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BIOACTIVITIES AND MAJOR CONSTITUENTS OF METABOLITES PRODUCED BY 

ENDOPHYTIC FUNGI FROM NERIUM OLEANDER 

WU-YANG HUANG, YI-ZHONG CAI , HAROLD CORKE, KEVIN D. HYDE, AND MEI SUN 

___________________________________________________________________________ 

Wu-Yang Huang (Department of Zoology, The University of Hong Kong, Pokfulam 

Road, Hong Kong, PR China ), Yi-Zhong Cai (Department of Botany, The University 

of Hong Kong, Pokfulam Road, Hong Kong, PR China), Harold Corke (Department 

of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China), 

Kevin D. Hyde (Centre for Research in Fungal Diversity, Department of Ecology 

and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, PR 

China), and Mei Sun (corresponding author, Departments of Botany and Zoology, 

The University of Hong Kong, Pokfulam Road, Hong Kong, PR China; E-mail: 

meisun@hku.hk) BIOACTIVITIES AND MAJOR CONSTITUENTS OF METABOLITES 

PRODUCED BY ENDOPHYTIC FUNGI FROM NERIUM OLEANDER. Economic Botany 

Diverse endophytes exist within plant aerial tissues, which constitute a rich 

bioresource for exploring new natural products. Here we investigate fungal 

endophytes from a medicinal plant, Nerium oleander L. for antioxidant capacity, 

xanthine oxidase inhibition, antimicrobial activity, and total phenolic content (TPC). 

The total antioxidant capacities and TPC of the fungal cultures ranged from 9.59 to 

150.8 μmol trolox/100 ml culture, and from 0.52 to 13.95 mg gallic acid/100 ml 

culture, respectively. A fungal strain Chaetomium sp. showed the strongest 

antioxidant capacity, contained the highest level of phenolics, and inhibited xanthine 

oxidase activity. A positive correlation was found between antioxidant capacity and 

TPC in the tested samples. The major bioactive constituents of the fungal cultures 

were preliminarily identified as phenolics (e.g. phenolic acids and their derivatives, 

flavonoids) and volatile and aliphatic compounds by LC-ESI-MS and GC-MS. This 

study shows that the endophytic fungi associated with N. oleander are a potential 

bioactive resource.  

 

Key Words: antioxidant activity; antimicrobial activity; endophytic fungi; Nerium 

oleander; total phenolic content; xanthine oxidase inhibition.  
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Recent studies have shown that fungal endophytes are ubiquitous in plant species (e.g., 

Petrini et al. 1982; Clay 1988; Espinosa-Garcia and Langenheim 1990; Schulz et al. 1993; 

Fisher 1996; Faeth and Hammon 1997; Huang et al. n.d.). Endophytic fungi infect and inhabit 

primarily the aerial tissues of the host plant without causing detectable symptoms. The 

relationships between endophytes and their host plant are thought to be symbiotic, such as 

that endophytes obtain nutrients and protection from the host but contribute to effective host 

defense against pathogens, herbivores or abiotic stress (Saikkonen et al. 1998; Clay and 

Holah 1999; Redman et al. 2002; Arnold et al. 2003). Globally, there are at least one million 

species of endophytic fungi in all plants (Dreyfuss and Chapela 1994; Ganley et al. 2004), 

which can potentially provide a wide variety of structurally unique, bioactive natural products 

such as alkaloids, benzopyranones, chinones, flavonoids, phenols, steroids, terpenoids, 

tetralones, xanthones, and others (Tan and Zou 2001). 

As part of our ongoing efforts towards finding novel antioxidant and antimicrobial agents, 

and other bioactive chemicals from natural resources, we investigated the secondary 

metabolites of endophytes and their host plants. Nerium oleander L. (Apocynaceae), a 

traditional Chinese medicinal plant, is a small evergreen tree of 2-5 m in height with a wide 

geographical and ecological distribution (Fu et al. 2005). This plant possesses cardiotonic, 

antibacterial, antileprotic, anti-inflammatory, anticancer, and antiplatelet aggregation 

activities, insecticidal activity, mammalian cytotoxicity, and depressants of the central nerve 

system (Begum et al. 1999; Huq et al. 1999; EI-Shazly et al. 2000; Fu et al. 2005). Various 

compounds have been reported in connection with these biological activities, such as 

cardenolides (oleanderin, neriantin, adynerin, deacetyloleanerin, neriifolin), triterpenoidal 

saponins, oleanderol, rutin, dambonitol in leaves; odorosides (A, B, D, F, G, H, K) in barks; 

triterpene, steroidal cardenolide, volatile oil, stearic acid, oleic acid in roots; and gitoxigenin, 

uzarigenin, strospeside, odoroside H in flowers (Siddiqui et al. 1997; Huq et al. 1999; Ji 1999; 

EI-Shazly et al. 2000; Fu et al. 2005). However, the endophytes of this plant and their 

medicinal values have not been investigated.  

    In this study, we isolated a total of 42 endophytic fungi from healthy leaves and stems of N. 

oleander, evaluated the metabolites of 16 selected fungal strains for their antioxidant and   

antimicrobial activities, and compared these activities with the methanolic extract of the host 

plant, using the improved ABTS and classical Folin-Ciocalteau methods (Re et al. 1999; Cai 

et al. 2004). Furthermore, we estimated antimicrobial activities of the fungal metabolites and 

host plant extract using six test microbes and investigated the xanthine oxidase inhibition of 
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the host plant and a selected fungal strain Chaetomium sp. NoS3 with strongest antioxidant 

activity. In addition, we identified major bioactive principles in the samples by LC-MS and 

GC-MS. The research will be helpful for searching new effective antioxidants and antibiotics 

from endophytic fungi associated with this medicinal plant. 

 

MATERIAL AND METHODS 

COLLECTION OF PLANT MATERIAL 

    Fresh mature leaves and stems of N. oleander were collected from a healthy plant grown in 

Kadoorie Farm and Botanic Garden, Hong Kong, in March 2005. The fresh samples were 

taken to the laboratory and treated within 8 hr.  

 

CHEMICALS AND REAGENTS 

    2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), xanthine, 

and xanthine oxidase were purchased from Sigma/Aldrich (St. Louis, MO), Folin-Ciocalteu 

reagent from BDH (Dorset, England), and Trolox (6-hydroxy-2,5,7,8-tetramethylchromate-2-

carboxylic acid) from Fluka Chemie AG (Buchs, Switzerland). Authentic standards, 

antibiotics, and other chemicals and reagents used in this study were obtained from 

Sigma/Aldrich. All the chemicals and reagents were of the analytical grade.  

 

ISOLATION AND IDENTIFICATION OF ENDOPHYTIC FUNGI 

    A total of 20 samples of both leaves and stems from N. oleander plants were first washed 

in running water. The leaves were cut into segments (5×5 mm), and stems were cut into 

pieces (10 mm in length). Surface sterilization and isolation of endophytic fungi followed a 

modified method of Schulz et al. (1993), and the details of the procedure were given in a 

previous study (Huang et al. n.d.). Identification of fungal strains was based on colony or 

hyphal morphology of the fungal culture, characteristics of the spores, and reproductive 

structures if these features were discernible (Wei 1979; Carmichael et al. 1980; Barnett and 

Hunter 1998).  

 

CULTIVATION OF ENDOPHYTIC FUNGI 

    The fresh mycelia (grown on PDA plates at 28˚C for 3-6 days) of 16 selected endophytic 

fungi with different morphology were inoculated in 100 ml flasks containing 50 ml of the 
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broth (sucrose, 30 g; NaNO3, 3 g; K2HPO4, 1 g; yeast extract, 1 g; KCl, 0.5 g; MgSO4·7H2O, 

0.5 g; FeSO4, 0.01 g; H2O, 1,000 ml), followed by incubation with a shaking incubator 

(Daihan Labtech CO., LTD) at 140 rpm for 15 days at 28˚C. The culture broth of each 

endophyte was centrifuged at 1,670 g for 10 min and filtered using a Millipore filter with a 

0.22-μm nylon membrane under vacuum at ~23˚C to remove mycelium. The filtrate sample 

was stored at 4˚C until use within 24 hr. 

 

EXTRACTION OF HOST PLANT SAMPLE  

    The leaves and stems of N. oleander were air-dried in a ventilated oven at 40˚C to constant 

weight and ground into fine powder using a Kenwood Multi-Mill (Kenwood Ltd., UK) and 

passed through a 24-mesh sieve. The sample (2 g) was extracted with 50 ml of 80% methanol 

at room temperature for 24 hr in a water bath shaker (Shaking Bath 5B-16) (Techne, Ltd., 

UK). The extract was filtered using a Millipore filter with a 0.22-μm nylon membrane under 

vacuum at room temperature and stored at 4˚C (Cai et al. 2004). 

 

TOTAL ANTIOXIDANT CAPACITY ASSAY 

    Total antioxidant capacity was assayed with a Spectronic Genesys 5 spectrophotometer 

(Milton Roy, NY) using the improved ABTS method (Cai et al. 2004). The results were 

expressed in terms of trolox equivalent antioxidant capacity (TEAC), i.e., μmol trolox/100 ml 

culture of endophytic fungus or mmol trolox/100 g dry weight (DW) of plant. All tests were 

performed in triplicate.  

 

XANTHINE OXIDASE INHIBITION ASSAY 

    The xanthine oxidase activity with xanthine as the substrate was measured using the 

method given in Noro et al. (1983) with some modification (Kweon et al. 2001). The fungal 

strain Chaetomium sp. NoS3 and the host plant N. oleander were both investigated for 

xanthine oxidase inhibition with allopurinol, rutin, and chlorogenic acid co-tested as positive 

control. Xanthine oxidase inhibitory activity was expressed as the percentage of xanthine 

oxidase inhibition in the above assay system, calculated as (1 - B/A) × 100, where A and B 

were the activity of the enzyme without and with the test material, respectively. The IC50 

value, 50% inhibitory concentration of test sample, was calculated by linear regression 

analysis, and expressed as μg dry powder weight of plant tissue for N. oleander or freeze-
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dried metabolite powder weight for endophyte Chaetomium sp. NoS3 culture (μg/ml). All 

determinations were conducted in duplicate. 

 

ANTIMICROBIAL ASSAY 

    Antimicrobial activities were assessed using five bacteria (Escherichia coli, Bacillus 

cereus, Salmonella annatum, Staphylococcus aureus, and Listeria monocytogenes), and one 

fungus (Candia krusei). These test microbes were obtained from the Department of 

Microbiology of the University of Hong Kong. The minimum inhibitory concentration (MIC) 

of the samples for each test organism was determined using a modified liquid dilution method 

performed in 96 well micro-trays (NCCLS 1993; Dharmaratne et al. 1999; Mosaddik et al. 

2004). The freeze-dried powder of plant extract or fungal culture was dissolved in the 

phosphate buffer saline (PBS; pH 7.0-7.2) and sterilized by filtration through 0.22 μm 

sterilizing Millipore express filter (Millex-GP, Bedford). The same amount of test organisms 

in Mueller Hinton Broth (~106 colony forming unit (CFU)/ml) was added to a two-fold serial 

dilutions of the reconstituted extract (50 μl) of each sample to give a final volume of 100 μl. 

Gentamicin and ketoconazole were co-assayed as positive control for antibacterial and 

antifungal assays, respectively, and PBS was used as negative control. After incubation at 

37°C for 18–24 h (bacteria) or 28°C for 24-48 h (fungus), the plates were examined for 

growth of the organisms. The lowest concentration of a tested sample or compound was 

designated as MIC, at which no visual turbidity due to microbial growth was shown. All tests 

were performed in duplicate. 

 

DETERMINATION OF TOTAL PHENOLIC CONTENT 

Total phenolic content (TPC) was estimated using the Folin-Ciocalteu colorimetric method 

as described by Cai et al. (2004) with minor modification. The appropriate dilutions of the 

samples (0.2 ml) were oxidized with 0.5 N Folin-Ciocalteu reagent for 4 min at room 

temperature. Then the reaction was neutralized with saturated sodium carbonate (75 g/l). The 

absorbance of the resulting blue color was measured at 760 nm with spectrophotometer after 

incubation in dark for 2 hr at room temperature. Quantification was done on the basis of the 

standard curve of gallic acid. The results were expressed as gallic acid equivalent (GAE), i.e., 

mg gallic acid/100 ml culture or g gallic acid/100 g DW. All tests were performed in 

triplicate. 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GVW-4CRPN61-F&_coverDate=07%2F20%2F2004&_alid=395509714&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=20441&_sort=d&view=c&_acct=C000003298&_version=1&_urlVersion=0&_userid=28301&md5=98031caf7d67e2f7d678d491106d43e1#bib14#bib14
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LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC-MS) 

    The LC-MS-2010EV system used in this study consisted of a LC-20AD binary pump, a 

SIL-20AC auto-sampler, a photodiode-array detector, a central controller, and a single 

quadrupole MS detector with electrospray ionization (ESI) interface (Shimadzu, Japan). The 

analytical column used was VP-ODS C18 column (250 × 2.0 mm, 4.6 µm) (Shimadzu, Japan). 

LC conditions were as follows: solvent A, 0.1% formic acid, and solvent B, MeOH with 

0.1% formic acid. A gradient elution used was 0-5 min, 5% B; 5-15 min, 5-30% B; 15-40 

min, 30-40% B; 40-60 min, 40-50% B; 60-65 min, 50-55% B; 65-90 min, 55-100% B; 90-95 

min, 100% B; 95-96 min, 100-5% B; 96-100 min, 5% B. The flow rate was 0.2 ml/min, 

injection volume was 5-10 μl, and detection was at 280 nm. The LC elute was introduced 

directly into the ESI interface without flow splitting. The scan range of ESI-MS was m/z 160-

800. The ESI voltage was 4.5 kV in positive ion mode and 3.5 kV in negative ion mode. A 

nebulizing gas of 1.5 l/min and a drying gas of 10 l/min were applied for ionization using 

nitrogen in both cases. 

 
GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) 

 
    A GCMS-QP2010 system (Shimadzu, Japan) was employed for analysis of volatile and 

aliphatic compounds. A CP-WAX 52 CB column (50 m × 0.20 mm, ø with 0.2 µm film 

thickness) was used with helium as a carrier gas at a flow rate of 1 ml/min and injection 

volume was 1 μl. The GC oven temperature was kept at 40˚C for 0.5 min and programmed to 

150˚C at a rate of 6˚C/min, to 250˚C at a rate of 8˚C/min, and kept constant at 250˚C for 8 

min. Splitless injections were done with both headspace and liquid injection methods. The 

MS was operated in electron ionization mode (70 eV) with a scan range of m/z 40-600. The 

interface and ion source temperatures were 260˚C and 200˚C, respectively. Library search 

was carried out using NIST and SZTERP libraries. 

 

STATISTICAL ANALYSIS 

    The results of TEAC and TPC in Table 2 were calculated as mean ± standard deviation 

(SD) in this study. Differences between mean values were compared using the least 

significant difference (LSD) calculated with the Statistical Analysis System (SAS Institute, 

Inc, Cary, NC). Coefficients of determination (R2) were calculated using Microsoft Excel 

2000.  
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RESULTS 

ISOLATION AND IDENTIFICATION OF ENDOPHYTIC FUNGI  

    A total of 42 endophytic fungal strains were isolated from N. oleander and classified into 

14 different taxa. Twenty-two of the strains isolated from leaf segments belong to seven 

different taxa, and 20 strains isolated from stem pieces belong to nine different taxa (two of 

them were the same as those in the leaves) (Table 1). Hyphomycete sp. and Torula sp. 

colonized both leaves and stems of N. oleander. Chaetomium sp., Cladosporium sp., 

Colletotrichum sp., and Phoma spp. were found in the stems, and Ascomycete sp. was only 

found in the leaves. Half of the fungal stains (50% relative frequency) lacking sporulating 

structures were grouped into mycelia sterilia spp. Both leaves and stems were colonized by 

mycelia sterilia: they showed different cultural characters and were grouped into six 

morphosepcies. 

 
TOTAL ANTIOXIDANT CAPACITY AND PHENOLIC CONTENT 

    The improved ABTS method has been widely used to assess total antioxidant capacity of 

crude extracts in both hydrophilic and lipophilic systems in vitro (Re et al. 1999; Cai et al. 

2004; Surveswaran et al. n.d.). Therefore, this method was also employed in the present study 

to assay total antioxidant capacity of the methanolic extract from leaves and stems of N. 

oleander and metabolites of sixteen endophytic fungal cultures (Table 2). The host plant N. 

oleander showed medium antioxidant activity with the value of 17.89 mmol trolox/100 g DW. 

The TEAC values of the 16 endophytic fungi cultures exhibited a wide variation ranging 

from 9.59 to 150.8 μmol trolox/100 ml culture. The mean value of all the tested endophytic 

fungi was 36.55 μmol trolox/100 ml culture. Most of the fungal strains (75%) showed 

moderate antioxidant capacities (20 to 50 μmol trolox/100 ml culture). The strain NoS3 

(Chaetomium sp.) possessed the highest antioxidant capacity (150.8 μmol trolox/100 ml 

culture). In contrast, the control broth without endophytic fungi showed nearly no activity 

(1.28 μmol trolox/100 ml). 

    Total phenolic contents of the metabolites of 16 endophytic fungal strains and their host 

plant N. oleander are shown in Table 2. The host plant contained 3.07 g gallic acid/100 g DW, 

and the 16 fungal strains showed different total phenolic contents ranging from 0.52 to 13.95 

mg gallic acid/100 ml culture (mean = 2.64 mg/100 ml). Most endophytic fungi had medium 

TPC values (1.0-4.0 mg gallic acid/100 ml). The strain NoS3 had the highest TPC value 
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(13.95 mg gallic acid/100 ml culture). The TPC value of control broth without endophytic 

fungi was close to zero (0.02 mg/100 ml). 

    A highly positive linear correlation (R2 = 0.9406) was found between the total antioxidant 

capacity (y) and total phenolic content (x) in the 16 fungal strains (y = 10.078 x + 9.9918). 

This indicated that the phenolic compounds in the endophytic fungi significantly contributed 

to their antioxidant activity. Previous studies also revealed that phenolic compounds are 

major antioxidant constituents in medicinal plants, vegetables, fruits, and spices (Zheng and 

Wang 2001; Cai et al. 2004; Shan et al. 2005; Surveswaran et al. n.d.). Our investigation of 

endophytic fungi revealed the same relationship as found in plants. 

 

XANTHINE OXIDASE INHIBITION ACTIVITY 

    Xanthine oxidase plays an important role in the metabolism of xanthines and it is closely 

related to hyperuricemia, therefore inhibition of xanthine oxidase is an effective therapeutic 

approach for treating gout, kidney stones and myocardial ischemia (Li et al. 1999; Kong et al. 

2000; Kweon et al. 2001). The fungal strain Chaetomium sp. NoS3 and its host N. oleander 

were both tested for their xanthine oxidase inhibition activities. The methanolic crude extract 

of N. oleander was inhibitory against xanthine oxidase with an IC50 value of 218 μg/ml, 

while the crude culture of Chaetomium sp. NoS3 inhibited the enzyme with an IC50 value of 

109.8 μg/ml. The IC50 values of three pure standards (allopurinol, rutin, and chlorogenic acid) 

co-assayed in this study as positive control were shown to be 3.1 μg/ml, 30.1 μg/ml, 27.2 

μg/ml, respectively. 
 

ANTIMICROBIAL ASSAY 

    The host plant N. oleander and the 16 endophytic fungal metabolites were tested for in 

vitro antimicrobial actions against five pathogenic bacteria and one pathogenic fungus (Table 

3). The host plant was moderately inhibitory to C. krusei, S. aureus, E. coli, L. 

monocytogenes, B. cereus, and S. annatum with MICs of 1.56, 6.25, 12.5, 25, 25, and 

25mg/ml, respectively. Most of the tested fungi isolated from N. oleander possessed better 

antibacterial and antifungal activities than the host plant. Six of the fungal strains (NoL3, 

NoL14, NoS3, NoS7, NoS10, and NoS16) inhibited the growth of all six test microbes (MICs 

≤ 10 mg/ml). Of the six endophytes, NoS16 exhibited strongest antibacterial activity against 

L. monocytogenes with an MIC at 0.08 mg/ml, followed by NoS12 and NoS7 with MICs at 

0.16 and 0.31 mg/ml, respectively. Furthermore, 11 of the 16 endophytes also possessed good 
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antifungal activities against C. krusei (MICs ≤ 10 mg/ml), and four strains (NoL12, NoS3, 

NoS15, and NoS16) exhibited the strongest antifungal activity (MIC = 1.25 mg/ml). Positive 

control co-assayed gentamicin was antibacterial against L. monocytogenes, B. cereus, S. 

aureus, S. annatum, and E. coli with MICs of 1.22, 2.44, 9.75, 9.75, and 9.75 μg/ml, 

respectively, and ketoconazole was antifungal against C. krusei at 7.81 μg/ml.  

 

PRIMARY IDENTIFICATION OF BIOACTIVE CONSTITUENTS FROM ENDOPHYTIC METABOLITES 

AND HOST PLANT EXTRACT 

    Preliminary identification of major types of phenolic compounds by LC-ESI-MS and other 

bioactive principles (volatile and aliphatic constituents) by GC-MS showed that major types 

of bioactive compounds in the host plant and endophytic fungal metabolites included 

phenolic acids and their derivatives, flavonoids, phenolic terpenoids, volatile constituents, 

and aliphatic compounds. Some representative compounds identified in this study are given 

in Table 2. Chlorogenic acid (5-O-caffeoylquinic acid), di-O-caffeoylquinic acid, and rutin 

were identified to be dominant phenolic compounds in N. oleander, and phenolic acid 

derivatives and terpenoids were detected in its endophytic fungal cultures NoL10, NoL11, 

NoL13, NoS13, and NoS16 (Fig. 1 and Table 2). Aliphatic compounds (9-octadecenoic acid 

and 9,12-octadecadienoic acid) and terpenoids were also found in the crude extract of N. 

oleander. Many aliphatic compounds (e.g., hexadecanoic acid methyl ester, octadecanoic 

acid methyl esters, octadecadienoic acid methyl esters) and volatile fermented constituents 

(e.g., acetol, 2,3-butanediol) were also detected in some crude cultures of the endophytic 

fungi (Fig. 2 and Table 2).  

 
DISCUSSION 

 
    Endophytes have been found in most taxa in the plant kingdom including algae, mosses, 

ferns and vascular plants and are potential sources of novel natural products for exploitation 

for medicinal, agricultural and industrial use (Strobel and Long 1998; Arnold et al. 2001; Tan 

and Zou 2001; Schulz et al. 2002). In this study, 42 endophytic fungal strains isolated from N. 

oleander were grouped into 14 different taxa, including Ascomycete sp., Chaetomium sp., 

Cladosporium sp., Colletotrichum sp., Hyphomycete sp., mycelia sterilia spp. (6 species), 

Phoma spp. (2 species), and Torula sp. Most of the taxa were common endophytic fungi 

(Photita et al. 2005; Zou and Tan 2000). Cultures lacking reproductive structures or 

distinctive features were grouped into morphospecies based on similar cultural characters. 

Morphospecies cannot be identified to species or genus level without molecular analysis, 
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which is a common problem concerning the identification of endophytes (Arnold et al. 2000; 

Gamboa and Bayman 2001; Wiyakrutta et al. 2004; Wang et al. 2005).  

Antioxidants are thought to be highly profitable in the management of reactive oxygen 

species-mediated tissue impairments. It has been reported that many antioxidant compounds 

possess anti-inflammatory, antiatherosclerotic, antitumor, antimutagenic, anticarcinogenic, 

antibacterial, or antiviral activities to a greater or lesser extent (Halliwell 1994; Mitscher et al. 

1996; Owen et al. 2000; Sala et al. 2002; Cozma 2004). Some antioxidant compounds 

isolated from endophytic fungi and their antioxidant activities have also been reported 

(Harper et al. 2003; Song et al. 2005). The improved ABTS method (Re et al. 1999; Cai et al. 

2004; Shan et al. 2005), a rapid and reliable test of total antioxidant capacity in vitro for 

crude extracts of plants, was successfully used in the present study to evaluate endophytic 

fungal cultures as well as the host plant. The results showed that most endophytic fungi 

isolated from N. oleander exhibited antioxidant capacity to some extent. The fungal strain 

Chaetomium sp. NoS3 with the strongest antioxidant activity was further screened for 

bioactive compounds.  

The phenolic compounds (e.g., phenolic acids and their derivatives, flavonoids, and 

phenolic terpenoids) and certain volatile and aliphatic constituents identified in the present 

study might be responsible to some extent for the total antioxidant capacity of the host plant 

and the isolated endophytic fungi. Chlorogenic acid, phenolic acid derivatives, and rutin 

possess a wide range of biological activities, such as antioxidant, antimutagenic, 

immunomodulatory, and antiviral activity (Li et al. 2005; dos Santos et al. 2005; Yu et al. 

2005). Biogenic volatile organic compounds are involved in multiple inter-organism 

interactions and are also important in the flavor and fragrance, pesticide, and perfumery 

industries (Zini et al. 2003), such as acetol (1-hydroxy-2-propanone) which has applications 

as a pharmaceutical and dye intermediate (Cameron and Cooney 1986) and recently has been 

reported as a potent inhibitor of urease (Tanaka et al. 2004). Aliphatic constituents are 

frequently encountered as structural subunits in many natural products and some also have 

shown to be highly toxic towards fungi, bacteria, and mammalian cells, and to display 

neurotoxic, anti-inflammatory, nematicidal activities and anti-platelet-aggregatory effects 

(Nogueira et al. 1996; Christensen and Brandt 2006). Hexadecanoic acid methyl ester, an 

aggregation pheromone was reported attractive to both males and virgin females (Takacs et al. 

2001). Some of these bioactive compounds were detected in the host plant N. oleander and/or 

its endophytic fungi. 
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Many antibiotics have encountered drug resistance or cause severe adverse drug reactions, 

and there is an urgent need to search for new antibiotics (Rouveix 2003). Several recent 

studies (Ezra et al. 2004; Shiono et al. 2005; Shiono 2006) reported that novel compounds 

with antimicrobial activity were isolated from the cultured endophytic fungi. Wiyakrutta et al. 

(2004) also reported that endophytic fungi with anti-microbial, anti-cancer and anti-malarial 

activities were isolated from Thai medicinal plants. The present study shows that endophytic 

fungi isolated from N. oleander also have a wide range of antimicrobial activities. 

Xanthine oxidase is a key enzyme that catalyzes the oxidation of hypoxanthine or xanthine 

to uric acid. Therefore, inhibition of xanthine oxidase is an effective therapeutic approach for 

treating hyperuricemia (Li et al. 1999; Kweon et al. 2001). As the current clinical drug used 

to inhibit xanthine oxidase causes severe adverse effects, it is necessary to search for new 

inhibitors of the enzyme (Kong et al. 2000). Some flavonoids have been shown to be 

inhibitory against it (Nagao et al. 1999; Li et al. 1999), and endophytic naphthopyrone 

metabolites were obtained as the enzyme inhibitor by Song et al. (2004). In this study, we 

showed that the crude extract of N. oleander and the culture of Chaetomium sp. NoS3 could 

both inhibit the enzyme, indicating that they contain certain xanthine oxidase inhibitors. High 

levels of rutin, chlorogenic acid and its derivatives which have good inhibition of the enzyme 

activity were indeed detected in the crude extract of N. oleander (Fig. 1B). However, the 

related bioactive constituents in the crude culture of Chaetomium sp. NoS3 could not be 

identified by LC-ESI-MS and GC-MS. This could be due to their low quantity in the fungal 

culture, or other types of inhibitors of xanthine oxidase exist that are yet to be identified.    

Different bioactive compounds including phenolics normally possess specific 

chromatographic behavior and UV-vis spectral characteristics (Sakakibara et al. 2003; 

Santos-Buelga and Williamson 2003; Cai et al. 2004; Shan et al. 2005). In this study, only the 

major phenolic compounds from N. oleander and the 16 fungal metabolites were analyzed 

using LC-ESI-MS and compared with authentic phenolic standards and related literature data 

(Tan and Zou 2001; Sakakibara et al. 2003; Cai et al. 2004). Because of the diversity and 

complexity of the natural mixtures of bioactive compounds in the crude plant extract and 

fungal cultures, it is rather difficult to characterize every compound present and elucidate its 

structure in a single study. Further investigation is still needed to discover the 

unidentified/unknown bioactive constituents in the endophytic fungal isolates. 
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FIGURE LEGENDS  
 
Fig. 1. HPLC chromatograms (280 nm) and ESI-MS data of phenolics from (A) a typical 

endophytic fungus (NoL11) and (B) its host plant (N. oleander). Tentative identification of 

major peaks: (1), phenolic acid derivatives; (2) and (3), phenolic terpenoid (MW 310) and its 

isomer (MW 310); (4), unknown terpenoid (262); (5) and (6), chlorogenic acid (5-O-

caffeoylquinic acid) (MW 354) and its isomer (MW 354); (7), rutin (MW 610); (8), di-

caffeoylquinic acid (MW 516); (9), phenolic terpenoid (MW 534).  

 

Fig. 2. GC chromatograms of volatile and aliphatic compounds from two typical endophytic 

fungi (A) NoS16 and (B) NoL11, and (C) their host plant (N. oleander). Molecular weight 

and formula are noted for most peaks in the figure. Tentative identification of major peaks: 

(1), acetol (1-hydroxy-2-propanone); (2), hexadecanoic acid methyl ester; (3), 9-

octadecadienoic acid methyl ester; (4), 9,12-octadecadienoic acid methyl ester; (5) and (6), 

2,3-butanediol and its isomer; (7), 9-octadecenoic acid; (8), 9,12-octadecadienoic acid. 
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TABLE 1. FUNGAL TAXA AND THE NUMBER OF ISOLATED ENDOPHYTES FROM N. OLEANDER. 

Taxa Isolates in leaves Isolates in stems Relative frequency 
of isolation (%) a

Ascomycete sp. 1  2.38 
Chaetomium sp.  1 2.38 
Cladosporium sp.   2 4.76 
Colletotrichum sp.  1 2.38 
Hyphomycete sp. 2 3 11.9 
Mycelia sterilia spp. (14) (7) (50.0) 

  Mycelia sterilia sp. 1 9  21.4 
  Mycelia sterilia sp. 2 3  7.14 
  Mycelia sterilia sp. 3 1  2.38 
  Mycelia sterilia sp. 4 1  2.38 
  Mycelia sterilia sp. 5   5 11.9 
  Mycelia sterilia sp. 6  2 4.76 

Phoma spp.  (4) (9.52) 
Phoma sp. 1  2 4.76 
Phoma sp. 2   2 4.76 

Torula sp. 5 2 16.7 
Total  22 20 100 

a Relative frequency of isolation used for indicating species abundance was calculated as the 
number of identified fungal isolates of a taxon divided by the total number of endophytic 
fungal isolates (22 + 20 = 42) from the leaf segments and stem pieces (Photita et al., 2001). 
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TABLE 2. ANTIOXIDANT CAPACITY, TOTAL PHENOLIC CONTENT AND MAJOR CONSTITUENTS OF 16 SELECTED ENDOPHYTIC FUNGAL CULTURES AND 
THE HOST (N. OLEANDER) EXTRACT.  

Sample Taxa TEAC 
(μmol trolox/100 
ml ferment broth) 

TPC 
(mg gallic 

acid/100 ml 
ferment broth)

Major types (representative compounds) of phenolics and other 
constituents 

NoL3 Ascomycete sp. 42.73 ± 0.478 2.92 ± 0.074 Not identified 
NoL6 Mycelia sterilia sp. 1 37.42 ± 0.907 3.82 ± 0.110 Terpenoids, volatile compounds (acetol, 2,3-butanediol) 
NoL9 Mycelia sterilia sp. 2 10.50 ± 0.517 0.52 ± 0.024 Terpenoids, volatile compounds (acetol) 
NoL10 Hyphomycete sp. 23.89 ± 0.639 0.97 ± 0.028 Phenolic acid derivatives 
NoL11 Mycelia sterilia sp. 1 14.68 ± 0.157 1.46 ± 0.078 Terpenoids, volatile compounds (acetol, 2,3-butanediol) 
NoL12 Torula sp. 38.38 ± 0.860 2.65 ± 0.065 Volatile compounds (acetol) 
NoL13 Mycelia sterilia sp. 3 17.45 ± 0.266 2.19 ± 0.031 Phenolic acid derivatives, volatile compounds (acetol) 
NoL14 Mycelia sterilia sp. 4 26.98 ± 0.841 1.90 ± 0.069 Aliphatic compounds (hexadecanoic acid methyl ester, 7-

octadecenoic acid methyl ester) 
NoS3 Chaetomium sp. 150.8 ± 2.045 13.95 ± 0.109 Not identified 
NoS5 Cladosporium sp.   9.59 ± 0.121 0.64 ± 0.063 Volatile compounds (acetol) 
NoS7 Phoma sp. 2 26.80 ± 0.841 1.40 ± 0.064 Not identified 
NoS10 Phoma sp. 1 46.78 ± 0.429 2.67 ± 0.028 Aliphatic compounds (hexadecanoic acid methyl ester) 
NoS12 Colletotrichum sp. 37.10 ± 0.788 2.04 ± 0.072 Not identified 
NoS13 Mycelia sterilia sp. 6 42.51 ± 0.440 1.71 ± 0.028 Phenolic acid derivatives, volatile compounds (2,3-butanediol, 

acetol) 
NoS15 Torula sp. 30.07 ± 0.672 1.54 ± 0.032 Volatile compounds (acetol, 2,3-butanediol) 
NoS16 Mycelia sterilia sp. 5 29.07 ± 0.343 1.78 ± 0.018 Phenolic acid derivatives, volatile compounds (acetol), aliphatic 

compounds (hexadecanoic acid methyl ester, 9-octadecadienoic 
acid methyl ester, 9,12-octadecadienoic acid methyl ester) 

Mean  36.55 2.64  
LSD (p < 0.05) * 1.247 0.097  
Control broth 1.28 0.02  
N. oleander extract a      17.89 ± 0.010  3.07 ± 0.008 Phenolic acid (chlorogenic acid, di-caffeoylquinic acid), 

flavonoids (rutin), terpenoids, volatile compounds, aliphatic 
compounds (9-octadecenoic acid, 9,12-octadecadienoic acid) 

* LSD (p < 0.05), least significant difference, was used for comparison among means of various endophytic fungal cultures. 
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a mmol trolox /100 DW for TEAC and g gallic acid/100 DW for TPC. 
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TABLE 3. IN VITRO ANTIMICROBIAL ACTIVITIES OF ENDOPHYTIC FUNGAL METABOLITES 

AND THEIR HOST PLANT (N. OLEANDER) EXTRACT.  

 MIC (mg/ml) of test microbe a

Test sample 
Listeria 

monocytogenes 
Staphylococcus 

aureus 
Bacillus 
cereus 

Salmonella 
anatum  

Escherichia 
coli 

Candida 
krusei 

NoL3 0.63 2.50 10.0 5.00 5.00 2.50 
NoL6 >10 2.50 10.0 >10 >10 >10 
NoL9 >10 >10 >10 >10 >10 >10 
NoL10 10.0 2.50 >10 >10 >10 5.00 
NoL11 1.25 2.50 >10 10.0 >10 >10 
NoL12 2.50 1.25 >10 10.0 10.0 1.25 
NoL13 >10 >10 >10 >10 >10 10.0 
NoL14 5.00 5.00 10.0 10.0 10.0 2.50 
NoS3 5.00 1.25 10.0 10.0 10.0 1.25 
NoS5 >10 10.0 >10 >10 >10 >10 
NoS7 0.31 10.0 5.00 10.0 10.0 10.0 
NoS10 2.50 2.50 5.00 10.0 5.00 2.50 
NoS12 0.16 5.00 10.0 10.0 5.00 >10 
NoS13 1.25 >10 >10 >10 >10 2.50 
NoS15 0.63 1.25 >10 10.0 10.0 1.25 
NoS16 0.08 2.50 10.0 10.0 10.0 1.25 
N. oleander 25.0 6.25 25.0 25.0 12.5 1.56 
Positive control b  
gentamincin 1.22 9.75 2.44 9.75 9.75  n.d. c
ketoconazole n.d. n.d. n.d. n.d. n.d. 7.81 

a L. monocytogenes, S. aureus, B. cereus, S. annatum, and E. coli are bacteria, and C. 

krusei is a fungus. 
b  μg/ml for MIC of positive control. 
c  n.d., no determination. 

21 
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Fig. 1. 
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Fig. 2. 
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