vicinity of steady, axisymmetric accretion tori around

stellar-mass black holes was investigated in Birkl et al. (2007). The influence of general rel-

ativistic effects were analyzed in combination with different neutrinosphere properties and

spatial distribution of the energy deposition rate. Assuming axial symmetry, the annihilation

rate 4-vector was numerically computed. The local neutrino distribution was constructed by

ray-tracing neutrino trajectories in a Kerr space-time, using null geodesics. Different shapes

of the neutrinospheres, spheres, thin disks, and thick accretion tori were studied, whose

structure ranges from idealized tori to equilibrium non-selfgravitating matter distributions.

Compared to Newtonian calculations, general relativistic effects increase the total annihila-

tion rate measured by an observer at infinity by a factor of two when the neutrinosphere is

a thin disk, but the increase is only 25% for toroidal and spherical neutrinospheres. Thin

disk models yield the highest energy deposition rates for neutrino-antineutrino annihilation,

and spherical neutrinospheres the lowest ones, independently of whether general relativistic

effects are included. General relativity and rotation cause important differences in the spa-

tial distribution of the energy deposition rate by neutrino ν and antineutrino ν̄-annihilation

(Birkl et al. 2007). The study of the structure of neutron star disks based on the two-region

(i.e., inner and outer) disk scenario was performed by Zhang & Dai (2009), who calculated

the neutrino annihilation luminosity from the disk in various cases. The effects of the vis-

cosity parameter α, energy parameter ǫ (measuring the neutrino cooling efficiency of the

inner disk), and outflow strength on the structure of the entire disk, as well as the effect of

emission from the neutron star surface boundary emission on the total neutrino annihilation

rate were investigated. An outflow from the disk decreases the density and pressure, but in-

creases the thickness of the disk. Moreover, compared with the black hole disk, the neutrino

annihilation luminosity above the neutron star disk is higher, and the neutrino emission from

the boundary layer could increase the neutrino annihilation luminosity by about one order

of magnitude higher than the disk without boundary emission. The neutron star disk with

the advection-dominated inner disk could produce the highest neutrino luminosity, while

the disk with an outflow has the lowest(Zhang & Dai 2009). A detailed general relativistic

calculation of the neutrino path for a general metric describing a rotating star was studied

in Mallick & Majumder (2009). The neutrino path was calculated along the equatorial and

polar plane. The expression for the minimum photosphere radius was obtained and matched

with the Schwarzschild limit. The minimum photosphere radius was calculated for stars with
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two different equations of state, each rotating with two different velocities. The results show

that the minimum photosphere radius for the hadronic star is much greater than for the

quark star, and that the minimum photosphere radius increases as the rotational velocity

of the star decreases. The minimum photosphere radius along the polar plane is larger than

that along the equatorial plane. The estimate of the energy deposition rate for neutrino pair

annihilation for the neutrinos coming from the equatorial plane of a rotating neutron star

was calculated along the rotation axis in Bhattacharyya et al. (2009), by using the Cook-

Shapiro-Teukolsky metric. The neutrino trajectories, and hence the neutrino emitted from

the disk, are affected by the redshift due to the disk rotation and gravitation. The energy

deposition rate is very sensitive to the value of the temperature, and its variation along the

disk. The rotation of the star has a negative effect on the energy deposition rate, it decreases

with increase in rotational velocity. The standard model for Type II supernovae explosions,

confirmed by the detection of neutrinos emitted during the supernova explosion, predicts

the formation of a compact object, usually assumed to be a neutron star (Chan et al. 2009).

However, the newly formed neutron star at the center of SN 1987A may undergo a phase

transition after the neutrino trapping timescale (∼ 10 s). Consequently the compact rem-

nant of SN 1987A may be a strange quark star, which has a softer equation of state than

that of neutron star matter (Chan et al. 2009). Such a phase transition can induce stellar

collapse and result in large amplitude stellar oscillations. A three-dimensional Newtonian

hydrodynamic code was used to study the time evolution of the temperature and density at

the neutrinosphere. Extremely intense pulsating neutrino fluxes, with submillisecond period

and with neutrino energy (greater than 30 MeV), can be emitted because the oscillations

of the temperature and density are out of phase almost 180◦. The dynamical evolution of

a phase-transition-induced collapse of a neutron star to a hybrid star, which consists of a

mixture of hadronic matter and strange quark matter, was studied in Cheng et al. (2009). It

was found that both the temperature and the density at the neutrinosphere are oscillating

with acoustic frequency. Consequently, extremely intense, pulsating neutrino/antineutrino

fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks

of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron

pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can

be ejected, by absorbing energy of neutrinos and pairs. These mass ejecta can be further ac-

celerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino

and antineutrino annihilation outside the stellar surface.
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It is the purpose of the present paper to consider a comparative systematic study of

the neutrino-antineutrino annihilation process around rapidly rotating neutron and strange

stars, respectively, and to obtain the basic physical parameters characterizing this process

(the electron-positron energy deposition rate per unit volume and unit time, and the total

emitted power, respectively), by taking into account the full general relativistic corrections.

In order to obtain the electron-positron energy deposition rate for various types of neutron

and quark stars we generalize the relativistic description of the neutrino-antineutrino anni-

hilation process to the case of arbitrary stationary and axisymmetric geometries. To com-

pute the electron-positron energy deposition rate, the metric outside the rotating general

relativistic stars must be determined. In the present study we study the equilibrium con-

figurations of the rotating neutron and quark stars by using the RNS code, as introduced

in (Stergioulas & Friedman 1995), and discussed in detail in (Stergioulas 2003). This code

was used for the study of different models of rotating neutron stars in (Nozawa et al. 1998)

and for the study of the rapidly rotating strange stars ((Stergioulas et al. 1999)). The soft-

ware provides the metric potentials for various types of compact rotating general relativistic

objects, which can be used to obtain the electron-positron energy deposition rate in the

equatorial plane of rapidly rotating neutron and quark stars.

The present paper is organized as follows. In Section 2 we present the basic formalism for

the calculation of the electron-positron energy deposition rate from neutrino-antineutrino

annihilation. The general relativistic corrections to this process are obtained in Section 3.

The equations of state of dense neutron and quark matter used in the present study are

presented in Section 4. In Section 5 we obtain the electron-positron energy deposition rates

in the equatorial plane of the considered classes of neutron and quark stars. We discuss and

conclude our results in Section 6.

2 NEUTRINO PAIR ANNIHILATION

A considerable amount of energy can be released by the neutrino pair annihilation process

in the regions close to the so called neutrino-sphere, with radius Rν , at which the mean free

path of the neutrino is equal to the radius itself (Bethe & Wilson 1985).

The energy deposition rate per unit volume is given by

q̇(r) =
∫ ∫

fν(pν , r)fν̄(pν̄
, r){σ|vν − vν̄ |ενεν̄}

εν + εν̄

ενεν̄
d3pνd

3pν̄ , (1)

for any point r > Rν , where fν and fν̄ are the number densities in the momentum spaces
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with the momenta pν and p
ν̄
, and vν , εν , vν̄ and εν̄ are the 3-velocities and the energy of the

colliding neutrino-antineutrino pairs, respectively (Goodman et al. 1987). The cross-section

of the collision is denoted by σ.

By applying the decompositions pν = ενΩν and d3pν = ε2
νdενdΩν , with the solid angle

vector Ων pointing in the direction of pν , and with the assumption that the neutrino-sphere

emits particles isotropically, the integral in Eq. (1) can be separated into an energy integral

and an angular part. After evaluating the energy integral for fermions, for a spherically

symmetric geometry the energy deposition rate per unit volume can be represented as

q̇(r) =
7DG2

Fπ3ζ(5)

2c5h6
(kT )9Θ(r) ∝ T 9(r)Θ(r), (2)

where T is the neutrino temperature, ζ is the Riemann function, D = 1±4 sin2 θW +8 sin4 θW ,

with sin2 θW = 0.23, and G2
F = 5.29× 10−44 cm2 MeV−2, respectively, and with the angular

part of the energy deposition rate Θ(r) given by

Θ(r) =
∫ ∫

(1 − Ων · Ων̄)
2dΩνdΩν̄ . (3)

The radial momentum density ṗ transported into the e+e− plasma from the colliding νν̄

pairs can be written as (Salmonson & Wilson 1999)

ṗ =
q̇

c
Φp(r)Θ(r) , (4)

where

Φp(r) =
1

2

∫ ∫

(1 −Ων · Ων̄)
2[r · (Ων + Ων̄)]dΩνdΩν̄ , (5)

with the unit vector r normal to the stellar surface.

Since the integrals in Eqs. (3) and (5) depend only on the radial coordinate r, by virtue

of the symmetry, the angular part Θ(r) and the function Φp(r) can be given by the analytic

formulae

Θ(r) =
2π2

3
(1 − x)4(x2 + 4x + 5) (6)

and

Φp(r) =
π2

6
(1 − x)4(8 + 17x + 12x2 + 3x3) , (7)

where x = cos θmax, and θmax is the maximal angle between r and pν (Goodman et al. 1987;

Salmonson & Wilson 1999). In order to determine the quantity x, one need to use the equa-

tions of motion of the neutrinos radiated by the stellar matter, and propagating outside

the neutrino-sphere. The equations of motion in the Newtonian case, or the geodesic equa-

tions in the general relativistic case fully determine x as a function of the radial coordinate.
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Therefore, the properties of the gravitational potential produce an imprint on the energy

deposition rate calculated in the region close to the neutrino-sphere. Salmonson & Wilson

(1999) extended the calculations of Goodman et al. (1987) to the case of the Schwarzschild

geometry, and compared their results to those of the Newtonian case.

Although rotating configurations of neutron stars break the spherical symmetry of the

space-time, one can still carry out an analysis similar to the static case if the study is

restricted to the investigation of the annihilation of neutrino and antineutrino pairs propa-

gating in the equatorial plane of the rotating star. By eliminating the angular dependence

from the equations, a formalism similar to the spherically symmetric case can be used to

calculate the energy deposition rate in the equatorial plane. The obtained result is not equal

to the total deposition rate of the high energy electron positron pairs created in the annihi-

lation process. However, this quantity can still be applied in the comparison of the neutrino

and antineutrino annihilation energy deposition rate for different models of rotating neutron

and quark stars, or in studying the general effects of the rotation of the stellar object on

this process.

3 GENERAL RELATIVISTIC EFFECTS ON THE

ELECTRON-POSITRON ENERGY DEPOSITION RATE

The metric of a stationary and axisymmetric geometry is given in the general form by

ds2 = gttdt2 + 2gtφdtdφ + grrdr2 + gθθdθ2 + gφφdφ2. (8)

For this metric the null-geodesics equations in the equatorial plane θ = π/2 are

ṫ =
gφφE + gtφL

g2
φt − gttgφφ

, (9)

φ̇ = −gφtE + gttL

g2
tφ − gttgφφ

, (10)

grrṙ
2 =

gφφE
2 + 2gtφEL + gttL

2

g2
tφ − gttgφφ

, (11)

where E is the energy, and L is the angular momentum of the particles propagating along

the null-geodesics. Then the parametric equation for dr/dφ can be written as

grr

(

dr

dφ

)2

= (g2
tφ − gttgφφ)

gφφ + 2gtφb + gttb
2

(gtφ + gttb)2
, (12)

where the impact parameter is defined as b = L/E.
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For the metric given by Eq. (8), the locally non-rotating frame (LNRF) (in which the

wordlines of the freely falling observers are r = constant, θ = constant and φ−ωt = constant,

respectively, with ω = −gtφ/gφφ) has the basis of one-forms (Bardeen et al. 1972)

e(t)
µ =

√

√

√

√

−gtt

g2
tφ − gttgφφ

(−1, 0, 0, 0),

e(r)
µ = (0,

√
grr, 0, 0),

e(θ)
µ = (0, 0,

√
gθθ, 0),

e(φ)
µ =

√
gφφ(gtφ/gφφ, 0, 0, 1).

Since the velocity measured in the LNRF is given by v(a) = e(a)
µ vµ, the angle θr between

the particle trajectory and the tangent vector to the circular orbit with the radial coordinate

r can be written as

tan θr =
v(r)

v(φ)
=

e(r)
r vr

e
(φ)
φ vφ + e

(φ)
t

=

√
grr√

gφφ[1 + gtφ/(gφφvφ)]

dr

dφ
.

From this expression we obtain for dr/dφ the equation

dr

dφ
=

√

gφφ

grr

(

1 +
gtφ

gφφvφ

)

tan θr. (13)

By inserting Eqs. (9) and (10) into the definition of vφ, we obtain for vφ the expression

vφ =
uφ

ut
=

φ̇

ṫ
= − gtφE + gttL

gφφE + gtφL
,

which can be substituted into Eq. (13) to give

dr

dφ
=

√

gφφ

grr

(

1 − gtφ

gφφ

gφφE + gtφL

gtφE + gttL

)

tan θr.

Then the derivative dr/dφ can be eliminated from the parametric equation (12) and we

obtain

gφφ

(

1 − gtφ

gφφ

gφφ + gtφb

gtφ + gttb

)2

tan2 θr = (g2
tφ − gttgφφ)

gφφ + 2gtφb + gttb
2

(gφt + gttb)2
.

This result gives a second order algebraic equation for b,

[(gttgφφ − g2
tφ) sec2 θr + g2

tφ]b
2 + 2gtφgφφb + g2

φφ = 0, (14)

which can be solved to give the impact parameter b as

b± =
−gφφ

gtφ ±
√

g2
tφ − gttgφφ sec θr

. (15)

A particular system of coordinates that is used in the study of the general-relativistic

rotating configurations is the quasi-isotropic coordinate system (t, r̄, θ, φ), in which the line

element can be represented as (Stergioulas & Friedman 1995; Stergioulas 2003)
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ds2 = −eγ̄+ρ̄dt2 + e2ᾱ
(

dr̄2 + r̄2dθ2
)

+ eγ̄−ρ̄r̄2 sin2 θ (dφ − ω̄dt)2 , (16)

where γ̄, ρ̄, ᾱ and the angular velocity of the stellar fluid relative to the local inertial frame

ω̄ are all functions of the quasi-isotropic radial coordinate r̄ and of the polar angle θ.

If for neutron stars the metric (8) is given in an isotropic coordinate system in the form

(16), then the second order algebraic equation (14) for b can be written in terms of the

metric functions ρ̄ and ω̄ as

(

sec2 θr + e−2ρω̄2r̄2 sin2 θ
)

b2 − 2e−2ρ̄ω̄r̄2 sin2 θb + e−2ρ̄r̄2 sin2 θ = 0.

For the impact parameter, corresponding to θr = 0, we obtain (Cadeu et al. 2007)

b± =
−e−ρ̄r̄ sin θ

−e−ρ̄ω̄r̄ sin θ ± sec θr
= ± e−ρ̄r̄ sin θ

sec θr ± e−ρ̄ω̄r̄ sin θ
.

From the parametric equation Eq. (12) we obtain the deflection angle of the particle

trajectory for a given b as

∆φ =
∫ robs

rem

√
grr(gtφ + gttb)dr

√

(g2
tφ − gttgφφ)(gφφ + 2gtφb + gttb2)

. (17)

In this equation ∆φ measures the change in the angle between the source and the ob-

server, for a photon emitted at the radial coordinate rem, and observed at the radial coor-

dinate robs. This equation can also be given in the equatorial plane in terms of the metric

functions ρ̄ and ω̄, respectively, appearing in the line element Eq. (16) (Cadeu et al. 2005)

∆φ = −
∫ r̄obs

r̄em

eᾱ−(γ̄+ρ̄)/2 ω̄(1 − ω̄b) + be2ρ̄/r̄2

√

(1 − ω̄b)2 − b2e2ρ̄/r̄2
dr̄.

In the equatorial plane of black holes the photon radius is defined as the innermost

boundary of circular orbits below which massless particles with θr = 0 are gravitationally

bound (Bardeen et al. 1972). For static black holes the photon radius is 3M , and for rotating

black holes it reduces to M , as the spin parameter a∗ = J/M2 of the black hole approaches

unity. This orbit may exist for ultra-compact stars as well. For static stars with a stellar

radius less than 3M there is always such a ”photon sphere”, whereas, depending on the

geometry of the space-time, the rotating stars can also have a photon radius at both lower

and higher radii (Mallick & Majumder 2009). On the other hand, very massive rotating

quark stars in the Color-Flavor-Locked phase can reach masses higher than the equilibrium

limit for static stars (≈ 3M⊙), of the same order as the stellar mass black holes, and thus

they can also have a photon radius (Kovacs et al. 2009).
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If the integral in Eq. (17) diverges to infinity (or dr/dφ tends to zero), the null particles

are rotating around the central objects in circular orbits. In this case θr = 0, and the

algebraic equation Eq. (14) for b reduces to gφφ + 2gtφb + gttb
2 = 0, with the solution

b± =
−gφφ

gtφ ±
√

g2
tφ − gttgφφ

= ± e−ρ̄r̄

1 ± e−ρ̄ω̄r̄
. (18)

For any value of b satisfying Eq. (18), the integral (17) is divergent, and the null particles

have circular orbits. In Eq. (18) the impact parameter in the equatorial plane is given as a

function of the radial coordinate only.

In the case of the ultracompact static stars with radii Re less than 3M the (local)

maximum of the function b(r) is located at r = 3M , providing the photon radius. If Re >

3M , then b is a monotonically decreasing function, without a local maximum. For rotating

compact stars, the function b(r) provides the same criterion for the existence of the potential

barrier: for massless particles the equatorial orbit where b(r) attains its local maximum

defines the innermost boundary of circular orbits. Even if this value is less than the equatorial

radius Re, neutrinos are still free to propagate along orbits lying on the photon radius.

By assuming that the mean free path of the neutrinos is equal to or less than the photon

radius, Salmonson & Wilson (1999) identified the photon and the neutrino spheres with each

other. Accordingly, we will also consider the orbit at the photon radius as the minimal radius

where the annihilation process should still be taken into account, provided it is outside the

star. The contribution of the electron-positron pairs formed inside the star to the deposition

rate is neglected, because of their complicated interactions with the neutron and quark

matter.

Since the impact parameter measured at infinity is constant along the trajectory of any

null particle, the neutrinos propagating from a point at the photon sphere radius R (or the

stellar surface Re) with the angle θR = tan−1 v(r)(R)/v(φ)(R), will reach another point with

radial coordinate r with the angle

cos θr =
gφφ(R)

√

g2
tφ(r) − gtt(r)gφφ(r)

gφφ(r)
[

gtφ(R) +
√

g2
tφ(R) − gtt(R)gφφ(R) sec θR

]

− gφφ(R)gtφ(r)
. (19)

Eq. (19) allows to express x in the analytic expression of the angular part Θ(r) of the energy,

given by Eq. (6), as

x2(r) = 1 −
g2

φφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]

{

gφφ(r)
[

gtφ(R) +
√

g2
tφ(R) − gtt(R)gφφ(R)

]

− gφφ(R)gtφ(r)
}2 . (20)

For the line element given by Eq. (16), Eq. (20) has the form
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x2(r̄) = 1 −
{

R̄

r̄

eγ(r̄)−γ(R̄)

1 + [ω(r̄) − ω(R̄)]R̄eγ(R̄)

}2

. (21)

Thus the function Θ(r) can be represented in the general form

Θ(r) =
2π2

3









1 −

√

√

√

√

√

√

1 −
g2

φφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]

{

gφφ(r)
[

gtφ(R) +
√

g2
tφ(R) − gtt(R)gφφ(R)

]

− gφφ(R)gtφ(r)
}2









4

×





−
g2

φφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]

{

gφφ(r)
[

gtφ(R) +
√

g2
tφ(R) − gtt(R)gφφ(R)

]

− gφφ(R)gtφ(r)
}2

+4

√

√

√

√

√

√

1 −
g2

φφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]

{

gφφ(r)
[

gtφ(R) +
√

g2
tφ(R) − gtt(R)gφφ(R)

]

− gφφ(R)gtφ(r)
}2 + 6









. (22)

In quasi-isotropic coordinates we have

Θ(r̄) =
2π2

3






1 −

√

√

√

√

√1 −






R̄

r̄

eγ(r̄)−γ(R̄)

1 +
[

ω(r̄) − ω(R̄))
]

R̄eγ(R̄)







2






4

×













R̄

r̄

eγ(r̄)−γ(R̄)

1 +
[

ω(r̄) − ω(R̄)
]

R̄eγ(R̄)







2

+ 4

√

√

√

√

√1 −






R̄

r̄

eγ(r̄)−γ(R̄)

1 +
[

ω(r̄) − ω(R̄))
]

R̄eγ(R̄)







2

+ 6





 .

(23)

The neutrino temperature at the radius r can be expressed in terms of the temperature of

the neutrino stream at the neutrino-sphere radius R, by taking into account the gravitational

redshift. The redshift formula for T is the same as for the photon energy,

T (r) =







gφφ(r)
[

g2
tφ(R) − gtt(R)gφφ(R)

]

gφφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]







1/2

T (R) . (24)

For the observed luminosity L∞ of the neutrino annihilation the redshift relation is given by

L∞ =
gφφ(r → ∞)

[

g2
tφ(R) − gtt(R)gφφ(R)

]

gφφ(R)
[

g2
tφ(r → ∞) − gtt(r → ∞)gφφ(r → ∞)

]L(R) =

[

g2
tφ(R)

gφφ(R)
− gtt(R)

]

L(R) , (25)

since for isolated gravitating systems, such as rotating stars, the spacetime is asymptotically

flat. Here the neutrino luminosity at the neutrino-sphere is

L(R) = Lν + Lν̄ = (4πR2)
7

16
acT 4(R) (26)

where a is the radiation constant. In this formula the curvature radius R is used to obtain

the total area of the spherical surface through which the neutrino radiation is emitted. If

we insert Eq. (20), describing the path-bending of the neutrinos, and the redshift formulae
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Eqs. (24)-(26) into the decomposed expression Eq. (2) of q̇, we can calculate the effects of

the gravitational potential on the deposition rate in the equatorial plane:

q̇(r) ∝ L9/4
∞ Θ(r)











gφφ(r)
√

g2
tφ(R) − gtt(R)gφφ(R)

√

gφφ(R)
[

g2
tφ(r) − gtt(r)gφφ(r)

]











9/2

R−9/4. (27)

The proportionality factor, omitted from Eq. (27), is the same as the one in the New-

tonian case, which will be used in the following to normalize the deposition rate for the

general relativistic case. Eq. (27) describes the energy deposition rate in e+e− pairs from

the neutrino-antineutrino annihilation process at radius r in the equatorial plane above the

neutron or quark star photon sphere radius R, and with the neutrino luminosity observed

at infinity L∞. This relation can be also given in the quasi-isotropic coordinate system in

terms of the metric functions of the line element Eq. (16),

q̇(r̄) ∝ L9/4
∞ Θ(r̄)e9[γ(R̄)+ρ(R̄)]/4−9[γ(r̄)+ρ(r̄)]/2R−9/4(R̄). (28)

4 EQUATIONS OF STATE AND STELLAR MODELS

In order to obtain a consistent and realistic physical description of the rotating general

relativistic neutron and quark stars, as a first step we have to adopt the equations of state

for the dense neutron and quark matter, respectively. In the present study we consider the

following equations of state for neutron and quark matter:

1) Akmal-Pandharipande-Ravenhall (APR) EOS (Akmal et al. 1998). EOS APR has

been obtained by using the variational chain summation methods and the Argonne v18 two-

nucleon interaction. Boost corrections to the two-nucleon interaction, which give the leading

relativistic effect of order (v/c)2, as well as three-nucleon interactions, are also included in

the nuclear Hamiltonian. The density range is from 2×1014 g/cm3 to 2.6×1015 g/cm3. The

maximum mass limit in the static case for this EOS is 2.20M⊙. We join this equation of

state to the composite BBP (ǫ/c2 > 4.3×1011g/cm3) (Baym et al. 1971a) - BPS (104 g/cm3

< 4.3 × 1011g/cm3) (Baym et al. 1971b) - FMT (ǫ/c2 < 104 g/cm3) (Feynman et al. 1949)

equations of state, respectively.

2) Douchin-Haensel (DH) EOS (Douchin & Haensel 2001). EOS DH is an equation of

state of the neutron star matter, describing both the neutron star crust and the liquid core.

It is based on the effective nuclear interaction SLy of the Skyrme type, which is particularly

suitable for the application to the calculation of the properties of very neutron rich matter.

The structure of the crust, and its EOS, is calculated in the zero temperature approximation,
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and under the assumption of the ground state composition. The EOS of the liquid core is

calculated assuming (minimal) npeµ composition. The density range is from 3.49 × 1011

g/cm3 to 4.04×1015 g/cm3. The minimum and maximum masses of the static neutron stars

for this EOS are 0.094M⊙ and 2.05M⊙, respectively.

3) Shen-Toki-Oyamatsu-Sumiyoshi (STOS) EOS (Shen et al. 1998). The STOS equation

of state of nuclear matter is obtained by using the relativistic mean field theory with nonlin-

ear σ and ω terms in a wide density and temperature range, with various proton fractions.

The EOS was specifically designed for the use of supernova simulation and for the neutron

star calculations. The Thomas-Fermi approximation is used to describe inhomogeneous mat-

ter, where heavy nuclei are formed together with free nucleon gas. We consider the STOS

EOS for several temperatures, namely T = 0, T = 0.5 and T = 1.0 MeV, respectively. The

temperature is mentioned for each STOS equation of state, so that, for example, STOS 0

represents the STOS EOS for T = 0. For the proton fraction we chose the value Yp = 10−2

in order to avoid the negative pressure regime for low baryon mass densities.

4) Relativistic Mean Field (RMF) equations of state with isovector scalar mean field cor-

responding to the δ-meson- RMF soft and RMF stiff EOS (Kubis & Kutschera 1997). While

the δ-meson mean field vanishes in symmetric nuclear matter, it can influence properties of

asymmetric nuclear matter in neutron stars. The Relativistic mean field contribution due to

the δ-field to the nuclear symmetry energy is negative. The energy per particle of neutron

matter is then larger at high densities than the one with no δ-field included. Also, the proton

fraction of β-stable matter increases. Splitting of proton and neutron effective masses due

to the δ-field can affect transport properties of neutron star matter. The equations of state

can be parameterized by the coupling parameters C2
σ = g2

σ/m
2
σ, C2

ω = g2
ω/m2

ω, b̄ = b/g3
σ and

c̄ = c/g4
σ, where mσ and mω are the masses of the respective mesons, and b and c are the

coefficients in the potential energy U (σ) of the σ-field. The soft RMF EOS is parameterized

by C2
σ = 1.582 fm2, C2

ω = 1.019 fm2, b̄ = −0.7188 and c̄ = 6.563, while the stiff RMF EOS

is parameterized by C2
σ = 11.25 fm2, C2

ω = 6.483 fm2, b̄ = 0.003825 and c̄ = 3.5 × 10−6,

respectively.

5) Baldo-Bombaci-Burgio (BBB) EOS (Baldo et al. 1997). The BBB EOS is an EOS

for asymmetric nuclear matter, derived from the Brueckner-Bethe-Goldstone many-body

theory with explicit three-body forces. Two EOS’s are obtained, one corresponding to the

Argonne AV14 (BBBAV14), and the other to the Paris two-body nuclear force (BBBParis),

implemented by the Urbana model for the three-body force. The maximum static mass con-
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figurations are Mmax = 1.8M⊙ and Mmax = 1.94M⊙ when the AV14 and Paris interactions

are used, respectively. The onset of direct Urca processes occurs at densities n > 0.65 fm−3

for the AV14 potential and n > 0.54 fm−3 for the Paris potential. The comparison with

other microscopic models for the EOS shows noticeable differences. The density range is

from 1.35 × 1014 g/cm3 to 3.507 × 1015 g/cm3.

6) Bag model equation of state for quark matter (Q) EOS (Itoh 1970; Bodmer 1971;

Witten 1984; Cheng et al. 1998). For the description of the quark matter we adopt first a

simple phenomenological description, based on the MIT bag model equation of state, in

which the pressure p is related to the energy density ρ by

p =
1

3
(ρ − 4B) c2, (29)

where B is the difference between the energy density of the perturbative and non-perturbative

QCD vacuum (the bag constant), with the value 4B = 4.2 × 1014 g/cm3.

7) It is generally agreed today that the color-flavor-locked (CFL) state is likely to be the

ground state of matter, at least for asymptotic densities, and even if the quark masses are

unequal (Alford et al. 1999; Rapp et al. 2000; Horvath & Lugones 2004; Alford et al. 2007).

Moreover, the equal number of flavors is enforced by symmetry, and electrons are absent,

since the mixture is automatically neutral. By assuming that the mass ms of the s quark

is not large as compared to the chemical potential µ, the thermodynamical potential of the

quark matter in CFL phase can be approximated as (Lugones & Horvath 2002)

ΩCFL = −3µ4

4π2
+

3m2
s

4π2
− 1 − 12 ln (ms/2µ)

32π2
m4

s −
3

π2
∆2µ2 + B, (30)

where ∆ is the gap energy. With the use of this expression the pressure P of the quark

matter in the CFL phase can be obtained as an explicit function of the energy density ε in

the form (Lugones & Horvath 2002)

P =
1

3
(ε − 4B) +

2∆2δ2

π2
− m2

sδ
2

2π2
, (31)

where

δ2 = −α +

√

α2 +
4

9
π2 (ε − B), (32)

and α = −m2
s/6 + 2∆2/3. In the following the value of the gap energy ∆ considered in each

case will be also mentioned for the CFL equation of state, so that, for example, CFL200

represents the CFL EOS with ∆ = 200. For the bag constant B we adopt the value 4B =

4.2× 1014 g/cm3, while for the mass of the strange quark we take the value ms = 150 MeV.

The pressure-density relation is presented for the considered equations of state in Fig. 1.
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Figure 1. Pressure as a function of density (in a logarithmic scale) for the equations of state DH, RMF soft, RMF stiff, STOS
0. STOS 0.5, STOS 1, BBBAV14, BBBParis, APR, Q, CFL150, and CFL300, respectively.

To calculate the equilibrium configurations of the rotating neutron and quark stars with

the EOS’s presented here we use the RNS code, as introduced in Stergioulas & Friedman

(1995), and discussed in details in Stergioulas (2003). This code was used for the study

of different models of rotating neutron stars (Nozawa et al. 1998), and for the study of

the rapidly rotating strange stars (Stergioulas et al. 1999). The RNS code produces the

metric functions in a quasi-spheroidal coordinate system, as functions of the parameter

s = r̄/ (r̄ + r̄e), where r̄e is the equatorial radius of the star, which we have converted into

Schwarzschild-type coordinates r according to the equation r = r̄ exp [(γ̄ − ρ̄) /2].

5 ELECTRON-POSITRON ENERGY DEPOSITION RATE IN THE

EQUATORIAL PLANE OF RAPIDLY ROTATING NEUTRON AND

QUARK STARS

To demonstrate the existence and the location of the photon radius for neutron and quark

stars in the static and the rotating cases, respectively, in Fig. 2 we present b(r)/M as

a function of the Schwarzschild coordinate radius (normalized to the mass of the star).

For the static neutron star (modeled, for example, by the STOS 0.5 EOS), the exterior

geometry is always the Schwarzschild one, and the curve b(r) connects to the curve of the

static black hole at a radius somewhat lower than 3M . Then, the curve has a local minimum

at 3M , similarly to the case of the function b(r), corresponding to the Schwarzschild case

(Landau & Lifshitz 1998). Therefore, the star has a photon radius at 3M . This is not the

case for the static quark star (with an EOS of the CFL 300 type), which is not so compact,

and its curve b(r) reaches the Schwarzschild black hole curve at a somewhat higher radius
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Figure 2. The impact parameter b/M as a function of the Schwarzschild coordinate r/M for static black holes, and static and
rotating neutron and quark stars, respectively.

than 3M . The radial dependence of b(r) for rotating stars has also these two features: the

metric potentials of the neutron star with RMF stiff type EOS and the Q and CFL type

quark stars give local minima for b(r), whereas the neutron star with STOS 0.5 type EOS is

not compact enough to have a photon radius (see Table 4). We note that the photon radii

of the rotating stellar objects are located at higher radii than 3M , which is opposite to the

behavior of the rotating black holes, where the photon radii approach M as the black hole

spins up.

The deposition rate of the total energy of the e+e− pairs generated in the neutrino

annihilation is usually characterized by the integral of q̇ over the spatial proper volume of

the neutrino stream. The integral of q̇ in the radial direction, measuring the total amount

of energy converted form neutrinos to electron-positron pairs at all radii R, is then given by

Q̇(R) = 2
∫ 2π

0

∫ π/2

0

∫ ∞

R
q̇(r, R, θ)

√
grrgθθgφφdrdθdφ. (33)

For a spherically symmetric geometry the integration over the angular coordinates φ and

θ is a straightforward computation. This is not the case in the axially symmetric case, where

the θ-dependence of the metric as well as the nature of the null trajectories is much more

complicated. In order to avoid this problem, we restrict the study of the electron-positron

energy deposition rate to neutrino pairs moving in the equatorial plane only. Instead of the

quantity Q̇ defined by Eq. (33), we consider its derivative with respect to θ in the equatorial

plane,

dQ̇

dθ

∣

∣

∣

∣

∣

θ=π/2

= 2
∫ 2π

0

∫ ∞

R
q̇(r, R, θ)

√
grrgθθgφφdrdφ

∣

∣

∣

∣

θ=π/2

= 4π
∫ ∞

R
q̇(r, R, θ)

√
grrgθθgφφdr

∣

∣

∣

∣

θ=π/2
. (34)
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Figure 3. The electron-positron energy deposition rate
(

dQ̇/dθ
)

/
(

dQ̇N /dθ
)∣

∣

θ=π/2
in the equatorial plane around rotating

neutron and quark stars, with the same total mass M = 1.8M⊙, and same rotational velocity Ω = 5 × 103 s−1.

Q̇, and therefore its θ-derivative, is neither an observable, nor a Lorentz-invariant quan-

tity (author?) (Salmonson & Wilson 1999), but Q̇ can be used to measure the total amount

of local energy deposited via the neutrino pair annihilation outside the neutrino-sphere. The

derivative dQ̇/dθ, evaluated at θ = π/2 allows one to describe the energy deposition rate

only in the equatorial plane, but its value normalized to the Newtonian case can be applied

to compare the energy deposition rates in different gravitational potentials. Since the quan-

tity given by Eq. (34) has a simple form in the Newtonian case, the ratio of the general

relativistic case to the Newtonian model is given by

dQ̇/dθ

dQ̇N/dθ

∣

∣

∣

∣

∣

θ=π/2

=

∫∞
R q̇(r, R, θ)

√

grr(r, θ)gθθ(r, θ)gφφ(r, θ)dr
∣

∣

∣

θ=π/2
∫∞
R q̇N(r, R)r2dr

. (35)

Here q̇(r, R, θ) is the deposition rate calculated by taking into account the general rela-

tivistic effects, whereas q̇N (r, R) is the deposition rate for the simple Newtonian case, without

taking into account the bending of the neutrino path and the redshift in the neutrino tem-

perature. We will use the ratio given by Eq. (35) to compare the electron-positron energy

deposition rates in the space-times of neutron and quark stars, with different equations of

state.

In Fig. 3 we present the ratio given by Eq. (35) as a function of the neutrino-sphere

radius, measured in curvature coordinates, for each neutron and quark star model previously

described. The total mass M of the central objects is set to 1.8M⊙, and the rotational

frequency Ω of the stars is about 5× 103 s−1. For this configuration the physical parameters

of the stars are shown in Table 1.

From the analysis of the compactness of these stars, that is, of the ratio of the total mass
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EOS DH RMF stiff STOS 0 STOS 0.5 STOS 1 BBBAV14 BBBParis APR Q CFL150

ρc [1015g/cm3] 1.29 0.57 0.369 0.383 0.40 2.15 1.70 1.225 0.931 0.71

M [M⊙] 1.81 1.80 1.85 1.80 1.79 1.80 1.80 1.80 1.79 1.80

M0 [M⊙] 2.05 2.00 2.01 1.95 1.93 2.08 2.07 2.11 2.09 2.09

Re[km] 12.01 15.79 21.03 22.84 22.72 10.57 10.98 10.99 11.79 12.36

Ω[103s−1] 4.99 5.00 4.90 4.71 4.45 5.01 5.00 5.00 4.79 5.00

Ωp[103s−1] 11.16 7.97 5.37 4.56 4.54 13.96 13.19 13.23 11.97 11.28

T/W [10−2] 3.43 8.93 14.91 12.25 9.83 2.35 2.66 3.41 4.45 5.64

cJ/GM2
⊙

1.15 2.00 2.95 2.49 2.15 0.95 1.00 1.12 1.28 1.50

I[1045g cm2] 2.03 3.52 5.30 4.65 4.25 1.66 1.76 1.98 2.35 2.63

Φ2[1043g cm2] 8.54 43.82 106.53 80.44 61.22 4.42 5.43 7.87 1.30 1.91

h+[km] 6.85 0.00 0.00 0.00 0.00 3.19 2.69 0.00 0.00 0.00

h−[km] 7.48 -3.40 7.91 3.87 2.27 8.14 7.90 -2.11 0.00 0.00

ωc/Ω[10−1] 5.85 4.52 4.10 4.07 4.08 6.67 6.34 5.86 5.27 5.00

re[km] 9.10 12.85 18.00 19.97 19.91 7.64 8.06 8.05 8.86 9.40

rp/re 0.88 0.72 0.54 0.53 0.58 0.92 0.91 0.90 0.87 0.84

Table 1. Physical parameters of the compact stars with total mass M ≈ 1.8M⊙ and rotational frequency Ω ≈ 5×103 s−1. Here
ρc is the central density, M is the gravitational mass, M0 is the rest mass, Re is the circumferential radius at the equator, Ω is
the angular velocity, Ωp is the angular velocity of a particle in circular orbit at the equator, T/W is the rotational-gravitational
energy ratio, cJ/GM2

⊙
is the angular momentum, I is the moment of inertia, Φ2 gives the mass quadrupole moment M2 so that

M2 = c4Φ2/(G2M3M3
⊙

), h+ is the height from the surface of the last stable co-rotating circular orbit in the equatorial plane,
h− is the height from surface of the last stable counter-rotating circular orbit in the equatorial plane, ωc/Ω is the ratio of the
central value of the potential ω to Ω, re is the coordinate equatorial radius, and rp/re is the axes ratio (polar to equatorial),
respectively.

to the equatorial radius, we see that the 1.8M⊙ mass stars are not compact enough to have

a photon or a neutrino-sphere. In other words, the impact parameter b given by Eq. (18) is a

monotonic function of the radial coordinate, without any minimum. For comparison we also

plotted the static case with the same total mass, which is essentially the same for any type

of the equation of state describing the properties of the dense star matter, since the exterior

metric of the static stars is described by the Schwarzschild metric. The energy deposition rate

for this case coincides with the Q̇/Q̇N versus r/M plot given by (Salmonson & Wilson 1999),

since the multiplicative factor coming from the integration of q̇
√

grrgθθgφφ over θ is unity

for the Schwarzschild space-time. From Fig. 3 it can be immediately seen how the energy

deposition rate of the electron-positron pairs is enhanced by the rotation of the central

object. It is also clear that the measure of enhancement depends on the type of the equation

of state used to describe the dense neutron and quark stars. In the rotating case, the increase

in the ratio of the energy deposition rates, given by Eq. (35), is the smallest, as compared

to the static case, for the BBBAV14 and BBBParis type EOS’s. The neutron stars with

DH and APR type EOS’s produce roughly the same ratios, which are somewhat greater
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than the BBB type neutron star pair production rates. For the quark stars, described by

the Q and the CFL type EOS’s, we obtain even higher deposition rates. Although none of

these types of central objects possesses neutrino-spheres, they are still compact enough to

have equatorial radii less than 5M . The equatorial radii of the neutron stars with the RMF

and STOS type EOS’s are much larger than those of the previous group: 6M for the RMF

type EOS, and 8M or even more for the STOS type stars, depending on the temperature

of these stellar configurations. This means that although they give the highest deposition

rates, with the STOS T = 1 Mev type star having the maximal value, the energy released by

the neutrino pair annihilation outside the star in the equatorial plane is smaller than in the

case of the first group. This result might be not true in the regions close to the poles of the

star, if the axis ratios r̄p/r̄e would be considerably smaller for the second group as compared

to the axis ratios of the first group. In the case of the STOS type EOS r̄p/r̄e is between 0.5

and 0.6, which is indeed much smaller than 0.85-0.9, the average values of the axis ratios for

the first group. This means the difference between the polar radii r̄p of the fist group, and

the STOS type neutron star, is smaller than the difference between their equatorial radii,

and the lower boundary of the integral of q̇ over the radial coordinate are closer to each

other. In this case, the integrated deposition rate can be higher for the neutron star with

STOS type EOS than the one with the other types of equations of state for neutron stars

and quark stars.

However, in this framework one should be very cautious with any statement on the

physical processes located far from the equatorial plane, since the neutrinos reaching the

region close to the pole of the rotating stars have impact parameters rather different from

the neutrinos moving in the equatorial plane, and the formalism applied for the latter cannot

be extended straightforwardly to the motion outside the equatorial plane.

Next, we consider the electron-positron energy deposition rate for a more massive group

of stars, with the total mass M set to 2.8M⊙. Although this value of the mass is smaller than

the theoretical stability mass limit of 3 Solar masses for ultra-compact objects, not all types

of the EOS’s considered here do have configurations of such high masses, even in the rapidly

rotating case. We have obtained solutions to the field equations for this mass regime only

for the quark stars, for the RMF, and for the STOS type neutron star EOS’s, respectively.

For the other equations of state we did not even find a compatible rotation frequency in the

high mass regime. For the stable massive configurations the angular velocity varied up to

6 × 103 s−1 for the STOS type neutron star models and the CFL type quark stars, whereas
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EOS RMF stiff STOS 1.0 Q CFL 300

ρc [1015g/cm3] 2.10 0.640000 1.60000 0.394500

M [M⊙] 2.79986 2.8098 2.80017 2.80677

M0 [M⊙] 3.28120 3.19101 3.34023 3.28947

Re[km] 14.8969 19.6359 15.4159 18.0389

Ω[103s−1] 9.78914 5.90127 10.0016 5.96099

Ωp[103s−1] 10.4349 6.99013 10.4087 8.35765

T/W [10−1] 1.30916 1.09688 2.00292 1.50674

cJ/GM2
⊙

5.49201 5.05616 6.64450 6.02253

I[1045g cm2] 4.93060 7.52988 5.83855 8.87919

Φ2[1044g cm2] 5.68507 8.48428 9.63523 13.4904

h+[km] 1.93604 0.306693 - 0.00000

h−[km] 19.6015 15.1710 21.4442 -

ωc/Ω[10−1] 8.23642 6.2819 7.57682 5.75394

re[km] 9.99343 14.9859 10.2897 13.1041

rp/re 0.590234 0.640000 0.502344 0.620000

Table 2. Physical parameters of the compact stars with total mass M ≈ 2.8M⊙ and rotational frequency Ω ≈ 6× 103 s−1 and
104 s−1.

EOS RMF stiff STOS 1.0 Q CFL 300

M/Re 0.2775 0.2113 0.2682 0.2298
Re/M 3.63 4.73 3.73 4.35
Re [km] 14.89 19.64 15.42 18.04

Rph/M 2.14 - 2.88 4.24
Rph [km] 8.82 - 11.87 17.56

Table 3. The compactness, the equatorial and the (equatorial) photon radii of the compact stars with total mass M ≈ 2.8M⊙

and rotational frequency Ω ≈ 6 × 103 s−1 and 104 s−1.

Ω reached values of around 9× 103 − 104 s−1 for the neutron stars with the RMF type EOS,

and for Q type quark stars. The models we considered for the study of the electron-positron

energy deposition rate have a rotational frequency of 6 × 103 s−1, for the first two models,

and a frequency of 104 s−1 for the second ones, as shown in Table 2. These configurations,

except the model with the RMF type EOS, are already compact enough to have photon or

neutrino radii in the equatorial plane. The values of the neutrino radii together with the

equatorial radii of the stars are given in Table 4. The radial profile of the ratio in Eq. (35)

for these configurations, and of the static case, is presented in Fig. 4.

The ratios
(

dQ̇/dθ
)

/
(

dQ̇N/dθ
)
∣

∣

∣

θ=π/2
obtained for the CFL quark stars are somewhat

higher than those obtained for the STOS type EOS’s, and this ratio is essentially 45-50%

higher at the radius R = 5M , as compared to the same quantity for the static stars. As

for the central objects with RMF and Q type EOS’s, the rotating neutron star produces a
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Figure 4. The electron-positron energy deposition rate
(

dQ̇/dθ
)

/
(

dQ̇N /dθ
)∣

∣

θ=π/2
in the equatorial plane around rotating

neutron and quark stars, with the same total mass M = 2.8M⊙, and rotational velocities Ω = 6× 103 s−1 (for STOS and CFL
type EOS’s), and Ω = 104 s−1 (for RMF and Q type EOS’s).

deposition rate about 35% higher than in the static case. For the quark star at the radius

of R = 5M , the increase in the deposition rate can reach 50% more than in the static case.

In the region R ≈ 5M , close to the surface of the rotating neutron and quarks stars, and

which is relevant for both the neutron star collapse and the supernova explosion, there is a

considerable increase in the energy deposition rate of the electron-positron pair creation, as

compared to the Newtonian case.

We have compared not only the neutrino-antineutrino annihilation for different types of

central objects, but we have also studied the effects of the different rotational velocities of

the same central object on the energy deposition rate. We have chosen the APR EOS for

neutron stars, and the Q EOS for quark stars, to produce sequences of rotating stars with

different angular velocities, but with a fixed total mass of 1.8M⊙. The rotational frequencies

Ω are shown in Table 4, together with the other physical parameters of these configurations.

In Fig. 5 we present the ratio
(

dQ̇/dθ
)

/
(

dQ̇N/dθ
)
∣

∣

∣

θ=π/2
calculated for configurations

with increasing angular velocities. With increasing Ω the deposition rate is also increasing for

both types of central objects. The ratio
(

dQ̇/dθ
)

/
(

dQ̇N/dθ
)∣

∣

∣

θ=π/2
reaches 15% more for the

quark star than its value in the static case, as the angular frequency approaches the Keplerian

limit. Since the neutron star rotating with the angular velocity of 8 × 103s−1 becomes less

compact, its equatorial radius is somewhat less than 7M , and the deposition rate cannot be

integrated to lower radii. This prevents the star from accumulating much energy released

in the form of electron-positron pairs, even if the ratio given by Eq. (35) is very high in

the equatorial plane for R > 7M , as compared to the static case. However, these results
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EOS APR APR APR Q Q Q

ρc [1015g/cm3] 1.28000 1.225 0.990 1.03000 0.905000 0.960000

M [M⊙] 1.80728 1.80 1.80504 1.80726 1.80098 1.80266

M0 [M⊙] 2.11215 2.11 2.03816 2.11941 2.09223 2.02781

Re[km] 10.9736 10.99 17.8067 1.14149 11.9350 1.02741

Ω[103s−1] 2.25322 5.00 7.91730 3.14989 5.21120 12.1428

Ωp[103s−1] 13.3000 13.23 6.49228 12.5113 11.8396 14.7565

T/W [10−2] 0.629016 3.41 12.6559 1.72595 5.42560 9.2192

cJ/GM2
⊙

0.487835 1.12 2.30785 0.797423 1.42599 2.03412

I[1045g cm2] 1.90275 1.98 2.56179 2.22488 2.40487 1.47222

Φ2[1043g cm2] 1.48070 7.87 36.1007 4.89741 15.9063 15.4852

h+[km] 3.83236 0.00 0.00 0.00 0.00 0.00

h−[km] 6.40902 -2.11 5.85714 0.00 0.00 -

ωc/Ω[10−1] 5.90926 5.86 5.54520 5.36942 8.06974 8.62910

re[km] 8.07705 8.05 14.9297 8.51829 8.99267 7.17846

rp/re 0.980000 0.90 0.450000 0.950000 0.850000 0.660000

Table 4. Physical parameters of the neutron stars with APR type EOS and Q type quark stars, with a total mass of M ≈ 1.8M⊙,
and with different rotational frequencies.
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Figure 5. The electron-positron energy deposition rate
(

dQ̇/dθ
)

/
(

dQ̇N /dθ
)∣

∣

θ=π/2
in the equatorial plane of a rotating

neutron star, with the APR EOS (left hand side), and for a quark star with EOS Q (right hand side), the stars having the
same total mass M = 1.8M⊙, but different rotational velocities.

show that the rotating ultra-compact objects can convert some of their rotational energy

into the energy of the e+e− pairs. The faster the central objects rotates, the more energy

will be released in the neutrino-antineutrino pair annihilation process. Then we expect that

ultra-compact stellar object, especially quark stars, rotating close to the Keplerian limit, can

deposit a large amount of energy in their equatorial plane due to the neutrino-antineutrino

annihilation process.

Similarly to the case of the energy deposition, one can define the integrated momentum
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Figure 6. The electron-positron momentum deposition rate
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(
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in the equatorial plane around ro-

tating neutron and quark stars, with the same total mass M = 1.8M⊙, and same rotational velocity Ω = 5 × 103 s−1.

deposition rate as

Ṗ (R) = 2
∫ 2π

0

∫ π/2

0

∫ ∞

R
ṗ(r, R, θ)

√
grrgθθgφφdrdθdφ, (36)

where ṗ is given by Eq. (4). In the equatorial plane we introduce the ratio

dṖ/dθ

dṖN/dθ

∣

∣

∣

∣

∣

θ=π/2

=

∫∞
R ṗ(r, R, θ)

√

grr(r, θ)gθθ(r, θ)gφφ(r, θ)dr
∣

∣

∣

θ=π/2
∫∞
R ṗN(r, R)r2dr

(37)

of the momentum deposition rate in the general relativistic case and of momentum deposition

ratio ṖN corresponding to the Newtonian case. In Fig. (6) we present the plots of this

quantity as a function of R/M for neutron and quark stars with 1.8M⊙, and with a rotation

velocity of 5 × 103s−1, respectively. This figure is a counterpart of Fig. (3), displaying the

energy deposition rate for the same configuration of the stellar objects. By comparing the two

figures we see that they exhibit the same characteristics for each stars, i. e., the momentum

deposition rate is roughly proportional to the the energy deposition rate. Therefore the RMF

and STOS EOS type stars produce the highest ratios for the momentum deposition rate.

Quark stars have a smaller momentum deposition rate, and we obtain the smallest values

for the neutron stars with DH, APR and BBB type EOSs, respectively.

6 DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the general relativistic effects on the energy deposi-

tion rate from the neutrino-antineutrino annihilation process near rapidly rotating neutron

and quark stars. The energy deposition rate has been obtained numerically for several equa-

tions of state of the neutron matter, and for two types of quark stars, respectively. All the
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general relativistic correction factors, related to this process, can be obtained from the met-

ric of the central compact object. Due to the differences in the space-time structure, the

quark stars present some important differences with respect to the energy deposition rate,

as compared to the neutron stars. As a general result we have found that rotation always

enhances the energy deposition rate.

A possible astrophysical application of our results could be in the explanation of the

physical processes that lead to the formation of the Gamma-Ray Bursts (GRBs). The so-

called fireball model can basically explain the observational facts well, and thus it is strongly

favored, and widely accepted today (for recent reviews on GRBs see Mészáros (2006) and

Zhang (2007), respectively). In this model, the central engine gives birth to some energetic

ejecta intermittently, like a geyser, producing a series of ultra-relativistic shells. The shells

collide with each other and produce strong internal shocks. The highly variable γ-ray emis-

sion in the main burst phase of GRBs should be produced by these internal shocks. After

the main burst phase, the shells merge into one main shell and continue to expand outward.

These merged shells, which moves relativistically, interacts with the surrounding medium to

form an external shock. This shock will give a good fraction of its energy to the swept-up

electrons and accelerate them to relativistic velocity. Similarly, a fraction of shock energy

will go to the magnetic field. These shocked relativistic electrons move in the magnetic field

and emit synchrotron radiation to produce a broadband electromagnetic emission called

”afterglows”. According to the Swift observations(see Zhang (2007) for a review), the decay

of the X-ray afterglow can be classified roughly into four stages. Stage I (up to ∼ 100 s)

indicates the early fast decay phase, usually with flux density decay as t−3 to t−5; Stage II

(up to ∼ 1000 s) indicates the subsequent shallow decay phase, with t−0.2 to t−0.8 ; Stage

III (up to ∼ 104 s) is the late normal decay phase, t−1 to t−1.3; Stage IV (beyond 104 s) is

the late fast decay phase, t−2 to t−2.5. The first stage is explained as the tail decay of the

prompt emission, and the third and the fourth stages can be explained very well in terms of

the standard fireball model. Although there are many different explanations of the second

stage, the ”shallow decay phase”, one of the most popular explanations is the late time

continuous energy injection. Obviously, the energy deposition in the equatorial plane cannot

be responsible to the prompt gamma-ray emission, which requires a fast and a very narrow

beam jet. In fact, the high energy photons detected by Fermi (Meegan et al. 2009) imply

that the Lorentz factor of fast jet is over 500. On the other hand, most deposition energy

should come from the equatorial plane. We suggest that the energy deposition along the axis
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will form a narrow cone jet, which encounters much less material, and hence it can maintain

a very large Lorentz factor. On the other hand, the energy deposition in the equatorial plane

is higher, but it also encounters much more material, and hence it moves slowly. When the

fast jet slows down due to the interstellar medium, this slow but more energetic wind from

the equatorial plane can inject additional energy into the fast jet, and result in the shallow

decay phase. The detailed calculations will be carried out in our future study.

The neutrino annihilation and the electron-positron pair production also plays an essen-

tial role in the astrophysical processes associated with the phase transitions that could

take place inside neutron stars. For example, the sudden phase transition from normal

nuclear matter to a mixed phase of quark and nuclear matter induces temperature and

density oscillations at the neutrinosphere. Consequently, extremely intense, pulsating neu-

trino/antineutrino and leptonic pair fluxes will be emitted (Cheng et al. 2009). During this

stage several mass ejecta can be ejected from the stellar surface by the neutrinos and antineu-

trinos. These ejecta can be further accelerated to relativistic speeds by the electron/positron

pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. In

order to produce the Gamma-Ray Bursts, a high neutrino emission rate is necessary. On the

other hand, it is important to note that electron-positron pairs can deposit energy much more

efficiently than the neutrinos, and the dominant energy deposition process is the neutrino-

antineutrino annihilation process (Cheng et al. 2009). In fact most pairs are created outside

the star. A large fraction of the neutrino energy, will be absorbed by the matter very near

the stellar surface. When this amount of energy exceeds the gravitational binding energy,

some mass near the stellar surface will be ejected, and this mass will be further acceler-

ated by absorbing pairs created from the neutrino and antineutrino annihilation processes

outside the star. This process may be a possible mechanism for short Gamma-Ray Bursts

(Cheng et al. 2009).

The neutrino emission rate is also strongly dependent on the temperature. In the stan-

dard models of GRBs it is assumed that the central object is surrounded by a degenerate

accretion disk, which allows super-Eddington accretion rates, of the order of one solar mass

per second (Zhang 2007). If the central compact object is a neutron or a quark star, such

super-Eddington accretion rates can maintain the compact object at very high tempera-

tures, and thus allowing very high neutrino luminosities, as well as a high rate of electron-

positron pair production. The neutrino temperature can be estimated by assuming that

the accretion power ηṀc2, where η is the efficiency of the energy conversion and Ṁ is
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the accretion rate, is equal to the radiation power 4πR2σT 4
ν , which gives the temperature

as Tν =
(

ηṀc2/4πR2σ
)1/4

. By taking η = 0.1, R = 106 cm, and an accretion rate of

Ṁ = 1M⊙/10 s, we obtain Tν = 7.14 × 1010K, a temperature which is of the order of MeV.

Therefore, if the accretion disk is fed at a high rate, like, for example, by the fallback material

after a supernova explosion, a high neutrino-antineutrino emission rate can be maintained,

and this could explain some of the basic properties of the GRB phenomenon.
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