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Abstract 

Turning restriction is one of the commonest traffic management techniques and an 

effective low cost traffic improvement strategy in urban road networks. However, the 

literature has not paid much attention to the turning restriction design problem (TRDP), which 

aims to determine a set of intersections where turning restrictions should be implemented. In 

this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level 

problem is to minimize the total travel cost from the viewpoint of traffic managers, and the 

lower level problem is to depict travelers’ route choice behavior based on stochastic user 

equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the 

sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch 

strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The 

computational experiments give promising results, showing that the optimal turning 

restriction strategy can obviously reduce system congestion and are robust to the variations of 

both the dispersion parameter of the SUE problem and the level of demand. 

Keywords: Turning restriction design problem; bi-level programming; stochastic user 

equilibrium; sensitivity analysis; branch and bound method 
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1. Introduction 

Urban traffic control is one of the hottest topics in the domain of traffic studies. The familiar 

control strategies include signal control, lane allocation, turning restriction, road pricing, and so on. 

In general, the approaches to traffic control can be classified into two categories: local control and 

system control. The local control approach focuses on a part of networks (e.g., a single road or a 

single intersection), and improves traffic mobility and other performance measures by optimizing 

the use of local traffic control resources. The crucial disadvantage of this kind of control approaches 

is that the system performance can be deteriorated, although the local performance is improved. The 

control methods studied by Troutbeck and Kako (1999), Harwood et al. (1999), and Al-Madani 

(2003) can be classified into this category. On the contrary, the system control approach emphasizes 

on improving the network performance from the perspective of global optimization (e.g., to 

minimize the total system travel cost). Sometimes the improvement of the network performance 

may sacrifice the performance of local traffic systems. The methods studied by Gao and Song 

(2002), Cipriani and Fusco (2004), and Ying et al. (2007) can be classified into this category. 

This paper studies turning restriction using a system control approach. Turning restrictions are 

applied to a group of intersections where travelers are prohibited to drive into restricted downstream 

links. Herein, we propose the turning restriction design problem (TRDP), which is the problem of 

determining a set of intersections to implement turning restrictions to maximize the performance of 

the overall traffic system. At the microscopic level, implementing turning restrictions at 

intersections can potentially relieve vehicle interaction (e.g., between turning and ahead vehicles), 

reduce traffic incidents (e.g., by avoiding side collisions between turning and ahead vehicles), 

enhance traffic capacity, and alleviate travel delay by improving journey velocity (Chen and Luo, 

2006). More importantly, by considering the interactions of multi-intersections, implementing 

turning restrictions can improve traffic efficiency not only locally but also at the network level. 

Compared with some other system control methods, such as road capacity enhancement, congestion 

pricing, etc., turning restriction is low cost and can be implemented quickly. 

The objective of the TRDP is to optimize a given system performance measure such as to 

minimize total system travel cost, while accounting for the route choice behavior of network users. 

A new turning restriction in networks influences some travelers’ route choice, because their original 

routes are infeasible after implementing the turning restriction. Consequently, the original traffic 

equilibrium state is unstable and some travelers switch their routes to reduce their travel costs. A 
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new equilibrium is realized again only when all travelers cannot change their routes to reduce their 

travel costs. Therefore, taking travelers’ route choice behavior into account is one of the most 

important considerations to solve the TRDP.  

The turning restriction decision affects the route choice behavior of network users, which is 

normally described through a network user equilibrium model. Mathematically, the TRDP can be 

formulated as a bi-level problem. The upper level problem (ULP) is to minimize the total system 

cost. The lower level problem (LLP) is the stochastic user equilibrium (SUE) assignment problem, 

which is more realistic than the deterministic user equilibrium (DUE) assignment problem (Chen 

and Alfa, 1991b). The resultant bi-level problem is formulated as a mathematical program with 

equilibrium constraints. 

Since the turning restriction decision variables of the TRDP can be denoted by a group of 0-1 

variables, the proposed bi-level problem is a nonlinear mixed integer programming problem. This 

proposed problem has a similar form to the discrete network design problem (DNDP) which deals 

with the selection of link additions to an existing road network. Because of the computational 

difficulty for solving the nonlinear bi-level mixed integer programming problem with a large 

number of 0-1 variables, the TRDP has been recognized as one of the most difficult yet challenging 

problems in the transportation research area. Reviewing the solution algorithms for the nonlinear 

bi-level mixed integer programming problem, the branch and bound methods and heuristic 

algorithms are the two primary approaches. The following paragraph gives some representative 

examples for the two approaches. 

Leblanc (1975) presented a branch and bound algorithm to solve the DNDP, but the bounding 

step was based on the assumption that additional link improvements would always reduce total user 

cost. Edmunds and Bard (1992) provided an effective branch and bound algorithm for the 

mixed-integer nonlinear bi-level programming model. The algorithm requires a convex quadratic 

objective function in the LLP. Poorzahedy and Turnquist (1982) developed a bi-level programming 

formulation to describe the DNDP and applied a heuristic algorithm based on the branch and bound 

algorithm. Drezner and Wesolowsky (2003), Poorzahedy and Rouhani (2007), Zhang and Gao 

(2007), and Gallo et al. (2010) constructed some meta-heuristic algorithms to solve DNDPs or other 

network design problems. 

In this paper, a bi-level programming model for the TRDP is introduced. A path-based 

algorithm is applied to solve the lower level SUE problem, by which we can obtain the path-based 

information (e.g., turning flow). Two sensitivity analysis algorithms are employed to solve the 
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relaxed TRDP, and then the branch and bound strategies are developed to solve the TRDP. 

This paper is organized as follows: In the next section, a bi-level programming model for the 

TRDP is proposed. The path choice set generation method and the solution algorithm for the lower 

problem is discussed in Section 3. The branch and bound method based on sensitivity analysis 

algorithms is presented in Section 4 to solve the proposed problem. In Section 5, a numerical 

example is given. Finally, conclusions are drawn in Section 6. 

2. A bi-level programming model for the TRDP 

2.1 Notations 

In a multi-destination and strongly connected network G , N  denotes the set of nodes 

whereas A  denotes the set of arcs (links). R  and S  denote the sets of origin and destination 

nodes, respectively. The following notations are adopted throughout this paper:  

r origin node, Rr ∈ ; 

s destination node, Ss ∈ ; 

Π  set of flow directions of the whole network; 

aΠ  set of flow directions related to link a, and Π⊂Πa ; 

abx  flow on link a going to link b; aba Π∈],[ ; 

x  vector for link flow, [ ]abx=x ; 
rsK  set of paths between r and s; | |rsK  is the number of paths; 
rs

kf  flow on path k connecting r and s; 
rs
akδ  0-1 indicator variable; it equals 1 if link a is on path k connecting r and s, and 0 

otherwise; 
rs

kab,δ  0-1 indicator variable; it equals 1 if both links a and b are on path k connecting r 

and s, and 0 otherwise; 
rs

kP  route choice probability of path k connecting r and s; 
rs
kc  travel cost on path k connecting r and s; 
rsq  travel demand from origin r to destination s; 

),( yxat  travel cost function of link a; 

Γ  set of turning restrictions, and Π⊂Γ ; 

],[ ht µµµ =  turning restriction that prohibits vehicles on link tµ  flowing into downstream link 

hµ , where Aht ∈µµ , ; Γ∈µ ; 

µy  0-1 decision variable; if the turning restriction µ  is applied, then 1=µy ; 

otherwise 0=µy ; 
y  vector of turning restriction decision variables, or turning restriction strategy 

yµ =  y ; 
rs
kµφ  0-1 indicator variable; if both links tµ  and hµ  are on path k connecting r and s, 

then 1=rs
kµφ ; otherwise, 0=rs

kµφ . 
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2.2 The lower level stochastic user equilibrium assignment problem 

It is worth emphasizing that the TRDP must take into an account the travelers’ route choice 

behavior, which is similar to the network design problem (NDP). In general, the implementation of 

turning restrictions definitely induces changes in traffic flow over the network. Improper turning 

restrictions may aggravate the network congestion and bring inconvenience to travelers by 

extending their travel distances. Therefore, an accurate prediction of traffic patterns via a 

behaviorally sound model is essential to the turning restriction design process. 

The DUE conditions are adopted to represent the route choice behavior in early NDP 

formulations. It assumes that all travelers have perfect information about the network condition and 

they select routes with the lowest travel cost. In fact, travelers make their route choices according to 

the lowest perceived travel cost because travelers have imperfect information on the network 

condition. Therefore, the SUE problem is better than the DUE problem to describe the route choice 

behavior of travelers. Herein, the SUE traffic assignment model is employed to formulate the LLP 

of the TRDP. 

Following Ying et al. (2007), the stochastic user equilibrium on the traffic network is then 

characterized by the following nonlinear equations: 

0)( , =
∂
∂−= ∑∑

rs k

rs
kabrs

k

rs
rs

baab c

S
qxF δyx, ,                                    (1) 

where rsS  is the satisfaction function, defined as the expected minimum perceived travel cost from 

r to s: 

}]{[min rs
kKk

rs cES rs∈= .                                                (2) 

If a turning restriction is implemented, it will reduce link travel cost directly by eliminating the 

influence of opposing flow on turning flows. Furthermore, the route travel cost cannot be simply 

formulated by the sum of the link travel costs. If a traveler takes a restricted turning, he or she will 

be punished by a punishment cost. We can assume that the punishment cost is high enough and 

nobody can endure it. Thus, an additional term is used to formulate the route travel cost in Eq. (2), 

given by: 

∑∑ +=
µ

µµ φδ rs
k

a

rs
aka

rs
k Mytc ),( yx ,                                          (3) 

where M is a positive constant, which can be considered as the punishment cost for a traveler taking 

a restricted turning. The value of M should be far greater than the maximum travel cost of all paths 

in the choice set, so that very few travelers take restricted turnings. 
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The above SUE formulation can be applied to a variety of route choice models which can meet 

certain conditions imposed on the satisfaction function. For the general logit model, the satisfaction 

can be formulated by: 

∑ −−=
k

rs
k

rs cS )exp(ln
1 θ
θ

.                                             (4) 

The set of used paths is a function of the vector of turning restriction decision variables y , and 

can be expressed as ( )rsK y . However, it is not convenient to apply this expression to Eq. (4). Since 

( )rsK y  is an implicit function of y , and it brings difficulty in theoretically analyzing the 

relationship between the link flows x  and the turning restriction decision variables y  in the 

lower level formulation. The application of the punishment cost in Eq. (3) guarantees few travelers 

to choose paths with turning restrictions and provide an analytical formulation for Eq. (4).  

Turning delays due to opposing flows in intersections contribute significantly to travel cost and 

thus route choice in urban road networks. Different from the traditional traffic assignment models, 

this paper considers the link travel cost function with an asymmetric Jacobian, and proposes a 

generalized BRP function to capture the effects of opposing and turning flows on link travel cost as 

follows:  

2

, , , ,
0

1

(1 )

( , ) 1 t

a TH RT a RT LT a LT opp a opp
a

a a
a

x x x x y

t t
s

χ
µ

µ
φ φ φ

χ =

  + + + −
  = ⋅ +  
     

∑
x y ,              (5) 

where 0
at  is the free-flow travel cost on link a ; THax , , ,a LTx , RTax , , and oppax ,  are the through, 

left turn, right turn, and opposing flows of link a, respectively; as  is the capacity of link a ; LTφ , 

RTφ , and oppφ  are parameters related to the influences of left turn, right turn, and opposing flows on 

the through flow, respectively; 1χ  and 2χ  are the BPR parameters. The proposed BPR function 

is the generalized version of the link cost function in Horowitz (1997) and can capture the effect of 

turning flow on the link travel cost in addition to opposing flow. Note that the link travel cost 

consists of two components: free flow travel cost and cost of delay (including congestion delay and 

turning delay). 

2.3 The upper level optimization problem 

To solve the TRDP, the primary task for traffic managers is to make decisions about at which 

intersections should implement turning restrictions. However, not all intersections should be taken 

into account, but only some crucial intersections should be considered instead. In general, turning 
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restrictions are inappropriate for uncongested intersections, since turning restrictions have minor 

contributions towards reducing the system congestion level and may bring inconveniency to 

travelers who do not have the network information accurately. Moreover, right turning restrictions 

are not encouraged for the case of drive-to-the-right as in China, because right turns have the lowest 

influence on other vehicular movements. 

Whether a turning movement should be restricted or not can be depicted by a 0-1 variable. 

Therefore, the TRDP is a discrete problem, which aims to improve the network performance and 

reduce network-wide congestion. The ULP of the TRDP can be formulated as the following 

optimization model: 

min              ( , ) ( ) ( ( ), )ab ab
ab

G x t=∑x y y x y y                                    (6) 

subject to Γ∈∀= µµ       }1,0{y .                                         (7) 

where ( ( ), ) ( ( ), )ab at t=x y y x y y ; ( )abx y  means that abx  is an implicit function of y , which can 

be obtained by solving the LLP. The objective (6) is to minimize the total travel cost. Constraint (7) 

is the binary decision variable for a turning restriction. 

3. The solution method for the lower level SUE problem 

The solution algorithms of the SUE problem can be classified into two categories: link-based 

algorithms (e.g., Sheffi and Powell, 1982; Maher, 1998, and; Chen et al., 2002) and path-based 

algorithms (e.g., Chen and Alfa, 1991a; Huang, 1995, and; Bekhor and Toledo, 2005). An important 

advantage of link-based algorithms is that they do not require explicit enumeration of paths, and so, 

they can be easily applied to large-scale networks. Instead of enumerating paths, link-based 

algorithms assume implicit path choice sets, such as the use of all efficient paths (e.g., Maher, 1998), 

or all cyclic and acyclic paths (e.g., Bell, 1995). However, these implicit choice sets may be 

unrealistic from a behavioral viewpoint (Bekhor and Toledo, 2005). On the contrary, path-based 

algorithms allow a more flexible definition of the choice set which can accommodate more realistic 

considerations. Furthermore, a path-based algorithm can obtain path related information such as 

path flow. In this paper, the path flow information is necessary to determine turning restrictions, 

which is more important than the information about the number of turning vehicles at individual 

intersections. Thus, path-based algorithms are more suitable for solving the lower level SUE 

problem. Although the solution of the LLP is link flow, this solution can be obtained from path flow 

via the relationship between link flow and path flow. 
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3.1 Path choice set generation method 

Path choice set generation methods received attention in the last decade. Huang (1995) and 

Chen and Alfa (1991a) used the STOCH method to generate the path set. Bekhor and Toledo (2005) 

used a combination of the link elimination method and the k-shortest path method. Bekhor et al. 

(2006) discussed choice set generation and route choice models for large-scale urban networks. 

Several algorithms (e.g., Dial’s (1971) STOCH method and k-shortest path method) were applied to 

generate the path set for traffic assignment. Han (2007) defined a reasonable path set in the sense of 

Dial (1971). 

In this paper, the paths are generated prior to the assignment, using a combination of the link 

elimination method (see Bekhor et al., 2001 for details) and Dial’s (1971) STOCH method. In a 

dense network, the k-shortest path method generates routes with a high degree of similarity. The 

link elimination method consists of successively removing links and finding the shortest path on the 

remaining links of the network. Only acyclic paths are considered in this method. Since the path set 

generated by the STOCH method may omit some shorter paths, the STOCH method (see, Dial, 

1971; Sheffi, 1985 for details) can be used to generate the basic path set, and the link elimination 

method can generate some shorter paths omitted by the STOCH method. 

3.2 Solution algorithm for the lower level SUE problem 

The partial derivative of the satisfaction function with respect to route travel cost is the route 

choice probability, given by: 

rs
krs

k

rs

P
c

S =
∂
∂

.                                                        (8) 

For the logit SUE model, substituting Eq. (4) into Eq. (8), we have 

∑ −
−=

∂
∂=

l

rs
l

rs
k

rs
k

rs
rs

k c

c

c

S
P

)exp(

)exp(

θ
θ

.                                           (9) 

Then, the path flow and link flow are, respectively, given by: 

rs
k

rsrs
k Pqf = , and                                                   (10) 

, ,
rs rs rs rs rs

ab k ab k k ab k
rs k rs k

x f q Pδ δ= =∑∑ ∑∑ .                                  (11) 

A simple descent direction denoted by [ ]abd=d  can be applied to solve the problem (1) for a 

given y , given by: 

,
rs rs rs

ab k ab k ab
rs k

d q P xδ= −∑∑ .                                           (12) 
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To solve the lower level SUE problem (1) for a given y , we use the method of successive 

weighted averages (MSWA) proposed by Liu et al. (2009), which is much faster than the method of 

successive averages (MSA). The MSWA is outlined as follows: 

Step 1: Initialization. Calculate the route choice probability by free flow travel cost. Obtain the 

initial link flow 1x  by Eq. (10) and Eq. (11). Set 1=κ , 1>η , 10 << γ , 10 =β , and the 

convergence tolerance 0>ε . 

Step 2: Calculating the descent direction. Compute the descent direction κd  by Eq. (12). 

Step 3: Determination of the step size. Obtain the step size κκ βλ /1= , where, 







+

≥+
=

−

−−

.otherwise    ,

, if    ,

1

11

γβ

ηβ
β

κ

κκκ
κ dd

                                      (13) 

Step 4: Updating link flow. Let κκκκ λ dxx +=+1 . 

Step 5: Convergence checking. If εκ ≤d , stop; otherwise, let 1+= κκ , and go to Step 2. 

4. The solution method for the TRDP 

The difficulty in solving the bi-level programming problem presented in this paper lies in how 

to evaluate the equilibrium flow pattern x(y)  for a given vector of turning restriction decision 

variables y , which is an implicit vector function defined by the lower level stochastic user 

equilibrium problem. In this paper, y  is a vector of binary decision variables in the ULP. 

Therefore, the branch and bound technique is a preferential approach to solve the nonlinear mixed 

integer bi-level programming problem. Sensitivity analysis is also an efficient method for solving 

network design problems with the lower level SUE problem (see, for example, Patriksson, 2004; 

Ying and Yang, 2005; Ying et al., 2007, and; Liu et al., 2010). Before designing the branch and 

bound method, we relax the integrality requirements of the ULP, and employ a sensitivity 

analysis-based algorithm to solve the relaxed problem. Information provided by sensitivity analysis 

can help in determining both the upper and lower bounds of the optimal objective value of the ULP, 

and designing the branch strategy. 

4.1 Sensitivity analysis of stochastic user equilibrium flows 

The turning restriction decision variables y  are considered as parametric variables in the LLP 

of the TRDP. Let 








∂
∂=

cd

ab

x

F
M(y) , and 













∂
∂=

µy

FabN(y) . The two matrices can then be derived from 

Eq. (1), given by: 
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∑∑ ∑ ∂
∂⋅

∂
∂−=

∂
∂

rs k cd

rs
l

l
rs
l

rs
krs

kab
rs

cdab
cd

ab

x

c

c

P
q

x

F
,, δδ , and                          (14) 

µµ

δ
y

c

c

P
q

y

F rs
l

rs k l
rs
l

rs
krs

kab
rsab

∂
∂⋅

∂
∂−=

∂
∂

∑∑ ∑, ,                                   (15) 

where, 1, =cdabδ  if ca =  and db = , and 0, =cdabδ  otherwise. 

According to the definition of route travel cost in Eq. (3), we have 

∑ ∂
∂=

∂
∂

e cd

ers
ke

cd

rs
k

x

t

x

c )(
,

yx,δ , and                                          (16) 

,

( , )rs
rs rsk a
a k k

a

c t
M

y y µ
µ µ

δ φ∂ ∂= +
∂ ∂∑

x y
.                                        (17) 

Deriving from Eq. (9), we have 

2

2

exp{ ( )}
                              if   ,

{ exp( )}

exp( ) exp( )
    if    .

exp( ) exp( )

rs rs
k l

rs
k

rs k
k
rs

rs rsl
k k
rs rs
k k

k k

c c
l k

c
P

c
c c

l k
c c

θ θ
θ

θ θ θθ
θ θ

 − + ≠ −
∂ =   ∂ − − − + =  − −  

 

∑

∑ ∑

                    (18) 

Eq. (18) can be simplified as follows: 

               if   ,
 

(1 )    if    .

rs rsrs
k lk

rs rs rs
l k k

P P l kP

c P P l k

θ
θ

 ≠∂ = ∂ − − =
                                     (19) 

Substituting Eq. (19) into Eqs. (14) and (15), we have 

∑∑ ∑








∂
∂−

∂
∂+=

∂
∂

rs k l cd

rs
lrs

l
cd

rs
krs

kab
rs

k
rs

cdab
cd

ab

x

c
P

x

c
Pq

x

F
,, δθδ , and                 (20) 

∑∑ ∑












∂
∂−

∂
∂=

∂
∂

rs k l

rs
lrs

l

rs
krs

k
rs

kab
rsab

y

c
P

y

c
Pq

y

F

µµµ

δθ , .                           (21) 

Eqs. (20) and (21) form the matrices M(y)  and N(y) , respectively. The partial derivative of 

x(y)  with respect to y  can be calculated by (see Yang and Chen, 2009 and Yin et al., 2009): 

N(y)M(y)x(y)y
1−−=∇ .                                           (22) 

4.2 Sensitivity analysis-based algorithm 1 (SAA1) 

The sensitivity analysis of SUE flows is one of the fundamental works to solve the ULP of the 

TRDP. The Jacobian x(y)y∇  can be applied to determine the linear approximation of the objective 
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function of the ULP.  

Let y′  be the initial solution of the TRDP and )yx( ′  be the optimal solution of the LLP. The 

linear approximation of the flow x  is given by (Gao et al., 2007): 

)()( yy)yx(yxx y ′−′∇+′≈ .                                         (23) 

The integrality requirements are relaxed, and constraint (7) can be rewritten as: 

µµ ∀≤≤             ,10 y .                                             (24) 

In order to develop the branch and bound method below, we define 0Γ  ( Γ⊆Γ0 ) and 1Γ  

( Γ⊆Γ1 ) as the predetermined sets of turning restrictions rejected and adopted, respectively. The 

feasible domain of the relaxed ULP can then be represented as follows: 

} , 10;,1; , 0|{ 1010 Γ−Γ−Γ∈∀≤≤Γ∈∀=Γ∈∀==Ω µµµ µµµ yyyy .       (25) 

For the relaxed ULP, x  estimated by Eq. (23) will be far away from ( )x y  if the value of 

|||| yy ′−  is too large. Therefore, we employ a predetermined parameter ∆  ( ]1,0(∈∆ ) to ensure 

that the next solution is not too far away from the initial solution y′ . An additional constraint is 

applied to the ULP, given by:  

10           , Γ−Γ−Γ∈∀∆+′≤≤∆−′ µµµµ yyy .                          (26) 

We can then reformulate the feasible domain of the relaxed ULP as follows: 

} ,|{ 10 Γ−Γ−Γ∈∀∆+′≤≤∆−′Ω=Φ µµµµ yyyy∩ .                     (27) 

Substituting Eq. (22) into the Eq. (6), we can obtain the following optimization problem: 

( ) ( ) min   ( ) ( )  ( ) ( ),ab ab ab
ab

G x x t
∈Φ

′ ′ ′ ′ ′ ′ ′ ′= + ∇ − + ∇ −∑ y yy
y (y ) y y x y x(y ) y y y .       (28) 

Equation (28) presents a nonlinear optimization problem, which can be solved by many 

well-known methods, such as outer approximation algorithms, the penalty function algorithms and 

so on. Then, according to the optimal solution of the relaxed ULP (28), we can solve the LLP again 

and obtain new equilibrium link flows. We can then obtain the Jacobian x(y)y∇  by the sensitivity 

method and a new set of turning restrictions by solving the relaxed ULP (28). The procedure is 

repeated until an optimal solution is obtained. The solution algorithm can be stated as follows: 

Step 1: Initialization. Determine an initial turning restriction strategy 0y  and the feasible domain 

Ω ; set 0=κ , and the convergence tolerance σ . 

Step 2: Solving the LLP. Generate the feasible domain Φ  by Eq. (27), and solve the LLP with the 

gradient method for a given κy  to obtain the optimal link flow κ*x . 

Step 3: Derivative calculation. Calculate )x(yy
κ∇  by using the sensitivity analysis method. 
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Step 4: Solving the ULP. Solve the problem (28) to obtain a new turning restriction strategy 1+κy . 

Step 5: Convergence check. If σκ
µ

κ
µµ

≤−+ yy 1max , then stop; otherwise let 1+= κκ , and go to 

Step 2.  

Remark 1: Because SAA1 is a heuristic algorithm, it may not guarantee convergence (Gao and 

Song, 2002). Moreover, the optimal solution found may be influenced by the initial solution. A 

general method is to run the algorithm many times with different initial solutions. If the optimal 

solutions obtained by the algorithm with different initial solutions are the same, we believe that the 

proposed algorithm converges to a global optimal solution. 

4.3 Sensitivity analysis-based algorithm 2 (SAA2) 

SAA1 is a heuristic algorithm and cannot guarantee solution convergence. Indeed, the 

sensitivity analysis of SUE flows can be used to obtain the gradient of the objective function of the 

relaxed ULP, and the relaxed ULP can be viewed as a nonlinear programming problem with linear 

constraints and solved by the Frank-Wolfe algorithm. Based on this idea, we develop an alternative 

sensitivity analysis-based algorithm (SAA2). Although it is difficult to check the convexity of the 

relaxed TRDP, the proposed algorithm can converge to a local optimal solution at least. 

The gradient of the objective function of the relaxed ULP can be obtained from the sensitivity 

analysis, given by: 

( ) ( ( ), )
( ( ), ) ( )ab ab

ab ab
ab

x tG
t x

y y yµ µ µ′=

 ′ ′ ′∂ ∂∂ ′ ′ ′= ⋅ + ⋅  ∂ ∂ ∂ 
∑

y y

y x y y
x y y y .               (29) 

The descent direction can be obtained by solving the following optimization problem: 

)(min T yyy
y

′−⋅∇=′′
Ω∈

GG .                                           (30) 

After the determination of the descent direction, the optimal step size is determined by solving a 

one dimensional search problem. The calculation of an optimal step size is time consuming, because 

the SUE problem is solved again and again during step size searching. 

The SAA2 for the relaxed TRDP can be stated as follows: 

Step 1:  Initialization. Determine an initial vector of turning restriction decision variables 0y  and 

the feasible domain Ω ; set 0=κ , and the convergence tolerance σ . 

Step 2:  Solving the LLP. Solve the LLP with the MSWA for a given κy  to obtain the optimal link 

flow κ*x . 

Step 3:  Derivative calculation. Calculate )x(yy
κ∇  by using the sensitivity analysis method. 

Step 4: Calculating the descent direction. Solve the problem (30) to obtain the descent direction 
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κ
ω . 

Step 5: Searching the optimal step size. Solve the one dimension search problem 
min ((1 ) )G κ κ

λ
λ λ− +y ω , and obtain the optimal step κλ . 

Step 6: Updating turning restriction decision variables. Generate a new vector of turning 

restriction decision variables κκκ λλ ωyy kk +−=+ )1(1 . 

Step 7:  Convergence checking. If σκ
µ

κ
µµ

≤−+ yy 1max , then stop; otherwise let 1+= κκ , and go 

to Step 2. 

4.4 An approximate integer solution method 

In general, the optimal solutions obtained from the sensitivity analysis-based algorithms are not 

integer solutions due to the integrality requirements relaxed for the ULP. However, we can obtain 

nearly optimal integer solutions by using an approximate integer solution method (AISM). For 

},10|{* µµ ∀≤≤∈∀ yyy , the following method can be used to get an nearly optimal integer 

solution for the ULP: 

Γ∈∀




 <

= µµ
µ       

otherwise        1

  if        0
ˆ crit

*
* yy

y ,                                 (31) 

where *ŷ  is the nearly optimal integer solution, and crity  is the critical value satisfying 

)1,0(crit ∈y . 

We can set ∅=Γ0  and ∅=Γ1 , and obtain the solution of the relaxed TRDP by the proposed 

sensitivity analysis-based algorithms. The AISM can then be used to get a nearly optimal integer 

solution for the TRDP. If SAA1 (or SAA2) is used, the approximate integer solution method 

combined with SAA1 (or SAA2) is named as SAA1+AISM (or SAA2+AISM) in short in this 

paper.  

The AISM can also be applied to determine the upper bound of the optimal objective value of 

the ULP of the TRDP in the branch and bound method (BBM) in the next subsection, where 0Γ  

and 1Γ  may not be empty. 

4.5 Branch and bound method 

The ULP of the TRDP can be considered as a generalized nonlinear integer problem, and can be 

solved by the BBM. The following notations are adopted to describe the BBM: 

LB  lower bound of the optimal upper-level objective value; 

UB  upper bound of the optimal upper-level objective value; 

UT  set of unbranched nodes in the search tree; 
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BT  set of branched nodes in the search tree; 

α  node index in the search tree; 

αIS  input sequence of search tree node α ; 

αLB  lower bound of the optimal upper-level objective value for search tree node α ; 

αUB  upper bound of the optimal upper-level objective value for search tree node α ; 

αµ  turning restriction for search tree node α ; 

αy  0-1 variable; if the turning restriction αµ  is applied, then 1=µy ; otherwise 0=µy ; 
*
αy  optimal solution of the relaxed TRDP for search tree node α , and; 
*ˆαy  nearly optimal integer solution of the TRDP for search tree node α . 

A bound strategy and a branch strategy are developed to improve the performance of the BBM. 

In the bound strategy, the nearly optimal integer solution is applied to determine a better upper 

bound, which is useful to reduce the number of search tree nodes. In the branch strategy, we choose 

the turning restriction with the minimum non-integer value for the corresponding turning restriction 

decision variable as the constrained turning restriction at the branch node. This strategy is useful to 

obtain the optimal integer solution of the ULP quickly. The following discusses the bound and 

branch strategies. 

(i) Bound strategy 

In the proposed BBM, the input sequence is used to add constraints to the relaxed ULP. For a 

given search tree node UT∈α , the turning restriction sets 0Γ  and 1Γ  can be obtained from the 

input sequence αIS , given by: 

},0|{0 αββ βµ ISy ∈∀==Γ , and                                   (32) 

},1|{1 αββ βµ ISy ∈∀==Γ .                                       (33) 

Substituting Eq. (32) and Eq. (33) into Eq. (25) and Eq. (27), and using the sensitivity analysis 

algorithm (i.e., SAA1 or SAA2), we can obtain the optimal solution *
αy , and the lower bound of 

the optimal objective value of the ULP, αLB . Consequently, the AISM can be used to get the nearly 

optimal integer solution *ˆαy  . Substituting *ˆ αyy =  into the LLP, we can obtain the optimal link 

flow *ˆαx  and the upper bound of the optimal objective value of the ULP, αUB . The upper and 

lower bounds of the optimal upper-level objective value for the TRDP can be derived from the 

solution of each unbranched search tree node, given by: 

}{min αα
UBUB

BTUT∪∈
= , and                                        (34) 

}{min αα
LBLB

UT∈
= .                                               (35) 

(ii) Branch strategy 

In the BBM, the unbranched search tree node with the minimum lower bound is chosen as a 
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branch node. The index of the branch node can be obtained from:  

}{minarg αα
β LB

UT∈
= .                                             (36) 

If the branch node β  has a non-integer solution, we can choose the turning restriction with the 

minimum non-integer value for the corresponding turning restriction decision variable as the 

constrained turning restriction, given by: 

}0|{minarg ** >=
Γ∈ µβµβµ

µ yy .                                      (37) 

The branch node β  generates two new search tree nodes, denoted as 1β  and 2β . We 

respectively set 0
1

=βy  and 1
2

=βy . The turning restrictions and the input sequences of the two 

generated nodes are set as: 

µµµ ββ ==
21

,                                                (38) 

}{ 11
βββ += ISIS , and                                          (39) 

}{ 22
βββ += ISIS .                                              (40) 

The above strategies are incorporated into the proposed BBM for the TRDP, which can be stated 

as follows: 

Step 0: Initialization. 

Step 0.1: Set the initial upper bound +∞=UB , the initial lower bound −∞=LB  and the 

branch node set ∅=BT . 

Step 0.2: Generate an initial search tree node 0α  such that ∅∈
0αµ . Set ∅=

0αIS  and 

}{ 0α=UT . 

Step 0.3: Solve the TRDP for the search tree node 0α  and obtain the optimal solution *
0αy  

and the nearly optimal integer solution *
0

ˆ αy . 

Step 0.4: Determine the upper bound 
0αUB  and the lower bound 

0αLB . 

Step 0.5: If **

00
ˆ αα yy = , stop and output the optimal solution *

0αy ; otherwise, go to Step 1. 

Step 1: Branching. 

Step 1.1:  Choose the optimal branch node β  by Eq. (36). 

Step 1.2:  Search the best constrained turning restriction µ  by Eq. (37). 

Step 1.3: Generate the search tree node 1β , subject to 0
1

=βy , µµβ =
1

, and 

}{ 11
βββ += ISIS . Generate also another search tree node 2β , subject to 1

2
=βy , 

µµβ =
2

, and }{ 22
βββ += ISIS . 

Step 1.4:  Solve the TRDP for each newly generated search tree node. Obtain the optimal 
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solutions *

1βy  and *

2βy , and the nearly optimal integer solutions *

1
ˆ βy  and *

2
ˆ βy . 

Step 1.5: Determine the lower bounds 
1βLB  and 

2βLB , and the upper bounds 
1βUB  and 

2βUB . 

Step 2: Updating search tree node set. Set }{ β∪BTBT =  and }{}{}{ 21 βββ −= ∪∪UTUT . 

Step 3: Determination of the upper and lower bounds. Calculate the upper bound UB  and the 

lower bound LB  by Eq. (34) and Eq. (35), respectively.  

Step 4: Branch removal. For all UT∈α , if UBLB ≥α , then set }{α−= UTUT . 

Step 5: Convergence checking. If LBUB = , set }{minarg αα
β UB

UT∈
= , output the optimal solution 

*
βy  and stop; otherwise, go to Step 1. 

Remark 2. Both SAA1 and SAA2 proposed in Section 4.2 and Section 4.3, respectively, can be 

applied to solve the relaxed TRDP for the search tree node in step 0.3 and step 1.4.  

Remark 3. SAA1+BBM (SAA2+BBM) is adopted to simplify the presentation of the algorithm 

that SAA1 (SAA2) and the AISM are embedded into the BBM. The performance of the two SAAs 

embedded into the above BBM will be tested in the next section. 

5. Numerical study 

To illustrate the effects of the model parameters and the performance of the proposed algorithms, 

we developed a numerical example using the Sioux Falls network as shown in Fig. 1, which was 

also used in Leblanc et al. (1975). The Sioux Falls network consists of 24 nodes, 76 links, and 528 

OD pairs. The feasible turning restrictions are listed in Table 1. The average number of paths per 

OD pair is 3.6, and the maximum number of routes between an OD pair is 15.  

The two BPR parameters are the same as those in Leblanc et al. (1975). That is, 1χ  = 0.15 and 

2χ  = 4. We follow Horowitz (1997) using a oppφ -value of 0.4. LTφ  and RTφ  are set to 1 for 

simplicity. We set the punishment cost M = 50.0 as the maximum route travel cost is less than 2.0 if 

there are no turning restrictions in the network. This value of M is believed to be large enough in 

this study. Nevertheless, all the above parameters can be calibrated based on the actual scenario 

without conceptual difficulty. The values of the parameters for solution algorithms are as follows: ∆ 

= 0.25, 5.1=η , 1.0=γ , 5100.1 −×=ε , 3100.1 −×=σ , and 1.0crit =y . 

To demonstrate the improvement of the network performance by implementing turning 

restrictions, the system costs with and without implementing turning restrictions were compared. As 

shown in Fig. 2, the system cost can be decreased by implementing turning restrictions with the 

dispersion parameter θ varied from 0.1 to 2.0. The results presented in Fig. 2 indicate that 
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SAA2+BBM outperforms both SAA1+BBM and SAA2+AISM. The results by SAA1+AISM are 

not presented because of the bad performance in solving the TRDP. Meanwhile, SAA2+BBM 

obviously outperforms the other two algorithms in term of accuracy. As described in Section 4.4, 

the solution obtained from SAA2+AISM is an approximate integer solution for the TRDP, and it is 

difficult to evaluate the accuracy of the solution obtained by this approach. Therefore, SAA2+BBM 

is recommended from the perspective of the solution accuracy for the TRDP. 

The performance of the algorithms for the TRDP was further tested, and the results are listed in 

Table 2, where we set a value of 1.0 for the dispersion parameter θ. In this example, SAA1 is 

notably inferior to SAA2 in solving the relaxed TRDP. The objective value of the relaxed ULP 

obtained by SAA2 is less than that by SAA1. As mentioned before, SAA1 is a heuristic algorithm, 

and it is difficult to guarantee solution convergence. On the contrary, SAA2 is a Frank-Wolfe based 

algorithm which solves the relaxed TRDP as a convex programming problem. Although, it is hard 

to analyze the convexity of the proposed bi-level problem, we can obtain a local optimal solution 

for the relaxed TRDP at least. 

From the SAA1 and SAA2 results presented in Table 2, we use SAA1+AISM and SAA2+AISM 

to obtain the nearly optimal integer solutions. It is shown that less than 10% of decision variables of 

the ULP of the TRDP take incorrect values corresponding to the optimal solution solved by 

SAA1+BBM and SAA2+BBM (Table 2). Therefore, the proposed bound strategy can aid 

SAA1+BBM and SAA2+BBM in searching a lower upper bound and obtain the optimal solution 

efficiently. Note that the value of crity  has no impact on the convergence of SAA1+BBM and 

SAA2+BBM, because we just use the value to find the nearly optimal integer solution and reduce 

the upper bound. An appropriate value of crity  allows SAA2+BBM to get a good starting upper 

bound and obtain the nearly optimal integer solution close to the global optimal integer solution 

quickly. 

Many factors affect the performance of the proposed algorithms and the solution of the TRDP, 

including the value of the dispersion parameter θ and the level of network congestion. The essential 

fact is that the above two factors influence the implementation of turning restrictions by impacting 

the lower level SUE problem on both the solution and the computational time. Therefore, we 

conducted a test for the sensitivity of the solution of the TRDP with respect to the value of θ. Table 

3 presents the optimal solutions for various values of the dispersion parameter θ. The result shows 

that the solution of the TRDP is robust when the value of the dispersion parameter θ varies. This 

observation implies that the calibration of the dispersion parameter θ needs not be too precise in 
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applications. Fig. 3 illustrates the effect of the value of the dispersion parameter θ on system cost 

saving due to implementing the optimal turning restriction strategy, where system cost saving is 

defined as the difference between system cost without and with the implementation of turning 

restrictions. It shows that implementing turning restrictions can increase system cost saving when 

the value of the dispersion parameter θ decreases as a whole. As mentioned before, system cost 

saving consists of two components: free flow travel cost saving and delay saving of all travelers. 

The result illustrates that free flow travel cost saving takes a small percentage of total cost saving. 

This indicates that the optimal turning restriction strategy mainly reduces travelers’ delay. 

We also studied the influence of the value of the dispersion parameter θ on the computational 

time of solving the TRDP by various algorithms. The results are presented in Fig. 4, which show 

that both SAA1+BBM and SAA2+AISM obtained solutions faster than SAA2+BBM with a slight 

advantage of SAA2+AISM over SAA1+BBM. This is because (1) the link flow is linearly 

approximated in SAA1, which can reduce the time required for solving the lower level SUE 

problem in SAA1+BBM, and (2) SAA2 is only executed once in SAA2+AISM. However, since 

SAA2 is repeatedly used when solving the relaxed TRDP by SAA2+BBM, the computational time 

of SAA2+BBM can be very long. Moreover, since SAA2 is a Frank-Wolfe based algorithm, the 

computational time of SAA2+BBM is greatly consumed on the stepsize determination. However, 

SAA1+BBM may not be able to get an optimal solution for the TRDP. Thus, SAA1+BBM is not 

recommended to use.  

We examined the impact of travel demand on system cost saving due to implementing turning 

restrictions, where the demand level reflects the degree of network congestion. The Sioux Falls 

demand matrix was uniformly varied by multiplying by a constant demand factor, where the factor 

represents the demand level relative to the base demand matrix. Since the Sioux Falls network in 

the base scenario (i.e., when demand factor equals 1) is quite congested, we only varied the factor 

from 0.5 to 1.5, with an increment of 0.05. Fig. 5 presents the system cost saving due to 

implementing the optimal turning restriction strategy for different demand factors when θ = 1.0. 

The results show that implementing turning restrictions is more necessary at a higher demand level 

and is more effective in improving more congested traffic networks. Furthermore, the robustness of 

the turning restriction strategy for the base scenario was studied under various demand factors. We 

performed the SUE assignment to obtain the total system cost at each demand factor under this 

strategy. The result shows that this strategy can bring a similar system cost saving to the optimal 

turning restriction strategy when the demand factor varies from 0.65 to 1.15. Thus, the turning 
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restriction strategy is not needed to adjust when travel demand slightly increases. In addition, we 

can observe from Fig. 5 that system travel cost saving is increasing when the demand factor grows 

up. Therefore, implementing turning restrictions may work better if the network is more congested. 

The proposed bi-level programming model can also be solved by solution algorithms based on 

artificial intelligence techniques, such as genetic algorithm (GA), simulated annealing, and neural 

network. To further illustrate the merits of the proposed SAA2+BBM, we compared SAA2+BBM 

with GA, which has been successfully applied to a wide range of transportation engineering 

problems (see, for example, Drezner and Wesolowsky, 2003; Ceylan and Bell, 2005). Herein, we 

applied the general GA (Gen and Cheng, 2000) to solve the TRDP. 

The parameters for GA are set as: population size = 20, maximum number of generations = 100, 

crossover probability = 0.4, and mutation probability = 0.08. Two convergence criteria are used to 

stop the GA procedure: 1) the number of generations equals the predetermined maximum number of 

generations (convergence criterion 1) and 2) the best upper-level objective value obtained from GA 

equals that obtained by SAA2+BBM (convergence criterion 2). We adopted GA to solve the TRDP 

with the value of the dispersion parameter θ varied from 0.1 to 2.0. The test results show that the 

solutions obtained by GA cannot be better than those obtained by SAA2+BBM. Most of the time 

the solutions obtained by GA can converge to the solutions obtained from SAA2+BBM. These 

results indicate that the proposed SAA2+BBM may obtain global optimal solutions in this studied 

case. 

The computation time of GA performance is presented in Fig. 6. We can see that a higher value 

of the dispersion parameter θ can bring a longer computation time for the TRDP solved by GA. 

SAA2+BBM can solve the TRDP faster than GA in general. The number of generations required by 

GA to meet the convergence criterion is not evidently different when the value of θ varies. However, 

the lower level SUE problem requires more iterations to achieve an optimal solution with a fixed 

precision when the value of θ grows up. Therefore, GA may be slightly slower to solve the TRDP 

with a higher value of θ. Compared with SAA2+BBM, GA has an intrinsic weakness: we do not 

know when GA can get optimal solutions. A high number of generations (i.e., long computation 

time) is required to ensure the solution quality. On the contrary, the TRDP solution obtained from 

SAA2+BBM is local optimal. In conclusion, SAA2+BBM performs better than the GA-based 

heuristic algorithm, especially when the dispersion parameter takes a high value. 
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6. Conclusions 

This paper presents a bi-level programming model and proposes a branch and bound algorithm 

for solving the TRDP. For the lower level SUE problem, a penalty term is used to formulate the 

route travel costs, and can be considered as the punishment cost for a traveler taking a restricted 

turning. The SAA is applied to solve the relaxed TRDP and obtain the nearly optimal integer 

solution of the bi-level model. The solution of the relaxed TRDP is employed to determine the 

lower and upper bounds and choose the branch strategy in the BBM. 

Four algorithms based on the combination of the SAA and BBM are applied to solve the TRDP 

in a sample network. The test results show that SAA2+BBM performs the best in terms of higher 

solution accuracy among all the tested algorithms. Compared with the GA based heuristic algorithm, 

SAA2+BBM performs the best in terms of convergence and computation time. Furthermore, 

numerical results show that implementing turning restrictions can obviously reduce system cost by 

reducing congestion cost. The sensitivity analyses of the dispersion parameter and the demand level 

show that turning restriction strategies are robust during the variation of traffic environment (e.g., 

the precision of information shared by travelers and the demand level). 

It will be interesting to examine TRDP that also considers signal control or road channelization 

at intersections. This will be our future research direction. The future work also includes 

considering the TRDP in dynamic traffic networks and evaluating its effectiveness. 
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Table 1 Turning restrictions 

µ  tµ  hµ  µ  tµ  hµ  

1 36 31 12 47 21 
2 10 32 13 22 50 
3 27 34 14 52 48 
4 40 33 15 28 45 
5 32 26 16 67 44 
6 25 29 17 72 67 
7 48 28 18 46 68 
8 43 27 19 63 69 
9 24 19 20 63 70 
10 16 20 21 68 61 
11 17 22 22 56 62 

 
Table 2 Comparison between various sensitivity analysis algorithms (θ = 1.0) 
Method SAA1 SAA1+AISM SAA1+BBM SAA2 SAA2+AISM SAA2+BBM 

Objective 155.5330 155.5368 155.5368 153.9007 155.9272 154.4151 
y1 1 1 1 1 1 1 
y2 1 1 1 1 1 1 
y3 1 1 1 1 1 1 
y4 1 1 1 1 1 1 
y6 1 1 1 1 1 1 
y7 1 1 1 1 1 1 
y8 0.0015 0 0 0.0116 0 0 
y9 1 1 1 1 1 1 
y11 1 1 1 1 1 1 
y13 1 1 1 1 1 1 
y14 1 1 1 1 1 1 
y15 1 1 1 0.0235    0    1 
y16 1 1 1 1 1 1 
y18 1 1 1 1    1    0 
y19 1 1 1 1 1 1 
y20 1 1 1 1 1 1 
y21 1 1 1 1 1 1 
y22 1 1 1 0.0116 0 0 

* The turning restrictions not listed in the table take a value of 0. 
 
Table 3 The optimal solutions for various values of the dispersion parameter θ. 
The dispersion parameter θ The optimal turning restriction strategy y* 
0.1~0.4 1111010010101111001110 
0.5~1.2 1111011010101111001110 
1.3~2.0 1111011010101111011110 
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Fig. 1. The Sioux Falls network. 

 
Fig. 2. The influence of the value of the dispersion parameter θ on system cost for various 

algorithms. 
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Fig. 3: The effect of the value of the dispersion parameter θ on system cost saving due to 
implementing turning restrictions 

 
Fig. 4. The influence of the value of the dispersion parameter θ on the computational time of 

solving the TRDP by various algorithms. 
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Fig. 5. The effect of travel demand on system cost saving due to implementing turning 
restrictions (θ=1.0). 

 
Fig. 6. The influence of the value of the dispersion parameter θ on the computational time of 

solving the TRDP by GA and SAA2+BBM. 


