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Abstract

Turning restriction is one of the commonest trafftanagement techniques and an
effective low cost traffic improvement strategy utban road networks. However, the
literature has not paid much attention to the ngmestriction design problem (TRDP), which
aims to determine a set of intersections wherdrtgrrestrictions should be implemented. In
this paper, a bi-level programming model is proplaseformulate the TRDP. The upper level
problem is to minimize the total travel cost frohe tviewpoint of traffic managers, and the
lower level problem is to depict travelers’ routeoce behavior based on stochastic user
equilibrium (SUE) theory. We propose a branch andnd method (BBM), based on the
sensitivity analysis algorithm (SAA), to find thetomal turning restriction strategy. A branch
strategy and a bound strategy are applied to aeteléhe solution process of the TRDP. The
computational experiments give promising resultepwsng that the optimal turning
restriction strategy can obviously reduce systengestion and are robust to the variations of
both the dispersion parameter of the SUE problettlae level of demand.
Keywords: Turning restriction design problem; bi-level praghming; stochastic user

equilibrium; sensitivity analysis; branch and boumethod



1. Introduction

Urban traffic control is one of the hottest topiosthe domain of traffic studies. The familiar
control strategies include signal control, lane@dkion, turning restriction, road pricing, andoso
In general, the approaches to traffic control carclassified into two categories: local control and
system control. The local control approach focuses part of networks (e.g., a single road or a
single intersection), and improves traffic mobiland other performance measures by optimizing
the use of local traffic control resources. Thecaludisadvantage of this kind of control approache
is that the system performance can be deterioratdtbugh the local performance is improved. The
control methods studied by Troutbeck and Kako (198farwood et al. (1999), and Al-Madani
(2003) can be classified into this category. Ondatetrary, the system control approach emphasizes
on improving the network performance from the pecspe of global optimization (e.g., to
minimize the total system travel cost). Sometintes improvement of the network performance
may sacrifice the performance of local traffic gyss. The methods studied by Gao and Song
(2002), Cipriani and Fusco (2004), and Ying e{2007) can be classified into this category.

This paper studies turning restriction using aeystontrol approach. Turning restrictions are
applied to a group of intersections where travedeesprohibited to drive into restricted downstream
links. Herein, we propose the turning restrictiasign problem (TRDP), which is the problem of
determining a set of intersections to implementitg restrictions to maximize the performance of
the overall traffic system. At the microscopic Ievémplementing turning restrictions at
intersections can potentially relieve vehicle iat#ion (e.g., between turning and ahead vehicles),
reduce traffic incidents (e.g., by avoiding siddlisimns between turning and ahead vehicles),
enhance traffic capacity, and alleviate travel ylddg improving journey velocity (Chen and Luo,
2006). More importantly, by considering the inteéi@ts of multi-intersections, implementing
turning restrictions can improve traffic efficieneywt only locally but also at the network level.
Compared with some other system control methodd) aa road capacity enhancement, congestion
pricing, etc., turning restriction is low cost acah be implemented quickly.

The objective of the TRDP is to optimize a giversteyn performance measure such as to
minimize total system travel cost, while accountiogthe route choice behavior of network users.
A new turning restriction in networks influencesrsotravelers’ route choice, because their original
routes are infeasible after implementing the tugniestriction. Consequently, the original traffic

equilibrium state is unstable and some travelengchviheir routes to reduce their travel costs. A



new equilibrium is realized again only when alvekers cannot change their routes to reduce their
travel costs. Therefore, taking travelers’ rout®icd behavior into account is one of the most
important considerations to solve the TRDP.

The turning restriction decision affects the roakmice behavior of network users, which is
normally described through a network user equiiorimodel. Mathematically, the TRDP can be
formulated as a bi-level problem. The upper levelbem (ULP) is to minimize the total system
cost. The lower level problem (LLP) is the stocltasser equilibrium (SUE) assignment problem,
which is more realistic than the deterministic usquilibrium (DUE) assignment problem (Chen
and Alfa, 1991b). The resultant bi-level problemfasmulated as a mathematical program with
equilibrium constraints.

Since the turning restriction decision variableshed TRDP can be denoted by a group of 0-1
variables, the proposed bi-level problem is a m&ar mixed integer programming problem. This
proposed problem has a similar form to the discnetevork design problem (DNDP) which deals
with the selection of link additions to an existingad network. Because of the computational
difficulty for solving the nonlinear bi-level mixethteger programming problem with a large
number of 0-1 variables, the TRDP has been recedraz one of the most difficult yet challenging
problems in the transportation research area. R&wethe solution algorithms for the nonlinear
bi-level mixed integer programming problem, the nata and bound methods and heuristic
algorithms are the two primary approaches. Theofahg paragraph gives some representative
examples for the two approaches.

Leblanc (1975) presented a branch and bound digorid solve the DNDP, but the bounding
step was based on the assumption that additiorkairfiprovements would always reduce total user
cost. Edmunds and Bard (1992) provided an effechv@nch and bound algorithm for the
mixed-integer nonlinear bi-level programming modihe algorithm requires a convex quadratic
objective function in the LLP. Poorzahedy and Tuisj(1982) developed a bi-level programming
formulation to describe the DNDP and applied a iséiaralgorithm based on the branch and bound
algorithm. Drezner and Wesolowsky (2003), Poorzghadd Rouhani (2007), Zhang and Gao
(2007), and Gallo et al. (2010) constructed somt&+heuristic algorithms to solve DNDPs or other
network design problems.

In this paper, a bi-level programming model for th&DP is introduced. A path-based
algorithm is applied to solve the lower level SUBlgem, by which we can obtain the path-based

information (e.g., turning flow). Two sensitivitynalysis algorithms are employed to solve the



relaxed TRDP, and then the branch and bound sieatage developed to solve the TRDP.

This paper is organized as follows: In the nextisa¢ a bi-level programming model for the
TRDP is proposed. The path choice set generatidghadeand the solution algorithm for the lower
problem is discussed in Section 3. The branch andhdb method based on sensitivity analysis
algorithms is presented in Section 4 to solve th@p@sed problem. In Section 5, a numerical

example is given. Finally, conclusions are drawSaction 6.

2. A bi-level programming model for the TRDP

2.1 Notations

In a multi-destination and strongly connected nekw& , N denotes the set of nodes
whereas A denotes the set of arcs (linksR and S denote the sets of origin and destination

nodes, respectively. The following notations arepadd throughout this paper:

r origin node, r OR;
S destination node sJ S;
I set of flow directions of the whole network;
rn, set of flow directions related to lirdg and M, O 11 ;
Xap flow on link a going to linkb; [a,b]OM ;
X vector for link flow, x =[x,,];
K™ set of paths betweerands;, |K™ | is the number of paths;
fe° flow on pathk connecting ands;
Oy 0-1 indicator variable; it equals 1 if lirkis on pathk connectingr ands, and 0
otherwise;
O 0-1 indicator variable; it equals 1 if both linksandb are on pattk connectingr
ands, and O otherwise;
R route choice probability of pathconnecting ands;
(o travel cost on patk connecting ands;
q° travel demand from originto destinatiors;
t. (X,y) travel cost function of linlg;
r set of turning restrictions, and 111 ;

M=, 4] turning restriction that prohibits vehicles onklirg, flowing into downstream link
W, where g, OA; pOT;

Y, 0-1 decision variable; if the turning restrictiop is applied, theny, =1;
otherwise y, = 0

y vector of turning restriction decision variables, trning restriction strategy
y=[y.];

Dr 0-1 indicator variable; if both linkg, and g, are on pattk connecting ands,

then qzﬁ =1: otherwise, qzﬁ =0.
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2.2 The lower level stochastic user equilibrium assignment problem

It is worth emphasizing that the TRDP must tak® iah account the travelers’ route choice
behavior, which is similar to the network designlgem (NDP). In general, the implementation of
turning restrictions definitely induces changedraffic flow over the network. Improper turning
restrictions may aggravate the network congestiod haring inconvenience to travelers by
extending their travel distances. Therefore, anuiate prediction of traffic patterns via a
behaviorally sound model is essential to the tigmastriction design process.

The DUE conditions are adopted to represent thderanoice behavior in early NDP
formulations. It assumes that all travelers havwéegeinformation about the network condition and
they select routes with the lowest travel costalt, travelers make their route choices accorting
the lowest perceived travel cost because travdlexe imperfect information on the network
condition. Therefore, the SUE problem is bettenttiee DUE problem to describe the route choice
behavior of travelers. Herein, the SUE traffic gasient model is employed to formulate the LLP
of the TRDP.

Following Ying et al. (2007), the stochastic usgquiBbrium on the traffic network is then

characterized by the following nonlinear equations:

rs aSrs rs
Fab (X,Y) = Xab _qu aCrS 5ab,k = O! (1)
rs k k

where S™ is the satisfaction function, defined as the etg@eninimum perceived travel cost from
rtos.
S® = E[min _ .{c’}] . ) (2

If a turning restriction is implemented, it willdaece link travel cost directly by eliminating the
influence of opposing flow on turning flows. Funthere, the route travel cost cannot be simply
formulated by the sum of the link travel costsa lfraveler takes a restricted turning, he or shie wi
be punished by a punishment cost. We can assurhéhthgounishment cost is high enough and
nobody can endure it. Thus, an additional termsesduto formulate the route travel cost in Eq. (2),

given by:
Ce =Dt (Xy)d5 + > y,Mdr 3)
a u

whereM is a positive constant, which can be considerddde@punishment cost for a traveler taking
a restricted turning. The value Bf should be far greater than the maximum travel cbsll paths
in the choice set, so that very few travelers taistricted turnings.
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The above SUE formulation can be applied to a tsanéroute choice models which can meet
certain conditions imposed on the satisfaction fiemc For the general logit model, the satisfaction

can be formulated by:
s° = —%m 3 expE&). @)
k

The set of used paths is a function of the vectaurming restriction decision variableg, and
can be expressed ad$"(y) . However, it is not convenient to apply this exgsien to Eq. (4). Since
K™(y) is an implicit function ofy, and it brings difficulty in theoretically analym the
relationship between the link flowg and the turning restriction decision variablgsin the
lower level formulation. The application of the pghment cost in Eq. (3) guarantees few travelers
to choose paths with turning restrictions and pfe\an analytical formulation for Eq. (4).

Turning delays due to opposing flows in intersawicontribute significantly to travel cost and
thus route choice in urban road networks. Diffeffenin the traditional traffic assignment models,
this paper considers the link travel cost functiwith an asymmetric Jacobian, and proposes a
generalized BRP function to capture the effectspgfosing and turning flows on link travel cost as
follows:

X2

XaTH t XaRT 4 XaLr + (ooppxa,opp Z (1_ yp)

tLxy)=ts Q1+ x, S A= ; )

a

where t; is the free-flow travel cost on linka; X,5,, X1, Xagr, @nd X

.opp are the through,

left turn, right turn, and opposing flows of lilak respectively; s, is the capacity of linka; ¢,

@, and g, are parameters related to the influences ofdeft, tright turn, and opposing flows on
the through flow, respectivelyyy, and y, are the BPR parameters. The proposed BPR function
is the generalized version of the link cost funetio Horowitz (1997) and can capture the effect of
turning flow on the link travel cost in addition tpposing flow. Note that the link travel cost
consists of two componentsee flow travel cost andcost of delay (including congestion delay and

turning delay).
2.3 The upper level optimization problem

To solve the TRDP, the primary task for traffic ragars is to make decisions about at which
intersections should implement turning restrictiodswever, not all intersections should be taken

into account, but only some crucial intersectionsutd be considered instead. In general, turning
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restrictions are inappropriate for uncongestedrseigions, since turning restrictions have minor
contributions towards reducing the system congestevel and may bring inconveniency to
travelers who do not have the network informaticouasately. Moreover, right turning restrictions
are not encouraged for the case of drive-to-thietiag in China, because right turns have the lowest
influence on other vehicular movements.

Whether a turning movement should be restrictechaircan be depicted by a 0-1 variable.
Therefore, the TRDP is a discrete problem, whichsaio improve the network performance and
reduce network-wide congestion. The ULP of the TR&#» be formulated as the following

optimization model:

min GXY FD X ¥ XY ) (6)
subject toy, ={01} Ow0OT. (7)

where t_ (x(y),y) =t,(x(Y).Y); X,(y) means thatx, is an implicit function ofy, which can
be obtained by solving the LLP. The objective &)a minimize the total travel cost. Constraint (7)

is the binary decision variable for a turning nesion.
3. The solution method for the lower level SUE problem

The solution algorithms of the SUE problem can lassified into two categories: link-based
algorithms (e.g., Sheffi and Powell, 1982; Mah&94, and; Chen et al., 2002) and path-based
algorithms (e.g., Chen and Alfa, 1991a; Huang, 1998; Bekhor and Toledo, 2005). An important
advantage of link-based algorithms is that theydbrequire explicit enumeration of paths, and so,
they can be easily applied to large-scale netwohikstead of enumerating paths, link-based
algorithms assume implicit path choice sets, ssctih@ use of all efficient paths (e.g., Maher, 1998
or all cyclic and acyclic paths (e.g., Bell, 1995owever, these implicit choice sets may be
unrealistic from a behavioral viewpoint (Bekhor aholedo, 2005). On the contrary, path-based
algorithms allow a more flexible definition of tishoice set which can accommodate more realistic
considerations. Furthermore, a path-based algorithm obtain path related information such as
path flow. In this paper, the path flow informati@necessary to determine turning restrictions,
which is more important than the information abth& number of turning vehicles at individual
intersections. Thus, path-based algorithms are msor@able for solving the lower level SUE
problem. Although the solution of the LLP is linkw, this solution can be obtained from path flow

via the relationship between link flow and pathaflo



3.1 Path choice set generation method

Path choice set generation methods received attemti the last decade. Huang (1995) and
Chen and Alfa (1991a) used the STOCH method torgenéhe path set. Bekhor and Toledo (2005)
used a combination of the link elimination methodi dhe k-shortest path method. Bekhor et al.
(2006) discussed choice set generation and rougEemodels for large-scale urban networks.
Several algorithms (e.qg., Dial's (1971) STOCH meltlnd k-shortest path method) were applied to
generate the path set for traffic assignment. I2807) defined a reasonable path set in the sense of
Dial (1971).

In this paper, the paths are generated prior tcafisggnment, using a combination of the link
elimination method (see Bekhor et al., 2001 foradet and Dial's (1971) STOCH method. In a
dense network, the k-shortest path method generatss with a high degree of similarity. The
link elimination method consists of successivelyoging links and finding the shortest path on the
remaining links of the network. Only acyclic patre considered in this method. Since the path set
generated by the STOCH method may omit some shpatrs, the STOCH method (see, Dial,
1971; Sheffi, 1985 for details) can be used to gerethe basic path set, and the link elimination
method can generate some shorter paths omitteteb$ TOCH method.

3.2 Solution algorithm for the lower level SUE problem

The partial derivative of the satisfaction functisth respect to route travel cost is the route
choice probability, given by:

aSrs
——=PR", 8
aclis k ( )

For the logit SUE model, substituting Eq. (4) ig. (8), we have
prs = 0S™ _ exp(&))

- rs rsy ° (9)
©oct Y expt&”)
|
Then, the path flow and link flow are, respectivejiyen by:
fkrS = qI’SPkI’S’ and (10)
Xab = zz fkrsdét?k — zz quPkrsdés,k ) (11)
rs  k rs  k

A simple descent direction denoted hly:[dab] can be applied to solve the problem (1) for a
given vy, given by:
SRS AR (12)
rs k



To solve the lower level SUE problem (1) for a givg, we use the method of successive
weighted averages (MSWA) proposed by Liu et alO@0which is much faster than the method of
successive averages (MSA). The MSWA is outlinetbBews:

Step 1:Initialization. Calculate the route choice probability by freewfltravel cost. Obtain the
initial link flow x* by Eq. (10) and Eq. (11). Set =1, n>1, 0<y<1, B° =1, and the
convergence tolerance >0.

Step 2:Calculating the descent direction. Compute the descent directiadf” by Eq. (12).

Step 3:Determination of the step size. Obtain the step sizel” =1/ 5%, where,

p :{ﬂ“ﬂy, if |d*| = [d**

LB +y, otherwise

2

(13)

Step 4:Updating link flow. Let x*** = x* + A“d”.

Step 5:Convergence checking. If |d”| < &, stop; otherwise, lelk =« +1, and go to Step 2.

4. The solution method for the TRDP

The difficulty in solving the bi-level programmirgoblem presented in this paper lies in how
to evaluate the equilibrium flow patterm(y) for a given vector of turning restriction decision
variables y, which is an implicit vector function defined b¥et lower level stochastic user
equilibrium problem. In this papery is a vector of binary decision variables in the RJL
Therefore, the branch and bound technique is a&mefial approach to solve the nonlinear mixed
integer bi-level programming problem. Sensitivityalysis is also an efficient method for solving
network design problems with the lower level SUBkdem (see, for example, Patriksson, 2004;
Ying and Yang, 2005; Ying et al., 2007, and; Liuakt 2010). Before designing the branch and
bound method, we relax the integrality requiremeotsthe ULP, and employ a sensitivity
analysis-based algorithm to solve the relaxed prablinformation provided by sensitivity analysis
can help in determining both the upper and lowemids of the optimal objective value of the ULP,

and designing the branch strategy.

4.1 Sensitivity analysis of stochastic user equilibrium flows

The turning restriction decision variablgs are considered as parametric variables in the LLP

of the TRDP. LetM(y) = BFﬁb] and N(y) =B£] The two matrices can then be derived from
X

d H

Eqg. (1), given by:



oF, e anS BL
o) , and (14)

axcd zz abkz ° 0%y
% — rs rs aPkrS E_?Cl_rs 15
ay,, gZ ~ag® dy, (15)

where, J,, , =1 if a=c and b=d, and J,,, = O otherwise.

According to the definition of route travel costiu. (3), we have

&—Z ekata(x)iy) and (16)
e d
ot_ (X,

= -=2a S emg;. a7)
a H

Deriving from Eq. (9), we have

exp{-8(c +)} .
{Yexp(-6c)Y
rs k
o - : (19
G | -gexpeoc ) \ ) _eXPEOSY ) ot
Zexp( ac z expeoc ) '
Eq. (18) can be simplified as follows:
oP*° _|OR°R" if 12k (19)
ac’® -6R*(1-R"®) if |=Kk.
Substituting Eq. (19) into Egs. (14) and (15), weehav
aF rsprs xrs aCrS rs
ﬁ =0 t HZZq R 5ab,k{ : Z | } and (20)
rs k |
Is xrs rs acrs I‘S
X Sy ) )
sk | y,u

Egs. (20) and (21) form the matricéd(y) and N(y), respectively. The partial derivative of
x(y) with respect toy can be calculated by (see Yang and Chen, 200Yiaret al., 2009):

0,%(y) = -M(y) "N(y) - (22)
4.2 Sensitivity analysis-based algorithm 1 (SAAL)

The sensitivity analysis of SUE flows is one of ftbeadamental works to solve the ULP of the

TRDP. The Jacobiari] x(y) can be applied to determine the linear approxionadif the objective
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function of the ULP.
Let y' be the initial solution of the TRDP ankly') be the optimal solution of the LLP. The

linear approximation of the flowx is given by (Gao et al., 2007):

x=x(y')+0Oxy)Ny-y). (23)

The integrality requirements are relaxed, and caimgt(7) can be rewritten as:

0<y, <1, Ou. (24)

In order to develop the branch and bound methodviele definel, (I, OI) and I,
(r, Or) as the predetermined sets of turning restricti@pscted and adopted, respectively. The
feasible domain of the relaxed ULP can then beasgmted as follows:

Q={yly,=0,0u0Tyy,=,0u0MN0<y, <1,0u00 =T, -T}. (25)

For the relaxed ULPx estimated by Eq. (23) will be far away frou(y) if the value of
[ly —=y'|l is too large. Therefore, we employ a predetermipachmeterA (A0 (01]) to ensure
that the next solution is not too far away from thial solution y'. An additional constraint is
applied to the ULP, given by:

y,~A<y, <y, +A, OuOr-ry,-r,. (26)

We can then reformulate the feasible domain oféfexed ULP as follows:

P=QM{yly,-A<y, <y, +A,0u07 -T,-T}. (27)

Substituting Eq. (22) into the Eq. (6), we can abthe following optimization problem:
min G'= (%, ')+ 0%, () & =Y")) t (X6 )+ Ox) 6 -y)Y'). (28)
ab

yOe

Equation (28) presents a nonlinear optimizationbfgnm, which can be solved by many
well-known methods, such as outer approximatioordlgns, the penalty function algorithms and
so on. Then, according to the optimal solutionhef telaxed ULP (28), we can solve the LLP again
and obtain new equilibrium link flows. We can theltain the Jacobiari] x(y) by the sensitivity
method and a new set of turning restrictions byiagl the relaxed ULP (28). The procedure is
repeated until an optimal solution is obtained. $bkition algorithm can be stated as follows:

Step 1:Initialization. Determine an initial turning restriction strategy and the feasible domain
Q; set k =0, and the convergence tolerance.

Step 2:Solving the LLP. Generate the feasible domafh by Eq. (27), and solve the LLP with the
gradient method for a givery” to obtain the optimal link flowx™™ .

Step 3:Derivative calculation. Calculate [ x(y*) by using the sensitivity analysis method.

10



Step 4:Solving the ULP. Solve the problem (28) to obtain a new turningjrietion strategyy**.
Step 5:Convergence check. If maxﬂ

Step 2.

K+1

Y. =Y,

<o, then stop; otherwise let =k +1, and go to

Remark 1. Because SAAL is a heuristic algorithm, it may gaarantee convergence (Gao and
Song, 2002). Moreover, the optimal solution foundynie influenced by the initial solution. A
general method is to run the algorithm many timés wifferent initial solutions. If the optimal
solutions obtained by the algorithm with differ@mtial solutions are the same, we believe that the

proposed algorithm converges to a global optimhltgm.
4.3 Sengitivity analysis-based algorithm 2 (SAA2)

SAAl is a heuristic algorithm and cannot guaransedution convergence. Indeed, the
sensitivity analysis of SUE flows can be used ttawbthe gradient of the objective function of the
relaxed ULP, and the relaxed ULP can be viewed @asnéinear programming problem with linear
constraints and solved by the Frank-Wolfe algoritBased on this idea, we develop an alternative
sensitivity analysis-based algorithm (SAA2). Altigbuit is difficult to check the convexity of the
relaxed TRDP, the proposed algorithm can convergelocal optimal solution at least.

The gradient of the objective function of the reldXJLP can be obtained from the sensitivity
analysis, given by:

aG
9y, -

a ! , , , t X I , !

= 3| a0 g ey yy o+, () POV 29)

. @ oy, ay,

The descent direction can be obtained by solviegahowing optimization problem:
minG"=0,G" [y -y"). (30)

yoQ

After the determination of the descent directidw optimal step size is determined by solving a
one dimensional search problem. The calculaticemodptimal step size is time consuming, because
the SUE problem is solved again and again durieg size searching.

The SAA2 for the relaxed TRDP can be stated asvi@i
Step 1: Initialization. Determine an initial vector of turning restrigtioecision variablesy® and

the feasible domainQ ; set x =0, and the convergence tolerance.

Step 2: Solving the LLP. Solve the LLP with the MSWA for a giveg” to obtain the optimal link

flow x™*.
Step 3: Derivative calculation. Calculate [ x(y*) by using the sensitivity analysis method.

Step 4:Calculating the descent direction. Solve the problem (30) to obtain the descentctiva
11



K

o .

Step 5: Searching the optimal step size Solve the one dimension search problem
rrLinG((l—A Wy +Aw”*), and obtain the optimal steg".

Step 6: Updating turning restriction decision variables. Generate a new vector of turning
restriction decision variableg*** = 1- A*)y* + 0~ .

K+l _

Y. < o , then stop; otherwise let =« +1, and go

Step 7: Convergence checking. If max#

Yo
to Step 2.

4.4 An approximate integer solution method

In general, the optimal solutions obtained from gkasitivity analysis-based algorithms are not
integer solutions due to the integrality requireteerlaxed for the ULP. However, we can obtain
nearly optimal integer solutions by using an apprate integer solution method (AISM). For
Oy O{y |0< y, <104}, the following method can be used to get an neadyimal integer
solution for the ULP:

ox O If y;l < ycrit
=

, Opdr, (31)
1 otherwise

where y* is the nearly optimal integer solution, ang , is the critical value satisfying
Yer 0 (01)

We can setl, =0 and I, =0, and obtain the solution of the relaxed TRDP l®/ thoposed
sensitivity analysis-based algorithms. The AISM ¢taen be used to get a nearly optimal integer
solution for the TRDP. If SAAL1 (or SAA2) is usedjet approximate integer solution method
combined with SAAL1 (or SAA2) is named as SAAL+AISEr SAA2+AISM) in short in this
paper.

The AISM can also be applied to determine the ufmoeind of the optimal objective value of
the ULP of the TRDP in the branch and bound met(B#M) in the next subsection, wherg,

and I, may not be empty.
4.5 Branch and bound method

The ULP of the TRDP can be considered as a genedafionlinear integer problem, and can be

solved by the BBM. The following notations are atdopto describe the BBM:
LB lower bound of the optimal upper-level objectiaue;
UB upper bound of the optimal upper-level objectiatue;

UT set of unbranched nodes in the search tree;
12



BT set of branched nodes in the search tree;
a node index in the search tree;
IS, input sequence of search tree nogde

a

LB, lower bound of the optimal upper-level objectiadue for search tree node ;
UB, upper bound of the optimal upper-level objectiatue for search tree node ;

M, turning restriction for search tree node;

Y,  0-1variable; if the turning restrictiog, is applied, theny, =1; otherwise y, = 0
y,  optimal solution of the relaxed TRDP for seare®etnodea , and;

¥ nearly optimal integer solution of the TRDP foash tree nodea .

A bound strategy and a branch strategy are dewveltipanprove the performance of the BBM.
In the bound strategy, the nearly optimal integaut®on is applied to determine a better upper
bound, which is useful to reduce the number ofdetrtee nodes. In the branch strategy, we choose
the turning restriction with the minimum non-integalue for the corresponding turning restriction
decision variable as the constrained turning r&gin at the branch node. This strategy is useful t
obtain the optimal integer solution of the ULP dalyc The following discusses the bound and
branch strategies.

(i) Bound strategy
In the proposed BBM, the input sequence is useatltbconstraints to the relaxed ULP. For a

given search tree node JUT , the turning restriction set§, and I, can be obtained from the
input sequencelS,, given by:
Mo ={H; Y, =0,0801S,}, and (32)

N ={ds |y, =L0B0IS,}. (33)

Substituting Eq. (32) and Eq. (33) into Eq. (250 &v. (27), and using the sensitivity analysis
algorithm (i.e., SAAL or SAA2), we can obtain thgtimal solutiony;,, and the lower bound of
the optimal objective value of the ULR,B, . Consequently, the AISM can be used to get theyea
optimal integer solutiony, . Substitutingy =y, into the LLP, we can obtain the optimal link
flow X, and the upper bound of the optimal objective valtiehe ULP, UB,. The upper and
lower bounds of the optimal upper-level objectivadue for the TRDP can be derived from the

solution of each unbranched search tree node, giyen
UB= acm'L?BT{UB"} , and (34)

LB=min{LB,} . 135

(i) Branch strategy
In the BBM, the unbranched search tree node wighninimum lower bound is chosen as a
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branch node. The index of the branch node can tznaldl from:

L= argggLiJrT\{ LB,} . (36)

If the branch nodef has a non-integer solution, we can choose thénimestriction with the

minimum non-integer value for the correspondingnituy restriction decision variable as the

constrained turning restriction, given by:
H= argrpulp{ Yp, Y5, >0} . (37)
The branch nodef generates two new search tree nodes, denote@ aand £,. We

respectively sety, =0 and Yy, =1. The turning restrictions and the input sequerdethe two

generated nodes are set as:

Ay =0, =1, 83
IS, =1S,+{B}, and (39)
IS, =1S, +{,} . (40)

The above strategies are incorporated into theqsexgb BBM for the TRDP, which can be stated
as follows:

Step O:nitialization.
Step 0.1: Set the initial upper boutdB =+ , the initial lower boundLB = -« and the
branch node seBT =[] .
Step 0.2: Generate an initial search tree nagesuch thatz, 00. Set IS, =0 and
UT ={a,}.
Step 0.3: Solve the TRDP for the search tree nagleand obtain the optimal solutioy;,0
and the nearly optimal integer solutiq“ri,o.
Step 0.4: Determine the upper boubi, and the lower bound.B, .
Step 0.5: If y, =Y, , stop and output the optimal solutioy}, ; otherwise, go to Step 1.
Step 1:Branching.
Step 1.1: Choose the optimal branch ngleby Eq. (36).

Step 1.2: Search the best constrained turningetsh z by Eq. (37).
Step 1.3: Generate the search tree nofle, subject to y, =0, f; =4, and

IS, =1S, +{3} . Generate also another search tree ngflesubject toy, =1,
Hy =H,and IS, =15, +{f, }.

Step 1.4: Solve the TRDP for each newly generatsdch tree node. Obtain the optimal

14



solutions y, and y/, , and the nearly optimal integer solutiofs and y; .
Step 1.5: Determine the lower bound®, and LB, , and the upper bounddB, and
UB,, .
Step 2:Updating search tree node set. Set BT = BT U{S} and UT =UT U{B}U{B.} {5} .
Step 3Determination of the upper and lower bounds. Calculate the upper boundB and the

lower bound LB by Eq. (34) and Eg. (35), respectively.
Step 4:Branch removal. For all a OUT , if LB, 2UB, then setUT =UT —{a }
Step 5Convergence checking. If UB=LB, set ﬁ’:argrgLiJrT\{UBa}, output the optimal solution

y,; and stop; otherwise, go to Step 1.

Remark 2. Both SAA1 and SAA2 proposed in Section 4.2 andtiSedt.3, respectively, can be
applied to solve the relaxed TRDP for the seared trode in step 0.3 and step 1.4.

Remark 3. SAA1+BBM (SAA2+BBM) is adopted to simplify the ggentation of the algorithm
that SAAL (SAA2) and the AISM are embedded into BBM. The performance of the two SAAs

embedded into the above BBM will be tested in thet section.
5. Numerical study

To illustrate the effects of the model parameters the performance of the proposed algorithms,
we developed a numerical example using the Siolis Ratwork as shown in Fig. 1, which was
also used in Leblanc et al. (1975). The Sioux Fadsvork consists of 24 nodes, 76 links, and 528
OD pairs. The feasible turning restrictions arg¢elisin Table 1. The average number of paths per
OD pair is 3.6, and the maximum number of routés/ben an OD pair is 15.

The two BPR parameters are the same as those larloeét al. (1975). That isy, = 0.15 and
X, = 4. We follow Horowitz (1997) using @&, -value of 0.4.¢, and ¢, are set to 1 for
simplicity. We set the punishment cdét= 50.0 as the maximum route travel cost is less ghauif
there are no turning restrictions in the networkisTvalue ofM is believed to be large enough in
this study. Nevertheless, all the above paramet@nsbe calibrated based on the actual scenario
without conceptual difficulty. The values of thergaeters for solution algorithms are as follows:
=0.25,7= 15 y=01, £=10x10°, ¢=10x%10° and y,, = 01

To demonstrate the improvement of the network perémce by implementing turning
restrictions, the system costs with and withoutlengenting turning restrictions were compared. As
shown in Fig. 2, the system cost can be decreagemhfflementing turning restrictions with the

dispersion parametef varied from 0.1 to 2.0. The results presented ig. & indicate that
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SAA2+BBM outperforms both SAA1+BBM and SAA2+AISM.h& results by SAAL1+AISM are
not presented because of the bad performance uingolthe TRDP. Meanwhile, SAA2+BBM
obviously outperforms the other two algorithmsennt of accuracy. As described in Section 4.4,
the solution obtained from SAA2+AISM is an approais integer solution for the TRDP, and it is
difficult to evaluate the accuracy of the solutmistained by this approach. Therefore, SAA2+BBM
is recommended from the perspective of the soldmuracy for the TRDP.

The performance of the algorithms for the TRDP wather tested, and the results are listed in
Table 2, where we set a value of 1.0 for the dsparparameted. In this example, SAAL is
notably inferior to SAA2 in solving the relaxed TRDThe objective value of the relaxed ULP
obtained by SAAZ2 is less than that by SAAL. As nwerdd before, SAAL is a heuristic algorithm,
and it is difficult to guarantee solution convergenOn the contrary, SAA2 is a Frank-Wolfe based
algorithm which solves the relaxed TRDP as a cormpregramming problem. Although, it is hard
to analyze the convexity of the proposed bi-lewelbfem, we can obtain a local optimal solution
for the relaxed TRDP at least.

From the SAAL1 and SAA2 results presented in Table2use SAAL+AISM and SAA2+AISM
to obtain the nearly optimal integer solutionsslshown that less than 10% of decision variables o
the ULP of the TRDP take incorrect values corredspmn to the optimal solution solved by
SAA1+BBM and SAA2+BBM (Table 2). Therefore, the posed bound strategy can aid
SAA1+BBM and SAA2+BBM in searching a lower upperubd and obtain the optimal solution

efficiently. Note that the value of,, has no impact on the convergence of SAA1+BBM and

rit
SAA2+BBM, because we just use the value to findribarly optimal integer solution and reduce

the upper bound. An appropriate value pf, allows SAA2+BBM to get a good starting upper

bound and obtain the nearly optimal integer solutitose to the global optimal integer solution

quickly.

Many factors affect the performance of the propasgdrithms and the solution of the TRDP,
including the value of the dispersion paramétand the level of network congestion. The essential
fact is that the above two factors influence thelementation of turning restrictions by impacting
the lower level SUE problem on both the solutioml dhe computational time. Therefore, we
conducted a test for the sensitivity of the soluid the TRDP with respect to the valuefofTable
3 presents the optimal solutions for various valkifethe dispersion parametér The result shows

that the solution of the TRDP is robust when thiieaf the dispersion paramet@wvaries. This

observation implies that the calibration of thepéision paramete? needs not be too precise in
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applications. Fig. 3 illustrates the effect of tredue of the dispersion parameteon system cost
saving due to implementing the optimal turning nieBbn strategy, where system cost saving is
defined as the difference between system cost withnd with the implementation of turning
restrictions. It shows that implementing turningtrietions can increase system cost saving when
the value of the dispersion paramefledecreases as a whole. As mentioned before, sysisin ¢
saving consists of two components: free flow traz@dt saving and delay saving of all travelers.
The result illustrates that free flow travel coaviag takes a small percentage of total cost saving
This indicates that the optimal turning restrictgirategy mainly reduces travelers’ delay.

We also studied the influence of the value of tlepelsion parametét on the computational
time of solving the TRDP by various algorithms. Tiesults are presented in Fig. 4, which show
that both SAA1+BBM and SAA2+AISM obtained solutiofaster than SAA2+BBM with a slight
advantage of SAA2+AISM over SAA1+BBM. This is besau(l) the link flow is linearly
approximated in SAAl, which can reduce the timeumegl for solving the lower level SUE
problem in SAA1+BBM, and (2) SAA2 is only executedce in SAA2+AISM. However, since
SAAZ2 is repeatedly used when solving the relaxe®@PRy SAA2+BBM, the computational time
of SAA2+BBM can be very long. Moreover, since SAA2a Frank-Wolfe based algorithm, the
computational time of SAA2+BBM is greatly consumaul the stepsize determination. However,
SAA1+BBM may not be able to get an optimal solutfonthe TRDP. Thus, SAA1+BBM is not
recommended to use.

We examined the impact of travel demand on systesh saving due to implementing turning
restrictions, where the demand level reflects thgrele of network congestion. The Sioux Falls
demand matrix was uniformly varied by multiplying & constant demand factor, where the factor
represents the demand level relative to the baseuw@ matrix. Since the Sioux Falls network in
the base scenario (i.e., when demand factor edyassquite congested, we only varied the factor
from 0.5 to 1.5, with an increment of 0.05. Fig.pBesents the system cost saving due to
implementing the optimal turning restriction stgtefor different demand factors wheéh= 1.0.
The results show that implementing turning restitt is more necessary at a higher demand level
and is more effective in improving more congestaffit networks. Furthermore, the robustness of
the turning restriction strategy for the base sdenaas studied under various demand factors. We
performed the SUE assignment to obtain the totslesy cost at each demand factor under this
strategy. The result shows that this strategy cargla similar system cost saving to the optimal

turning restriction strategy when the demand fastmies from 0.65 to 1.15. Thus, the turning
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restriction strategy is not needed to adjust whiamel demand slightly increases. In addition, we
can observe from Fig. 5 that system travel cosingai¢ increasing when the demand fagjoows
up. Therefore, implementing turning restrictionsymaark better if the network is more congested.

The proposed bi-level programming model can alseddeed by solution algorithms based on
artificial intelligence techniques, such as genatgorithm (GA), simulated annealing, and neural
network. To further illustrate the merits of theoposed SAA2+BBM, we compared SAA2+BBM
with GA, which has been successfully applied to idewrange of transportation engineering
problems (see, for example, Drezner and Wesolowa893; Ceylan and Bell, 2005). Herein, we
applied the general GA (Gen and Cheng, 2000) teesble TRDP.

The parameters for GA are set as: population si2@,¥maximum number of generations = 100,
crossover probability = 0.4, and mutation prob&p#i 0.08. Two convergence criteria are used to
stop the GA procedure: 1he number of generations equals the predetermined maximum number of
generations (convergence criterion 1) and the best upper-level objective value obtained from GA
equals that obtained by SAA2+BBM (convergence criterion 2). We adopted GA to sohee TRDP
with the value of the dispersion parameteraried from 0.1 to 2.0. The test results show that
solutions obtained by GA cannot be better thangtastained by SAA2+BBM. Most of the time
the solutions obtained by GA can converge to tHatisms obtained from SAA2+BBM. These
results indicate that the proposed SAA2+BBM mayaobglobal optimal solutions in this studied
case.

The computation time of GA performance is preseintdeig. 6. We can see that a higher value
of the dispersion parameté@rcanbring a longer computation time for the TRDP sohNsdGA.
SAA2+BBM can solve the TRDP faster than GA in gaheFhe number of generations required by
GA to meet the convergence criterion is not evilyedifferent when the value @f varies. However,
the lower level SUE problem requires more iteratiem achieve an optimal solution with a fixed
precision when the value éfgrows up. Therefore, GA may be slightly slowestive the TRDP
with a higher value ofl. Compared with SAA2+BBM, GA has an intrinsic weaks: we do not
know when GA can get optimal solutions. A high nembf generations (i.e., long computation
time) is required to ensure the solution qualitpn tBe contrary, the TRDP solution obtained from
SAA2+BBM is local optimal. In conclusion, SAA2+BBMerforms better than the GA-based

heuristic algorithm, especially when the dispergparameter takes a high value.
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6. Conclusions

This paper presents a bi-level programming moddl@oposes a branch and bound algorithm
for solving the TRDP. For the lower level SUE pel a penalty term is used to formulate the
route travel costs, and can be considered as thislpuent cost for a traveler taking a restricted
turning. The SAA is applied to solve the relaxedDHRand obtain the nearly optimal integer
solution of the bi-level model. The solution of thedaxed TRDP is employed to determine the
lower and upper bounds and choose the branchgyratehe BBM.

Four algorithms based on the combination of the SA4 BBM are applied to solve the TRDP
in a sample network. The test results show that &#3FBM performs the best in terms of higher
solution accuracy among all the tested algorith@mnpared with the GA based heuristic algorithm,
SAA2+BBM performs the best in terms of convergerac®l computation time. Furthermore,
numerical results show that implementing turningfrietions can obviously reduce system cost by
reducing congestion cost. The sensitivity analggdbhe dispersion parameter and the demand level
show that turning restriction strategies are rololustng the variation of traffic environment (e.g.,
the precision of information shared by travelerd e demand level).

It will be interesting to examine TRDP that alssmsiders signal control or road channelization
at intersections. This will be our future reseamtinection. The future work also includes

considering the TRDP in dynamic traffic networksl @valuating its effectiveness.
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Table 1 Turning restrictions

H H Hn H H Hy

1 36 31 12 47 21
2 10 32 13 22 50
3 27 34 14 52 48
4 40 33 15 28 45
5 32 26 16 67 44
6 25 29 17 72 67
7 48 28 18 46 68
8 43 27 19 63 69
9 24 19 20 63 70
10 16 20 21 68 61
11 17 22 22 56 62

Table 2 Comparison between various sensitivityysisialgorithms{ = 1.0)

Method

SAAl

SAA1+AISM SAA1+BBM

SAA2

SAA2+AISM SAA2+BBM

Objective 155.5330

155.5368

155.5368

153.9007

155.9272

154.4151

Y1
Y2
Y3
Ya
Ye
y7
Ys
Yo
Y11
Y13
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Y22
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* The turning restrictions not listed in the takddée a value of 0.

Table 3 The optimal solutions for various valueshef dispersion parametér

The dispersion parameter

The optimal turning restriction strategy

0.1~0.4
0.5~1.2
1.3~2.0

1111010010101111001110
1111011010101111001110
1111011010101111011110
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System cost

Fig. 2. The influence of the value of the dispengi@arameteéf on system cost for various

Fig. 1. The Sioux Falls network.
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Fig. 3: The effect of the value of the dispersiangmeter) on system cost saving due to
implementing turning restrictions
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Fig. 4. The influence of the value of the dispengiarameteé on the computational time of
solving the TRDP by various algorithms.
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