
Title Distinct versus overlapping functions of MDC1 and 53BP1 in
DNA damage response and tumorigenesis

Author(s) MinterDykhouse, K; Ward, I; Huen, MSY; Chen, J; Lou, Z

Citation Journal Of Cell Biology, 2008, v. 181 n. 5, p. 727-735

Issued Date 2008

URL http://hdl.handle.net/10722/90927

Rights



T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

© 2008 Minter-Dykhouse et al.
The Rockefeller University Press $30.00
J. Cell Biol. Vol. 181 No. 5 727–735
www.jcb.org/cgi/doi/ JCB 727 10.1083/jcb.200801083

JCB: REPORT

 Correspondence to Junjie Chen: Junjie.Chen@yale.edu; or Zhenkun Lou: 
Lou.Zhenkun@mayo.edu 

 Abbreviations used in this paper: ATM, ataxia telangiectasia mutated; BRCT, 
BRCA1 C terminal; CSR, class-switch recombination; DDR, DNA damage re-
sponse; DKO, double KO; HR, homologous recombination; IR, ionizing radia-
tion; KO, knockout; MEF, mouse embryonic fi broblast; MMC, mitomycin C; WT, 
wild type. 

  The online version of this article contains supplemental material.  

    Introduction 
 To ensure the meticulous transmission of genetic information, 

there exists a series of checkpoints that are activated when DNA 

damage is detected. At the apex of the signaling cascade initi-

ated after the detection of DNA double-strand breaks is the 

serine/threonine protein kinase ataxia telangiectasia mutated 

(ATM;  Abraham, 2001 ). ATM has been shown to phosphorylate 

a broad range of substrates upon activation, including NBS1, 

BRCA1, and Chk2. ATM patients show symptoms including 

neural degeneration, immunodefi ciency, growth retardation, pre-

mature aging, cancer predisposition, and severe sensitivity to 

ionizing radiation (IR;  Shiloh, 2003 ), with ATM-defi cient mice 

displaying many of these phenotypes ( Xu and Baltimore, 1996; 

Xu et al., 1996 ). Thus, understanding the ATM signaling cas-

cade has been pivotal to discovering the mechanisms underly-

ing genomic instability and tumorigenesis. Recently, 53BP1 and 

MDC1 have been recognized as critical upstream mediators in 

the cellular response to double-strand breaks, although the ex-

tent and nature of their interaction is not known. 

 53BP1 has been suggested to be the mammalian ortho-

logue of scRad9/spCrb2, a protein critical for DNA damage 

response (DDR) in yeast. Like many proteins of the DDR path-

ways, 53BP1 contains tandem BRCA1 C-terminal (BRCT) do-

mains. In addition, 53BP1 contains a tudor domain that binds 

methylated K79 of histone H3 or K20 of histone H4 ( Huyen et al., 

2004 ). 53BP1 is phosphorylated after IR in an ATM-dependent 

fashion and localizes to IR-induced foci ( Schultz et al., 2000; 

Anderson et al., 2001 ;  Rappold et al., 2001 ). Furthermore, mod-

erate checkpoint defects have been reported in cells depleted of 

53BP1 ( Fernandez-Capetillo et al., 2002 ;  Wang et al., 2002 ). 

Analysis of 53BP1 knockout (KO) mice confi rmed an impor-

tant role for 53BP1 in genomic stability ( Morales et al., 2003 ; 

 Ward et al., 2003 ), with null mice recapitulating some of the 

ATM-defi cient phenotypes, although they were less severe (no-

tably growth retardation, mild checkpoint defect, genomic in-

stability, and mild tumor incidence). These moderate phenotypes 

challenge the notion that 53BP1 is the only orthologue of the 

original scRad9. 

 Subsequently, MDC1 was identifi ed and described by sev-

eral groups as being a critical mediator of DDR ( Stucki and 

Jackson, 2004 ). MDC1 contains tandem BRCT domains as 

well as a forkhead-associated domain and a repeat region, which 

also mediate protein interactions. Through its BRCT domains, 

MDC1 binds  � H2AX and recruits activated ATM to the sites of 

T
he importance of the DNA damage response (DDR) 

pathway in development, genomic stability, and tu-

mor suppression is well recognized. Although 53BP1 

and MDC1 have been recently identifi ed as critical up-

stream mediators in the cellular response to DNA double-

strand breaks, their relative hierarchy in the ataxia 

telangiectasia mutated (ATM) signaling cascade remains 

controversial. To investigate the divergent and potentially 

overlapping functions of MDC1 and 53BP1 in the ATM 

response pathway, we generated mice defi cient for both 

genes. Unexpectedly, the loss of both MDC1 and 53BP1 

neither signifi cantly increases the severity of defects in 

DDR nor increases tumor incidence compared with the 

loss of MDC1 alone. We additionally show that MDC1 

regulates 53BP1 foci formation and phosphorylation in 

response to DNA damage. These results suggest that 

MDC1 functions as an upstream regulator of 53BP1 in the 

DDR pathway and in tumor suppression.
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DNA damage, thus amplifying DNA damage signals ( Stucki 

et al., 2005; Lou et al., 2006 ). siRNA against MDC1 were used 

to demonstrate MDC1 ’ s role in G2/M checkpoint response, 

IR- induced foci formation, and Chk2 signaling ( Stucki and 

Jackson, 2004 ). A role of MDC1 in DNA repair has also been 

demonstrated ( Lou et al., 2004 ;  Zhang et al., 2005 ). However, it 

was not until MDC1 KO mice were generated that the impor-

tance of MDC1 ’ s function in ATM signaling and genomic sta-

bility became apparent ( Lou et al., 2006 ). MDC1-null mice 

displayed many of the phenotypes associated with ATM defi -

ciency: growth retardation, IR sensitivity, male infertility, gross 

genomic instability, and S-phase and G2/M checkpoint defects. 

Although it remains to be determined whether MDC1 has tumor 

suppressor functions in vivo, so far the phenotypes observed 

in MDC1  � / �   mice are milder than those of ATM  � / �   mice, sug-

gesting that MDC1, like 53BP1, only regulates a subset of 

ATM signaling. 

 The data regarding the interactions between MDC1 and 

53BP1 in the ATM signaling cascade have often been confl ict-

ing; although both 53BP1 and MDC1 are required for correct 

and robust DDR, there are some differences between the two 

proteins. Notably, 53BP1 does not seem to play a major role in 

checkpoint activation but is crucial in a subset of DNA repair 

functions, especially class-switch recombination (CSR;  Manis 

et al., 2004 ;  Ward et al., 2004 ). In contrast, MDC1 seems to 

have major role in checkpoint activation but a moderate role in 

DNA repair. Thus, it appears that MDC1 and 53BP1 may regu-

late separate branches of the DDR downstream of ATM. To 

clarify these points, we generated mice defi cient of both MDC1 

and 53BP1 and investigated how the loss of both MDC1 and 

53BP1 affects DDR and tumorigenesis. 

 Results and discussion 
 MDC1/53BP1 defi ciency and 
radiosensitivity 
 One of the hallmarks of defective DDR is hypersensitivity to 

IR. ATM-, MDC1-, and 53BP1-defi cient mice have been shown 

to be hypersensitive to IR ( Xu and Baltimore, 1996; Ward et 

al., 2003; Lou et al., 2006 ). Mice defi cient for both MDC1 and 

53BP1 (double  KO  [DKO]) demonstrated similar overall 

levels of morbidity to the MDC1  � / �   and 53BP1  � / �   mice 12 d 

after 7 Gy whole body irradiation ( Fig. 1 A ), all of whose sur-

vival were signifi cantly lower than the survival of wild-type 

(WT) mice (53BP1  � / �  , P = 0.0164; MDC1  � / �  , P = 0.0494; 

DKO, P = 0.0455). DKO survival after IR was distinct from 

that of the single KOs, as the DKO onset of morbidity was ear-

lier than that of the single KOs, although this did not corre-

spond with a signifi cant decrease in survival (P = 0.4672 for 

MDC1 KO and P = 0.7968 for 53BP1 KO). Correlating with 

the whole body IR results, mouse embryonic fi broblasts (MEFs) 

from MDC1  � / �   or 53BP1  � / �   mice show sensitivity to IR 

( Fig. 1 B ) as previously reported ( Ward et al., 2003; Lou et al., 

2006 ). MEFs from DKO mice are only slightly more sensi-

tive to IR than those from MDC1  � / �   or 53BP1  � / �   mice, al-

though not statistically more so (P = 0.668 for MDC1  � / �   and 

P = 0.439 for 53BP1  � / �  ). 

 Figure 1.    Radiosensitivity of DKO mice and MEFs.  (A) Kaplan-Meier sur-
vival curve of WT ( n  = 9), 53BP1  � / �   ( n  = 8), MDC1  � / �   ( n  = 10), and DKO 
( n  = 8) mice after 7 Gy of whole body IR. (B) Survival of WT, 53BP1  � / �  , 
MDC1  � / �  , and DKO MEFs 5 d after 0, 1, and 2 Gy IR as determined by 
Trypan blue exclusion. Error bars represent SEM from two independent ex-
periments. (C) Survival of WT, 53BP1  � / �  , MDC1  � / �  , and DKO MEFs 48 h 
after continuous treatment with the indicated amounts of MMC. Error bars 
represent SEM from four independent experiments.   
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 Figure 2.    Genomic instability in 53BP1  � / �  , MDC1  � / �  , and DKO MEFs.  Mitotic spreads were produced as described in Materials and methods. (A) The 
percentage of mitotic spreads with spontaneous chromosomal abnormalities was determined by light microscopy. The asterisk denotes a signifi cant differ-
ence from WT (53BP1  � / �   compared with WT, P = 0.00019; MDC1  � / �   compared with WT, P = 3.35  ×  10  � 6 ; DKO compared with WT, P = 1.01  ×  10  � 11 ). 
(B) Representative pictures of chromosomal aberrations from DKO MEFs. Different aberrations are indicated by colored arrows. (C) Percentage of metaphase 
spreads with the indicated number of DNA breaks from unirradiated or irradiated MEFs. 100 metaphase spreads/genotype were evaluated. Bar, 10  μ M.   
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 To further confi rm our IR data, we chose to test the sen-

sitivity of these cell lines to the DNA cross-linking agent 

mitomycin C (MMC). As shown in  Fig. 1 C , 53BP1 KO MEFs 

showed a mild, insignifi cant resistance to MMC when com-

pared with WT (P = 0.167). MMC-induced DNA damage is be-

lieved to be mainly repaired by the homologous recombination 

(HR) pathway ( Brugmans et al., 2007 ), and loss of 53BP1 has 

been shown to enhance HR as a result of its suppressive role in 

HR ( Xie et al., 2007 ), which could contribute to this mild resis-

tance to MMC in 53BP1  � / �   cells. Inversely, the loss of MDC1, 

which has been reported to be involved in HR pathways ( Zhang 

et al., 2005; Xie et al., 2007 ), resulted in mild decreased sur-

vival in comparison to WT (P = 0.071). However, the DKO line 

displayed a signifi cantly higher sensitivity to MMC than WT 

and 53BP1 lines (P = 0.0031 and P  <  0.0001, respectively) but 

was not signifi cantly more sensitive to MMC than the MDC1 

KO line (P = 0.2267). This result suggests that although MDC1 

and 53BP1 may have distinct repair functions, the loss of 

MDC1 is a dominant effect in the context of DKO. 

 MDC1/53BP1 defi ciency and 
genomic instability 
 As MEFs from both MDC1  � / �   and 53BP1  � / �   mice have been 

shown to have higher rates of genomic instability ( Ward et al., 

2003; Lou et al., 2006 ), we next examined how the loss of both 

MDC1 and 53BP1 affects chromosome stability before and af-

ter IR. Mitotic spreads prepared from single and DKO passage 

1 MEFs were examined by light microscopy. Although unirradi-

ated WT MEFs had relatively few spontaneous chromosomal 

aberrations (14% of MEFs examined), including chromatid 

breaks, chromosome fusions, and fragments from chromosome 

breaks, 53BP1  � / �   and MDC1  � / �   MEFs had a signifi cantly higher 

incidence with 40% and 60% of spreads containing chromo-

some aberrations, respectively (P = 0.00019 and P = 3.35  ×  

10  � 6 , respectively;  Fig. 2 A ). The MEFs from DKO mice dis-

played slightly more chromosome aberrations than those of 

MDC1  � / �   MEFs (70%;  Fig. 2, A and B ), which is not consid-

ered a statistically signifi cant increase (P = 0.8) but is highly 

signifi cant when compared with spontaneous breaks in WT and 

53BP1 KO cells (P = 1.01  ×  10  � 11  for WT and P = 0.00016 for 

53BP1 KO). 

 We next examined DNA breaks caused by IR. Cells were 

treated with 1 Gy IR and were allowed to recover for 1 h, and 

spreads were made and examined for chromosome aberrations. 

As shown in  Fig. 2 C , WT MEFs had zero to four breaks per 

spread, with zero being the highest frequency at 40% followed 

by one-break frequencies of 38%. 53BP1  � / �   cells had between 

zero and eight breaks per spread, with two and then one break 

per spread being the most prevalent. MDC1  � / �   MEFs again 

appear more sensitive to chromosomal aberrations than WT 

or 53BP1  � / �   and had  > 90% of spreads containing two or more 

breaks. The DKOs recapitulate the MDC1  � / �   phenotype more 

closely with a larger proportion of spreads containing two or 

more chromosomal abnormalities after IR. The data shown in 

 Figs. 1 and 2  relating to IR sensitivity, DNA repair, and genomic 

stability suggest that the loss of MDC1 contributes to most of 

the phenotypes observed in DKO mice and cells. 

 MDC1/53BP1 defi ciency, development, 
and tumorigenesis 
 We also examined how the loss of 53BP1 and MDC1 affects 

development and tumorigenesis. Although ATM  � / �   mice are in-

fertile ( Xu et al., 1996 ), 53BP1  � / �   mice show normal fertility ( Ward 

et al., 2003 ), as MDC1  � / �   mice show an intermediate pheno-

type with male MDC1  � / �   mice being infertile and females 

showing reduced fertility ( Lou et al., 2006 ). The DKO mice 

showed the same fertility phenotype as MDC1  � / �   mice (un-

published data). 

 We next evaluated immunological phenotypes. ATM  � / �   

mice show defects in both CSR and T cell development ( Xu and 

Baltimore, 1996; Xu et al., 1996 ). Although 53BP1  � / �   mice show 

a severe defect in CSR ( Manis et al., 2004 ;  Ward et al., 2004 ) and 

a decreased number of mature T cells, overall T cell development 

appears to be intact ( Morales et al., 2003 ;  Ward et al., 2003 ). 

Similarly, MDC1  � / �   mice show a moderate defect in CSR and no 

apparent abnormalities in T cell development ( Lou et al., 2006 ). 

To examine whether the loss of both MDC1 and 53BP1 would 

result in a defect in T cell development, we stained CD4 and CD8 

of lymphocytes isolated from the thymus of WT, MDC1  � / �  , 

53BP1  � / �  , and DKO mice. Like that of MDC1  � / �   and 53BP1  � / �   

mice, no obvious defect in T cell development was observed in 

DKO mice ( Fig. 3 A ). These results suggest that unlike ATM, 

MDC1 and 53BP1 are not essential for T cell development. 

 Finally, we examined spontaneous tumor incidence in 

WT, MDC1  � / �  , and DKO mice. 10.5% of WT mice developed 

tumors by the age of 21 mo, whereas 25% of MDC1  � / �   mice 

developed tumors (P = 0.0001;  Fig. 3 B ). The majority of tu-

mors from WT and MDC1  � / �   mice are lymphomas, which 

also metastasized to other organs, such as the lung, liver, and 

gastrointestinal tract ( Fig. 3, C and D ). These results are the 

fi rst to demonstrate that MDC1 acts as a tumor suppressor, 

suggesting that genomic instability caused by the loss of 

MDC1 does contribute to tumorigenesis. However, the loss of 

both 53BP1 and MDC1 only resulted in a mild increase in 

tumor incidence in comparison to the loss of MDC1 alone (P = 

0.356;  Fig. 3 B ). 

 53BP1 and MDC1 in the DNA damage 
signaling pathway 
 A previous study using siRNAs suggests that MDC1 and 53BP1 

work in parallel pathways to activate ATM ( Mochan et al., 2003 ). 

We used MEFs from MDC1  � / �  , 53BP1  � / �  , and DKO mice to 

verify this observation. In contrast to  Mochan et al. (2003 ), we 

found that neither the absence of MDC1 or 53BP1 alone signifi -

cantly affected the autophosphorylation at serine 1981 of ATM 

after IR ( Fig. 4 A  and Fig. S1, A and B; available at http://www

.jcb.org/cgi/content/full/jcb.200801083/DC1) even at low doses 

of IR. Furthermore, there was no signifi cant decrease in ATM 

phosphorylation in the DKO cells ( Fig. 4 A  and Fig. S1, A and B). 

Interestingly, there was some decrease in ATM phosphorylation 

at a later time point, supporting a possible role of MDC1 in main-

taining ATM phosphorylation ( Fig. 4 B ). However, the loss 

of both MDC1 and 53BP1 did not further decrease ATM 

phosphorylation. These results suggest that MDC1 and 53BP1 

are not critical for ATM activation. 
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MDC1 does not cause more severe checkpoint defects than the 

loss of MDC1 alone. 

 MDC1 regulates 53BP1 phosphorylation 
and localization at the sites of 
DNA damage 
 Our results with 53BP1/MDC1 DKO mice and cells suggest that 

MDC1 and 53BP1 likely function on the same molecular path-

way downstream of ATM. Confl icting results have been reported 

as to whether 53BP1 foci formation requires MDC1, possibly as 

a result of the different siRNA used and the extent of MDC1 

knockdown ( Goldberg et al., 2003 ;  Peng and Chen, 2003; Stewart 

et al., 2003 ;  Bekker-Jensen et al., 2005 ). We found that 53BP1 

failed to form foci in MDC1  � / �   cells in response to DNA dam-

age ( Fig. 5 A ). On the other hand, MDC1 foci formation is nor-

mal in 53BP1  � / �   cells. These results suggest that MDC1 is an 

upstream regulator of 53BP1 localization after DNA damage. 

 Recent studies suggest that MDC1 might regulate the lo-

calization of DNA damage factors through the E3 ubiquitin li-

gase RNF8, which ubiquitinates H2AX and creates binding 

 We also examined how the loss of MDC1 and 53BP1 af-

fects downstream signals of the DDR. MDC1 and 53BP1 have 

previously been shown to regulate Chk1 and Chk2 phosphory-

lation ( Wang et al., 2002, 2003; Peng and Chen, 2003 ;  Stewart 

et al., 2003 ;  Lou et al., 2006 ). MDC1  � / �   and 53BP1  � / �   MEFs 

showed weak activation of Chk1 and Chk2. However, the loss 

of both MDC1 and 53BP1 did not further decrease Chk1 and Chk2 

phosphorylation ( Fig. 4, A and B ; and Fig. S1 B). Although we 

did observe a reproducible defect in Chk2 phosphorylation, the 

decreased level of Chk2 seen in MDC1 KO cells was observed 

in some, but not all, experiments. Finally, we examined check-

point activation in MDC1  � / �  , 53BP1  � / �  , and DKO MEFs. Both 

MDC1 and 53BP1 have been shown to regulate the G2/M 

checkpoint. As has been previously reported, the loss of MDC1 

resulted in a defective G2/M checkpoint, with more cells able to 

enter mitosis after IR than in WT cells ( Fig. 4 C ). Similarly, the 

loss of 53BP1 also resulted in some inappropriate progression 

into mitosis. However, in DKO cells, the observed G2/M check-

point defect is comparable to that seen in MDC1-null cells 

( Fig. 4 C ). These results suggest that the loss of both 53BP1 and 

 Figure 3.    T cell development, tumor incidence, and spectrum in WT, MDC1  � / �  , and DKO mice.  (A) Lymphocytes from WT, MDC1  � / �  , 53BP1  � / �  , and 
DKO mice. Numbers in each quadrant indicate percentage of the total population. (B and C) Spontaneous tumor incidence and spectrum in WT ( n  = 19), 
MDC1  � / �   ( n  = 20), and DKO ( n  = 27) mice for up to 21 mo were determined. The asterisk denotes signifi cant difference from WT (tumor incidence in 
MDC1  � / �   mice compared with WT mice, P = 7.6  ×  10  � 6 ; incidence in DKO mice compared with WT, P = 1.26  ×  10  � 9 ). (D) Representative pictures of 
lymphoma and lung cancer from MDC1  � / �   and DKO mice.   
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tion, whereas MDC1 foci formation remained intact ( Fig. 5 B ). 

On the other hand, RNF8 foci formation is dependent on MDC1 

( Fig. 5 C ), suggesting the existence of an MDC1 – RNF8 – 53BP1 

pathway for the accumulation of 53BP1 at or near the sites of 

DNA damage. 

sites for downstream factors, such as BRCA1 and 53BP1 

( Huen et al., 2007 ;  Kolas et al., 2007 ;  Mailand et al., 2007 ; 

 Wang and Elledge, 2007 ). To confi rm these studies, we gener-

ated RNF8  � / �   mice and isolated MEFs from RNF8  � / �   mice. 

Loss of RNF8 resulted in the failure of 53BP1 foci forma-

 Figure 4.    DKO MEFs do not have more severe defects in ATM activation and G2/M checkpoint activation.  (A and B) ATM, Chk1, and Chk2 activation in 
wild-type (WT), MDC1  � / �  , and double knockout (DKO or MDC1/53BP1  � / �  ) MEFs. MEFs of the indicated genotypes were irradiated at the indicated doses 
and harvested 1 h later (A) or irradiated (2 Gy) and harvested at different time points (B). Cell extracts were then blotted with the indicated antibodies. 
(C) MEFs were left untreated or irradiated (2 Gy). 1 h later, cells were stained for antiphospho-H3 antibodies, and mitotic populations were determined 
by FACS. Error bars represent SEM.   
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 Figure 5.    MDC1 regulates 53BP1 foci formation and phosphorylation.  (A – C) MEFs of the indicated genotypes were irradiated (10 Gy), and foci forma-
tion of MDC1, 53BP1, RNF8, and  � H2AX was determined by immunofl uorescence. (D) MDC1 +/+  and MDC1  � / �   MEF cells were irradiated (2 Gy), and, 
1 h later, 53BP1 was immunoprecipitated and blotted with the indicated antibodies. (E) Proposed model of the regulation of 53BP1 phosphorylation and 
localization by MDC1. Bars, 10  μ M.   
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 Our studies on organism development and tumorigenesis 

further highlight the fact that genomic instability is a driving 

force of tumorigenesis, supporting the data that many DDR fac-

tors function as potent tumor suppressors. 53BP1 has been show 

to function as a tumor suppressor in mice ( Ward et al., 2003; 

Morales et al., 2006 ), whereas our data are the fi rst to suggest a 

role for MDC1 in tumor suppression. A recent study showed the 

loss of MDC1 expression in breast and lung cancer samples, 

supporting a potential role of MDC1 in tumor suppression in 

humans ( Bartkova et al., 2007 ). However, MDC1 mutations have 

not yet been identifi ed in human cancer samples. We did not 

fi nd that loss of both MDC1 and 53BP1 signifi cantly increased 

tumor incidence compared with MDC1 KO mice. Interestingly, 

the loss of MDC1 and 53BP1 is mostly mutually exclusive in 

human cancer samples ( Bartkova et al., 2007 ). These results in-

dicate that the loss of either MDC1 or 53BP1 is suffi cient for 

tumorigenesis, and the loss of both does not provide an overt 

additional advantage for tumor formation. Collectively, our studies 

clearly establish MDC1 as a tumor suppressor and an upstream 

regulator of 53BP1 in the DDR pathway. 

 Materials and methods 
 Generation of 53BP1/MDC1 DKO mice, RNF8-defi cient mice, and MEFs 
 MDC1 +/ �   female mice ( Lou et al., 2006 ) were bred with 53BP1  � / �   male 
mice ( Ward et al., 2003 ) to generate 53BP1 +/ �   MDC1 +/ �   offspring. Dou-
ble heterozygous females were then bred back to 53BP1  � / �   males to gen-
erate 53BP1  � / �   MDC1 +/ �   offspring, which were used for all subsequent 
breeding. Mice were observed daily for signs of poor health, and mori-
bund mice were killed and screened for tumors in accordance with Mayo 
Foundation Institutional Animal Care and Use Committee guidelines. 

 For the generation of RNF8-defi cient mice, two embryonic stem cell 
lines, RRR260 and PT238, were purchased from Bay Genomics. In the 
RRR260 embryonic stem cell line, the  RNF8  gene was disrupted by a neo 
gene selection cassette inserted between transcripted exon 4 to exon 5 of 
 RNF8 . In the PT238 cell line, a neo cassette was inserted between tran-
scripted exon 5 to exon 6. The exact insertion sites were mapped by geno-
mic PCR and DNA sequencing. Both embryonic stem cell lines were 
injected into C57BL/6 blastocysts to generate two independent chimeric 
mouse lines. The chimeric mice were then crossed back with C57BL/6 
mice to obtain RNF8 +/ �   mice, which were used for subsequent breeding to 
generate two independent RNF8  � / �   mice lines. Both RNF8  � / �   mice lines 
show identical phenotypes. All MEFs were generated from embryonic day 
13.5 or 14.5 embryos using standard procedures. 

 Metaphase spreads 
 Passage 1 MEFs were left unirradiated or were treated with 1 Gy and then 
incubated with 50 ng ml  � 1  colcemid for 3 – 4 h. Cells were collected, 
washed with PBS, resuspended in 75 mM KCl, and incubated at room tem-
perature for 15 min. Cells were fi xed in Carnoy ’ s solution (75% methanol 
and 25% acetic acid), and 15- μ l aliquots were dropped onto slides and 
stained with 5% Giemsa solution. Metaphase spreads were observed us-
ing a microscope (Eclipse 80i; Nikon) with a 40 ×  NA 1.3 oil objective 
lens at room temperature. Spreads were photographed and analyzed us-
ing a camera (Spot 2 Megasample; Diagnostic Instruments, Inc.) and Spot 
software 4.6 (Diagnostic Instruments, Inc.). 

 Immunofl uorescence 
 Cells were washed with PBS, incubated in 3% PFA for 12 min, and perme-
abilized in 0.5% Triton X-100 solution for 5 min at room temperature. 
Samples were blocked with 5% goat serum and incubated with primary 
antibody for 60 min. Samples were washed and incubated with secondary 
antibody (FITC and rhodamine labeled) for 60 min. Cells were then stained 
with DAPI to visualize nuclear DNA. The coverslips were mounted onto 
glass slides with antifade solution and visualized using an Eclipse 80i 
fl uorescence microscope with a 60 ×  NA 1.3 oil objective lens at room 
temperature. Spreads were photographed and analyzed using a Spot 2 
Megasample camera and Photoshop software (Adobe). 

 We further investigated whether MDC1 regulates 53BP1 

phosphorylation. 53BP1 is phosphorylated at S25/29 by ATM 

after DNA damage, and the phosphorylation of S25 has been 

shown to be important for the binding of Pax transactivation 

domain – interacting protein and proper DDR ( Munoz et al., 2007 ). 

As shown in  Fig. 5 D , 53BP1 phosphorylation at S25/29 is de-

fective in MDC1  � / �   cells, suggesting that MDC1 also regulates 

53BP1 phosphorylation after DNA damage. Collectively, our 

results suggest that MDC1 and 53BP1 act in the same molecu-

lar pathway of the DDR, and MDC1 is an upstream regulator of 

53BP1 by regulating 53BP1 phosphorylation and foci forma-

tion after DNA damage. 

 MDC1 and 53BP1 are two important mediator proteins of 

the DDR pathway. Our observations indicate that the phenotypes 

of MDC1  � / �   and DKO mice are substantially milder than that of 

ATM  � / �   mice, suggesting that it is unlikely that MDC1 and 

53BP1 are critical for ATM activation. Concurrently, our studies 

of DDR (radiosensitivity, DNA repair, and genomic stability) in-

dicate that the phenotypes of DKO mice and cells mostly resem-

ble those of MDC1 KO mice; this is in contrast to  scid /Rad54  � / �   

mice that showed a drastic increase in radiosensitivity compared 

with  scid  or Rad54  � / �   mice ( Essers et al., 2000 ). Although a role 

in nonhomologous end joining and HR by 53BP1 and MDC1, 

respectively, has been suggested ( Xie et al., 2007 ), it is possible 

that 53BP1 and MDC1 only play a supporting role in these pro-

cesses, which were not obvious in our in vivo studies. 

 We have shown that MDC1 regulates 53BP1 localization to 

the sites of DNA damage and 53BP1 phosphorylation at S25/29, 

which is necessary for the correct phosphorylation of both Chk2 

and BRCA1 and subsequent checkpoint activation. Therefore, 

MDC1 might regulate these signaling events partially through 

its ability to control 53BP1 phosphorylation. Using MEFs from 

MDC1  � / �   and RNF8  � / �   mice, we show that 53BP1 localization 

to the sites of DNA damage requires RNF8, which, in turn, re-

quires MDC1. These results support several recent studies dem-

onstrating that MDC1 recruits RNF8 to the sites of DNA damage 

and RNF8, in turn, ubiquitinates H2AX, H2A, and probably other 

substrates at the sites of DNA breaks ( Huen et al., 2007 ;  Kolas 

et al., 2007 ;  Mailand et al., 2007 ;  Wang and Elledge, 2007 ). 

Ubiquitinated H2AX, H2A, or other RNF8 substrates would then 

recruit BRCA1 and 53BP1. BRCA1 is proposed to bind ubiq-

uitinated RNF8 substrates indirectly through a mediator protein, 

Rap80, which has an ubiquitin-binding domain ( Kim et al., 2007 ; 

 Sobhian et al., 2007 ;  Wang et al., 2007 ). However, Rap80 is not 

required for 53BP1 foci formation, suggesting that an unidenti-

fi ed factor mediates the binding of ubiquitinated protein and 

53BP1. Therefore, we propose an H2AX – MDC1 – RNF8 path-

way, which is distinct from methylated H3/H4 that also regulates 

53BP1 foci formation ( Fig. 5 E ). It is not clear why cells use two 

different mechanisms to regulate the localization of 53BP1 and 

whether these two mechanisms relate to each other. The fact that 

53BP1 but not MDC1 is essential for CSR and that 53BP1  � / �   

cells respond differently from MDC1  � / �   cells to MMC suggest 

that 53BP1 does have functions independent of MDC1. It is 

possible that the mode of 53BP1 recruitment is specifi c to the 

functions of 53BP1. These issues need to be further clarifi ed 

in the future. 
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 Western blotting 
 Cell lysates were prepared and Western blots were performed using stan-
dard protocols. Phospho-ATM antibodies were obtained from Rockland, 
and Chk1 and phospho-Chk1 antibodies were purchased from Cell Signal-
ing Technology. Anti – mouse ATM antibodies were generously provided by 
Y. Shiloh (Tel Aviv University, Tel Aviv, Israel). 

 The G2/M checkpoint assay 
 Cells were irradiated (2 Gy) and were harvested 1 h later. Cells were then 
fi xed and stained with antiphospho-H3 antibodies (Cell Signaling Technology). 
Mitotic population (mitotic index) was determined by FACS analysis. 

 Online supplemental material 
 Fig. S1 shows that DKO MEFs do not have more severe defects in the ATM-
 dependent DNA damage signaling pathway. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200801083/DC1. 
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