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Abstract: - This paper presents a generalized motion and edge adaptive de-interlacing framework, which offers 
a structured way to develop de-interlacing algorithm. The framework encompasses many typical de-interlacing 
algorithms, ranging from simple interpolation based algorithms, to more complex edge dependent and motion 
adaptive algorithms. Based on this framework, we develop a new de-interlacing algorithm which is efficient 
and artifacts-free. The proposed algorithm was evaluated by five video sequences, namely, “Akiyo”, “Mother 
and Daughter”, “Silent”, “Foreman” and “Stefan”. Experimental results confirm that the proposed algorithm 
performs, both objectively and subjectively, much better than other similar algorithms. These promising 
results indicate that the proposed framework has good potential for realizing even better de-interlacing 
algorithms. 
 
Key-Words: - De-interlacing Methods, Motion Adaptive Interpolation, Edge Dependent Interpolation. 
 
1   Introduction 
Interlaced scanning technique has been exclusively 
adopted in television (TV) systems since the 
invention of TV over 70 years ago. It has been 
widely accepted as a practical technique with 
reasonable tradeoff among three factors: bandwidth, 
flicker, and resolution. The present-day technologies 
in communication and computing, however, are 
efficient and powerful enough to handle video 
sequence in the progressive scanning manner. As a 
result, recent advances in High Definition TV 
(HDTV) and Personal Computers (PCs) call for 
progressive scanning. To ensure interoperability 
between the interlaced scanning format in TV and 
the progressive scanning format in HDVT and PCs, 
the need for conversion between the two scanning 
format is increasing. This process of interlace-to-
progressive scanning conversion is called de-
interlacing. 
 
 An intuitive and trivial way for de-interlacing is 
to interleave the two consecutive fields back into a 
progressive frame. Since a time difference exists 
between the two fields, visual artifacts, such as the 
most appealing line crawling effect at moving edges 
as shown in Fig. 1, can severely degrade the visual 
quality of the reconstructed progressive frame. Over 
the last decade, many de-interlacing algorithms with 
different computational requirements and 
corresponding performances have been proposed to 

improve the visual quality of the de-interlaced 
progress frame. 
 
 De-interlacing algorithms in the literature can be 
broadly divided into three categories: spatial 
methods [1-2], motion adaptive methods [3-4], and 
motion compensation based methods [5-6]. Spatial 
methods are usually the simplest and the most 
efficient methods among the three categories of 
algorithms, which are favorable for hardware 
implementation. Essentially, spatial methods employ 
interpolation techniques, and exploit the correlation 
between vertically neighboring samples in a field 
when interpolating pixels. The simplest form of 
these algorithms is line doubling (or line repetition), 
which simply replicates the odd field to the even 
field in reconstructing the progressive frame. In a 
sense, this is equivalent to upsampling from only the 
odd field and hence it suffers from aliasing problem. 
As a result, it also introduces another visual artifact, 
jagged edge, although it can completely remove line 
crawling artifact. To deal with the aliasing problem, 
edge dependent interpolation technique [7] can be 
employed to interpolate the missing pixels from 
neighboring scan lines, such that the interpolated 
values are most visually aligned to edge 
orientations. However, this is applicable only when 
the edge orientations can be correctly estimated. The 
computational complexity, unfortunately, usually 
increases with the correctness of the estimation. 
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
 
Fig 1. (a) Progressive frame n, (b) Progressive frame n + 1, (c) 
Odd field of progressive frame n, (d) Even field of progressive 
frame n + 1, (e) Reconstructed progressive frame by 
interleaving the odd and even fields, (f) Enlarged portion in (e) 
showing line crawling effect. 

 
Motion adaptive methods, on the other hand, make 
the interpolation adaptive to motion as static regions 
can never suffer from the line crawling effect. They 
are considered to be superior to spatial methods in 
the sense that they preserve vertical resolution by 
interleaving the odd field and even field for static 
regions, while they sacrifice vertical resolution by 
interpolation only for moving regions. However, 
motion adaptive algorithms suffer from the 
switching artifact, when inaccurate motion detection 
leads to incorrect decision in switching between the 
interleaving and interpolation modes. 
 
 Motion compensation based algorithms are now 
being considered as the most advanced de-
interlacing algorithms. They employ the concept of 

motion compensation in video compression to 
compensate the inter-field motions between the odd 
and even fields. This requires very accurate motion 
estimation techniques to generate dense motion field 
in order to avoid artifacts inherent in motion 
compensation. This is again a highly computational 
intensive process, which does not seem to be 
economical for hardware implementation. As such, 
various kinds of artifacts can appear in the motion 
compensated field image due to incorrectly 
estimated motion field. To rectify this, post-
processing such as spatial and temporal filtering are 
usually required to suppress those artifacts, which 
further increase the computation burden. 
 
 Among these three classes of algorithms, spatial 
de-interlacing algorithms appear to be the most 
efficient ones, with inferior visual quality though. 
Motion compensation based algorithms, on the other 
hand, appears to be the most sophisticated ones 
while their computational demand drives them away 
from hardware implementation, especially when the 
demand of high resolution videos offsets the 
technological advancements in computing power 
and resources. Motion adaptive methods appear to 
be the most appropriate category of algorithms for 
de-interlacing as it offers reasonable visual quality 
with manageable computational requirements. As 
such, we revisit the problem of de-interlacing 
following the motion adaptive interpolation 
approach. Specifically, we first formulate a 
generalized framework for motion adaptive 
interpolation de-interlacing methods, and seek ways 
to suppress the switching artifact that arises from 
inaccurate motion detection. We derive a new 
motion and edge adaptive interpolation de-
interlacing method based on the framework, 
utilizing only simple motion and edge detection 
techniques together with a novel interpolation 
coefficients adaptation scheme. The proposed 
algorithm has been tested with five standard test 
sequences and experimental results confirm that it 
gives the best objective performance, peak-signal-

Fig. 2. Relationship between Fo(·,·,n), Fe(·,·,n) and Fi(·,·,2n). Fd(x,y,2n) is reconstructed by interpolating the pixels 
within N(x, y, 2n) (with w = 2 in this example). 
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to-noise ratio (PSNR) for all the test sequences, 
when compared with three other similar algorithms. 
The reconstructed progressive frames (de-interlaced 
frames) obtained from the proposed algorithm also 
appear to be artifacts-free with visually best 
performance. 
 
 This paper is organized as follows. Section 2 
first presents the generalized framework for motion 
adaptive de-interlacing methods, followed by 
Section 3 which details our proposed de-interlacing 
algorithm. Section 4 provides the experimental 
results, discussions on the data gathered and the 
performance comparison of different algorithms. 
Finally, Section 5 concludes the whole paper. 
 
2   Generalized Framework for Motion 
and Edge Adaptive Interpolation De-
Interlacing Methods 
 
2.1 De-interlacing Problem Statement 
Let Fp(x, y, 2n) and Fp(x, y, 2n + 1) be the luminance 
of the pixel at the spatial coordinate (x, y) in the 2n-
th and (2n + 1)-th frames of a progressive video 
sequence, respectively. In TV systems, a sequence 
of progressive frames will first be decomposed into 
a sequence of alternating odd and even fields, Fo and 
Fe, respectively, defined as follows: 
 
Fo(x, y, n) = Fp (x, 2y, 2n) ,   (1) 
Fe(x, y, n) = Fp (x, 2y + 1, 2n + 1) ,  (2) 
 
for 0 ≤ x < W and 0 ≤ y < ⎣H/2⎦, where W and H 
denote the width and height of the progressive 
frame, respectively. 
 
Given a flow of field images, an interlaced frame 
Fi(x, y, 2n) which interleaves the odd and even fields 
is thus defined as: 

⎪
⎩

⎪
⎨
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=
=

02mod),
2

)1(,(
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e
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i
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As illustrated above, a sequence of field images is 
essentially a flow of vertically decimated 
progressive images with twice the temporal 
sampling rate of Fi. 
 
 With these understandings, the de-interlacing 
problem can then be formulated as finding some 
ways to reconstruct a progressive frame Fd(x, y, 2n), 
from Fi(x, y, 2n), such that it is as close to Fp(x, y, 
2n), both subjectively and objectively, as possible. 

 Although the de-interlacing problem formulated 
here considers only the luminance component of an 
image, it is straightforward to extend the same 
concept in handling images with chrominance 
components. 
 
2.2 Proposed Motion and Edge Adaptive 
Interpolation De-interlacing Framework 
 
Motion adaptive interpolation can generally be 
considered as the problem of interpolating even field 
samples in Fd(x, y, 2n) from Fi(x, y, 2n) while 
keeping the odd field samples unaltered. This 
follows from (1) and (3) which shows that Fi(x, y, 
2n) = Fp(x, y, 2n) whenever y is divisible by two. As 
such, the way for motion adaptive interpolation 
methods to construct Fd(x, y, 2n) can be generalized 
as: 

⎩
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⎧

≠
=

=
02mod))2,,((
02mod)2,,(

)2,,(
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yifnyxF

nyxF i
d

, (4) 

 
where N(x, y, 2n) denotes the set of neighboring 
pixels to the current pixel at spatial coordinates (x, 
y) in Fi(·,·,2n), and I(·) is the interpolation function 
that interpolates the missing even scan line pixels in 
Fd from N(x, y, 2n). 
 
 To get rid of severe blurring effect, we propose 
to limit the number of neighboring pixels to be 
considered in N(x, y, 2n). In particular, we define it 
as: 

{ }1|'|,|':|)2,','()2,,( ≤−≤−= yywxxnyxFnyxN i . (5) 
 
In a sense, N(x, y, 2n) consists of the luminance 
values of the pixels that is within a window of size 
(2 w + 1) × 3, centered at (x, y). It limits the 
neighborhood of the interpolated pixel to the pixels 
within the current scan line and immediate 
neighboring scan lines as depicted in Fig. 2. 
 
Suppose we further define Nupper(x, y, 2n), Ncurrent(x, 
y, 2n) and Nlower(x, y, 2n) as: 
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Hence, N(x, y, 2n) = Nupper(x, y, 2n) ∪ Ncurrent(x, y, 
2n) ∪ Nlower(x, y, 2n), which means that N(x, y, 2n) 
can be separated into three different sets of 
neighboring pixels. Two sets of which come from 
the upper and lower scan lines from the odd field, 
while the remaining comes from the current scan 
line which maps into the even field. With this 
formulation, we can then define the interpolation 
function I in such a way that interpolating pixels 
from odd fields and even fields are first separately 
filtered within their set of pixels, motion intensity 
dependent interpolation can then be applied to these 
filtered pixels to obtain the interpolated pixels for 
filling up the even field pixel in Fd(x, y, 2n). 
 
We suggest the interpolation function to be defined 
like this: 

))2,,((
))2,,(()1(

))2,,(())2,,((

nyxNG
nyxNG

nyxNGnyxNI

lowerll
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upperuu

α
αα

α

+
−−+

=
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where Gu(·), Gc(·)and Gl(·) are the filtering functions 
for the pixels in the upper, current and lower scan 
lines respectively; and αu, αl are the interpolation 
coefficients that can vary according to the motion 
intensity estimated at the current pixel (x, y). Note 
that Gu(·), Gc(·) and Gl(·) can be customized in such 
a way that they are edge dependent to realize edge 
dependent interpolation scheme. 
 
 With this framework, it is possible to derive a 
number of de-interlacing algorithms with different 
characteristics, as will be described in the following 
sub-section. 

 
2.3 Mapping of Typical Algorithms into the 

Proposed Framework 
It can be shown that, most of the typical de-
interlacing algorithms can actually be mapped 
successfully into the proposed framework. 

 
2.3.1   Line Doubling Algorithm (LDA) 
Line doubling algorithm (LDA) can be realized with 
the following settings according to the proposed 
framework: 
αu = 1, αl = 0, w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1, 
2n); Gu is an all pass filter s.t. Gu(Nupper(x, y, 2n)) = 
Fi(x, y – 1, 2n) 

 

2.3.2   Line Averaging Algorithm (LAA) 
 
Line Averaging Algorithm (LAA), which is also 
known as simple interpolation algorithm, 
interpolates the missing pixels in the even scan line 
from the pixels in immediate upper and lower odd 
scan lines. This can be realized by setting αu = αl = 
0.5, w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1, 2n) and 
Nlower(x, y, 2n) = Fi(x, y + 1, 2n); Gu and Gl are all 
pass filter s.t. Gu(Nupper(x, y, 2n)) = Fi(x, y - 1, 2n) 
and Gl(Nlower(x, y, 2n)) = Fi(x, y + 1, 2n). From these 
settings, 

,
2

)2,1,()2,1,(
))2,,((

nyxFnyxF
nyxNI ii ++−

=  (10) 

which is equivalent to the averaging operation in 
LAA. 
 
2.3.3   Motion Detection based Interpolation 
(MDI) 
 
By making αu, αl, and αc adaptive to motion 
detection result, motion adaptive interpolation de-
interlacing can be realized. For instance, when 
motion intensity is large, the interpolation function I 
should acts like line averaging filter to get rid of the 
line crawling artifact, whereas when motion 
intensity is low, the interpolation function I should 
preserve as much detail as possible in Fi(x, y, 2n) for 
higher vertical resolution. A simple way to do this is 
to formulate αu, αl, and αc as follows: 
 

⎩
⎨
⎧ ≥

==
otherwise

ThresholdnyxMDif motion
lu 0

)2,,(5.0
αα , (11) 

 
where MD(x, y, 2n) is a scalar obtained from the 
motion detector at pixel (x, y) in frame 2n. The value 
of this scalar increases with motion intensity, and 
Thresholdmotion is the threshold for differentiating 
high intensity motions from lower ones. 
 
 With these interpolation coefficients defined, the 
interpolation function will switch between averaging 
operation and interleaving function according to 
motion intensity. 
 
 When working together with the following 
settings: w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1, 2n), 
Nlower(x, y, 2n) = Fi(x, y + 1, 2n), Ncurrent(x, y, 2n) = 
Fi(x, y, 2n); Gu, Gc and Gl are all pass filter s.t. 
Gu(Nupper(x, y, 2n)) = Fi(x, y - 1, 2n), Gc(Ncurrent(x, y, 
2n)) = Fi(x, y, 2n), Gl(Nlower(x, y, 2n)) = Fi(x, y + 1, 
2n), a motion detection based interpolation de-
interlacing algorithm can be realized. 
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2.3.4   Edge Dependant Interpolation (EDI) 
 
Edge dependant interpolation de-interlacing 
algorithms are essentially directional interpolation 
method to preserve edge directions. These 
algorithms estimate the direction of the edge of the 
interpolated pixel, and perform interpolation along 
the edge direction to reduce jagged edge artifact. 
Under the proposed framework, this can be realized 
by setting Gu and Gl to be selective filters as 
depicted in Fig. 3.  
 As illustrated above, many typical de-interlacing 
algorithms can be mapped into our framework 
according to different parameter settings. There are 
actually numerous ways to play around with 
different settings to come up with various kinds of 
de-interlacing algorithms, indicating the generality 
of the proposed framework. In the next section, we 
will propose a new de-interlacing algorithm. 
 
3   Proposed De-interlacing Algorithm 
 
The new de-interlacing algorithm proposed in this 
section addresses the problem of switching artifact 

in motion detection based interpolation algorithm. 
We believe that the origin of switching artifact 
comes from incorrect decisions made in switching 
between the interpolation and interleaving modes, 
especially when such decision making is merely 
based on thresholding operation as stated in (11). 
Although adaptive or multilevel thresholding 
techniques might help to reduce the number of 
undesirable artifacts, erroneous detections of motion 
are not completely avoidable. Hence, instead of 
relying on motion detector for making binary 
decision in mode switching, we propose to adapt the 
interpolation coefficients according to the motion 
intensity to enable smooth transition between the 
interpolation and interleaving modes. To do this, we 
first state the requirements for coefficients 
adaptation.  
 
3.1 Coefficients Adaptation Requirements 
 
Assume a motion detector return a scalar MD(x, y, 
2n), with values falling within [0, ∞), which 
represents the motion intensity for a pixel at spatial 
position (x, y) in the 2n-th interlaced frame, the 
interpolation coefficients αu and αl should satisfy 
the following constraints: 
(I) 0lim,0lim

0)2,,(0)2,,(
==

→→ lnyxMDunyxMD
αα  

(II) 
2
1lim,

2
1lim

)2,,()2,,(
==

∞→∞→ lnyxMDunyxMD
αα  

Constraint (I) ensures that the interpolation 
coefficients will approach to the values that 
correspond to the interleaving operation for static 
regions, while constraint (II) ensures that the 
coefficients will result in interpolation operation for 
those regions with fast motion. 
 
3.2 Proposed Interpolation Coefficients 
 
We suggest to use the following coefficients for the 
proposed de-interlacing algorithm 

22

2

)2,,(2
)2,,(
TnyxMD

nyxMD
lu +
== αα . (12) 

In this way, the two constraints presented in Section 
3.1 can be satisfied. The parameter T is a 
configurable parameter that controls the sensitivity 
of the coefficients to the motion intensity. The 
relation of T to αu, αl can be best illustrated in Fig. 
4. 
 As shown in Fig. 4, the coefficients αu and αl 
increase with motion intensity. The parameter T 
controls the rate of increase of αu and αl, where a 
larger T indicates a smaller sensitivity of αu and αl 
to the increase in the motion intensity. With αu and 

Nupper(x,y,2n) 
with w = 1 

Fi(x,y,2n) 

… … 

Gu(Nupper(x,y,2n)) = Fi(x-1,y-1,2n) 

Nlower(x,y,2n) 
with w = 1 

Gl(Nlower(x,y,2n)) = Fi(x+1,y+1,2n) 

- 45° edge direction

(b) 

Nupper(x,y,2n) 
with w = 1 

Fi(x,y,2n) 
… … 

Gu(Nupper(x,y,2n)) = Fi(x,y-1,2n) 

Nlower(x,y,2n) 
with w = 1 

Gl(Nlower(x,y,2n)) = Fi(x,y+1,2n) 

90° edge direction

(c) 

Nupper(x,y,2n) 
with w = 1 

Fi(x,y,2n) 

… … 

Gu(Nupper(x,y,2n)) = Fi(x+1,y-1,2n) 

Nlower(x,y,2n) 
with w = 1 

Gl(Nlower(x,y,2n)) = Fi(x-1,y+1,2n) 

45° edge direction

(a) 

Fig. 3. Example settings for edge dependent interpolations (a) 
45° directional interpolation, (b) -45° directional interpolation, 
and (c) 90° directional interpolation. 
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αl defined this way, the interpolation coefficient for 
the current scan line becomes: 
 

22

2

22

2

)2,,(2)2,,(2
)2,,(211

TnyxMD
T

TnyxMD
nyxMD

lu +
=

+
−=−− αα

 (13) 
which indicates that the contribution from the 
current scan line will decreases with the motion 
intensity. 

α u  & α l   vs MD (x , y , 2n )

0
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0 50 100 150 200 250 300

MD (x , y , 2n )

T=8 T=16 T=32 T=64

 
Fig. 4. αu, αl vs MD(x, y, 2n) for different values of T. 

 
 By this formulation of interpolation coefficients, 
the algorithm blends the interpolation with 
interleaving results according to the motion intensity 
instead of abrupt switching between the two modes 
of operation. This can help to remove the switching 
artifact that is sensitive to human vision systems. 
 
3.3 Motion Detection 
 
To illustrate the robustness of the proposed 
framework and to ensure efficient operations, we 
employ the simplest form of motion detector in our 
algorithm. Specifically, the motion intensity is 
defined as the mean-absolute-difference (MAD) 
over a 3x3 window from the previous interlaced 
frame, which is defined as: 

∑∑
−= −= −++−

++
=
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1
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i j i
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njyixF
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 (14) 
In order to make the motion detector less sensitive to 
noises and errors, we smooth the motion intensity 
along the temporal domain and thus the actual 
motion intensity function is defined as follows: 
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 (15) 

 
Defined in this way, the motion intensity function 
will be responsive to sudden increase in motion, 

while smoothing out erroneous detection for slow 
movement which MAD sometimes fails to catch. 
 
3.4 Edge Dependent Interpolation 
 
We also incorporate the concept of edge dependent 
interpolation in our proposed algorithm. We adapt 
the filtering functions Gu and Gl based on the three 
edge orientations (-45°, 45°, 90°) as we have 
mentioned in Section 2.3.4. We employ the method 
in [7] for edge orientation estimation. 

 
 To this end, we have our new de-interlacing 
algorithm completely defined. 
 
4   Experimental Results 
 
We evaluated the performance of our algorithm on 
five video sequences, namely “Akiyo”, “Mother and 
Daughter”, “Silent”, “Foreman” and “Stefan”. These 
sequences are chosen because they represent 
different classes of motions, which give a complete 
evaluation of the algorithm under different 
scenarios. Fig. 5 shows one representative frame for 
each sequence. “Akiyo” is a sequence with almost 
completely static background and very slow head 
and shoulder motions. From this sequence, we can 
evaluate how well our algorithms preserve the 
details in static background. “Mother and Daughter” 
and “Silent” are also sequences with static 
background, but with faster movements in 
foreground objects. In particular, “Silent” sequence 
contains fast hands and fingers movements, which 
can trigger switching artifacts. Finally, “Foreman” 
and “Stefan” are sequences with large foreground 
and camera panning motions. As such, jagged edge 
artifact can easily appear in de-interlaced frame as 
the motion adaptive interpolation filter tends to 
reduce the vertical resolution, which induces 
aliasing problem. Each test sequence consists of 300 
progressive frames, and we extracted odd and even 
fields in alternating frames and interleaved the two 
fields to produce 150 interlaced frames. By doing 
so, the quality of the de-interlaced frames can be 
evaluated by the objective measure, Peak-Signal-to-
Noise Ratio (PSNR), where the corresponding 
progressive frames can serve as the ground truth for 
PSNR calculations. 
 
 The performance of our algorithm was evaluated 
against three other algorithms, namely Line 
Doubling Algorithm (LDA), Line Averaging 
Algorithm (LAA), and Motion Detection Based 
Interpolation (MDI). To make a fair comparison and 
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to illustrate the effectiveness of our coefficients 
adaptation scheme, we also incorporated the same 
edge dependent interpolation (EDI) to both LAA 
and MDI. In addition to that, we employed the same 
motion detector in both the MDI and our algorithm, 
which is defined in (15). The parameters T and 
Thresholdmotion for the proposed algorithm and MDI 
are both set to 32. 
 

Table 1 summarizes the average PSNR 
improvements of each algorithm, over the 
corresponding interlaced sequence, for each test 
sequence. It can be seen from the table that the 
newly proposed algorithm achieved the best PSNR 
improvements. The ranking for all the algorithms 
according to the PSNR improvements is consistent 
among all the test sequences, with MDI being the 
second best algorithm, while LAA got the worst 
performance. For sequences with static background 
such as “Akiyo”, “Mother and Daughter”, and 
“Silent”, we can see that LAA and LDA did not 
have PSNR improvement at all over the 
corresponding interlaced sequences, indicating that 
they were not objectively better after the de-
interlacing operations. In particular, it is not 
surprising that LDA had the worst performance 
because it did not take edge orientation into account 
for de-interlacing. As for our proposed algorithm 
and MDI, their better performance can be justified 
by that fact that they preserved as much details as 
possible in static area, while performing the 
necessary interpolation operations only for those 
moving regions. 

 
For sequences “Foreman” and “Stefan”, in which 

fast foreground and camera panning motions 
dominate, LAA and LDA did show positive average 
PSNR improvements because virtually all pixels in 
the even field need interpolation, which is inline 
with the strategy of LAA and LDA. It is interesting 
to note that LAA performed better than MDI for the 
foreman sequence, indicating MDI might suffer 
from switching artifact, which we will describe later. 
Our proposed algorithm and MDI still performed 
well for these two sequences, indicating that the 

incorporation of motion information for de-
interlacing can help boosting up the video quality. 

 
Table 1: Average PSNR Improvement of each algorithm for the 
five test sequences, over the corresponding interlaced 
sequences. 
Seq. / Algorithm Proposed MDI LAA LDA 

Akiyo 0.581 0.078 -3.989 -9.921 
Mother and Daughter 3.270 1.709 -2.386 -7.423 
Silent 6.478 5.359 -0.802 -4.679 
Foreman 5.550 4.612 4.817 0.827 
Stefan 6.001 5.799 5.552 2.165 

 
 Fig. 6(c) to 6(f) show the de-interlaced results of 
a frame in the “Foreman” sequence for each 
algorithms. The progressive frame and the interlaced 
frame, shown in Fig.6 (a) and 6(b) respectively, are 
also included for subjective evaluation. From Fig. 
6(b), it shows that there is slow camera panning 
motion in this frame as indicated by the small 
movements in the background, while there are small 
movements in the facial and head regions and fast 
movements of fingers. LDA suffered severely from 
jagged edge artifact as depicted in Fig 6(c), while 
LAA performed significantly better due to the edge 
dependent interpolation scheme as illustrated in Fig. 
6(d). LAA did not suffer from switching artifacts, 
and generate quite visually pleasant de-interlaced 
frames. However, it cannot preserve the details in 
static regions, notably in the text overlay regions in 
the top-left corner of the image. MDI, on the other 
hand, does not suffer much from jagged edge 
artifact, and the characters “SIEMENS” in the top-
left corner of the image is clearly visible, indicating 
its ability to switch between interpolation and 
interleaving mode. However, it suffered from 
switching artifact, which is noticeable in the eyes, 
mouth and fingers regions. The de-interlaced frame 
from the proposed algorithm appears to be the best, 
in the sense that it correctly preserves the static text 
overlay regions, and suppresses unwanted switching 
artifacts for moving regions. This shows that the 
proposed coefficients adaptation scheme presented 
in Section 3.2 works well enough to enable smooth 
transition from interpolation to interleaving mode, 
and vice versa. 

(a) (b) (c) (d) (e) 
Fig. 5. Representative frame in each sequence (a) Akiyo, (b) Mother and Daughter, (c) Silent, (d) Foreman, (e) Stefan. 
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5   Conclusion 
In this paper, a generalized motion and edge 
adaptive interpolation de-interlacing framework is 
presented. The framework is general in the sense 
that many typical de-interlacing algorithms can be 
successfully mapped into the framework, while it 
enables a structured way for algorithmic tuning. 
Based on this framework, a new motion and edge 
adaptive de-interlacing algorithm has also been 
proposed. Although the new algorithm only employs 
the simplest form of motion detection and edge 
orientation estimation methods, it enables smooth 
transition from interpolation to interleaving mode 
based on a novel interpolation coefficients 
adaptation scheme. Experimental results show that 
the proposed algorithm has the best objective 
performance as indicated in average PSNR 
improvements, while offering the visually best de-
interlaced frames with no noticeable artifact when 
compared with similar algorithms. Besides, due to 
its simplicity, this algorithm is computationally 
efficient, which is a plus for hardware 
implementation. Future directions will be focused on 
improving the interpolation coefficients adaptation 
scheme, and incorporating more sophisticated 
motion detection and edge orientation methods to 
achieve a better de-interlace algorithm. 
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(a) (c) 

Fig. 6. De-interlaced frames comparison: (a) Original progressive frame, (b) Interlaced frame, (c) De-interlaced frame by LDA, 
(d) De-interlaced frame by LAA, (e) De-interlaced frame by MDI, (f) De-interlaced frame by proposed algorithm. 

(b)

(d) (e) (f) 


