
Title Generalized motion and edge adaptive interpolation de-
interlacing algorithm

Author(s) Chung, RHY; Wong, KYK; Chin, FYL; Chow, KP; Yuk, SC

Citation Wseas Transactions On Computers, 2006, v. 5 n. 11, p. 2544-
2551

Issued Date 2006

URL http://hdl.handle.net/10722/88909

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37917175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Generalized Motion and Edge Adaptive Interpolation De-interlacing
Algorithm

Ronald H.Y. Chung1, Kwan-Yee K. Wong2, Francis Y.L. Chin3, K.P. Chow4 and S.C. Yuk5

Department of Computer Science
The University of Hong Kong

Pokfulam Rd., Hong Kong Special Administrative Region
Hong Kong

hychung@cs.hku.hk1, kykwong@cs.hku.hk2, chin@cs.hku.hk3, chow@cs.hku.hk4, scyuk@cs.hku.hk5

Abstract: - This paper presents a generalized motion and edge adaptive de-interlacing framework, which offers
a structured way to develop de-interlacing algorithm. The framework encompasses many typical de-interlacing
algorithms, ranging from simple interpolation based algorithms, to more complex edge dependent and motion
adaptive algorithms. Based on this framework, we develop a new de-interlacing algorithm which is efficient
and artifacts-free. The proposed algorithm was evaluated by five video sequences, namely, “Akiyo”, “Mother
and Daughter”, “Silent”, “Foreman” and “Stefan”. Experimental results confirm that the proposed algorithm
performs, both objectively and subjectively, much better than other similar algorithms. These promising
results indicate that the proposed framework has good potential for realizing even better de-interlacing
algorithms.

Key-Words: - De-interlacing Methods, Motion Adaptive Interpolation, Edge Dependent Interpolation.

1 Introduction
Interlaced scanning technique has been exclusively
adopted in television (TV) systems since the
invention of TV over 70 years ago. It has been
widely accepted as a practical technique with
reasonable tradeoff among three factors: bandwidth,
flicker, and resolution. The present-day technologies
in communication and computing, however, are
efficient and powerful enough to handle video
sequence in the progressive scanning manner. As a
result, recent advances in High Definition TV
(HDTV) and Personal Computers (PCs) call for
progressive scanning. To ensure interoperability
between the interlaced scanning format in TV and
the progressive scanning format in HDVT and PCs,
the need for conversion between the two scanning
format is increasing. This process of interlace-to-
progressive scanning conversion is called de-
interlacing.

 An intuitive and trivial way for de-interlacing is
to interleave the two consecutive fields back into a
progressive frame. Since a time difference exists
between the two fields, visual artifacts, such as the
most appealing line crawling effect at moving edges
as shown in Fig. 1, can severely degrade the visual
quality of the reconstructed progressive frame. Over
the last decade, many de-interlacing algorithms with
different computational requirements and
corresponding performances have been proposed to

improve the visual quality of the de-interlaced
progress frame.

 De-interlacing algorithms in the literature can be
broadly divided into three categories: spatial
methods [1-2], motion adaptive methods [3-4], and
motion compensation based methods [5-6]. Spatial
methods are usually the simplest and the most
efficient methods among the three categories of
algorithms, which are favorable for hardware
implementation. Essentially, spatial methods employ
interpolation techniques, and exploit the correlation
between vertically neighboring samples in a field
when interpolating pixels. The simplest form of
these algorithms is line doubling (or line repetition),
which simply replicates the odd field to the even
field in reconstructing the progressive frame. In a
sense, this is equivalent to upsampling from only the
odd field and hence it suffers from aliasing problem.
As a result, it also introduces another visual artifact,
jagged edge, although it can completely remove line
crawling artifact. To deal with the aliasing problem,
edge dependent interpolation technique [7] can be
employed to interpolate the missing pixels from
neighboring scan lines, such that the interpolated
values are most visually aligned to edge
orientations. However, this is applicable only when
the edge orientations can be correctly estimated. The
computational complexity, unfortunately, usually
increases with the correctness of the estimation.

 2

 (a) (b)

 (c) (d)

 (e) (f)

Fig 1. (a) Progressive frame n, (b) Progressive frame n + 1, (c)
Odd field of progressive frame n, (d) Even field of progressive
frame n + 1, (e) Reconstructed progressive frame by
interleaving the odd and even fields, (f) Enlarged portion in (e)
showing line crawling effect.

Motion adaptive methods, on the other hand, make
the interpolation adaptive to motion as static regions
can never suffer from the line crawling effect. They
are considered to be superior to spatial methods in
the sense that they preserve vertical resolution by
interleaving the odd field and even field for static
regions, while they sacrifice vertical resolution by
interpolation only for moving regions. However,
motion adaptive algorithms suffer from the
switching artifact, when inaccurate motion detection
leads to incorrect decision in switching between the
interleaving and interpolation modes.

 Motion compensation based algorithms are now
being considered as the most advanced de-
interlacing algorithms. They employ the concept of

motion compensation in video compression to
compensate the inter-field motions between the odd
and even fields. This requires very accurate motion
estimation techniques to generate dense motion field
in order to avoid artifacts inherent in motion
compensation. This is again a highly computational
intensive process, which does not seem to be
economical for hardware implementation. As such,
various kinds of artifacts can appear in the motion
compensated field image due to incorrectly
estimated motion field. To rectify this, post-
processing such as spatial and temporal filtering are
usually required to suppress those artifacts, which
further increase the computation burden.

 Among these three classes of algorithms, spatial
de-interlacing algorithms appear to be the most
efficient ones, with inferior visual quality though.
Motion compensation based algorithms, on the other
hand, appears to be the most sophisticated ones
while their computational demand drives them away
from hardware implementation, especially when the
demand of high resolution videos offsets the
technological advancements in computing power
and resources. Motion adaptive methods appear to
be the most appropriate category of algorithms for
de-interlacing as it offers reasonable visual quality
with manageable computational requirements. As
such, we revisit the problem of de-interlacing
following the motion adaptive interpolation
approach. Specifically, we first formulate a
generalized framework for motion adaptive
interpolation de-interlacing methods, and seek ways
to suppress the switching artifact that arises from
inaccurate motion detection. We derive a new
motion and edge adaptive interpolation de-
interlacing method based on the framework,
utilizing only simple motion and edge detection
techniques together with a novel interpolation
coefficients adaptation scheme. The proposed
algorithm has been tested with five standard test
sequences and experimental results confirm that it
gives the best objective performance, peak-signal-

Fig. 2. Relationship between Fo(·,·,n), Fe(·,·,n) and Fi(·,·,2n). Fd(x,y,2n) is reconstructed by interpolating the pixels
within N(x, y, 2n) (with w = 2 in this example).

Fi(·,·,2n)

. . ..

. . ..

N(x,y,2n)
with w = 2

Fi(x,y,2n) Fd(x,y,2n)

.

.

.

Fo(·,·,n)

Fe(·,·,n)

.. ..

..

..

Fd(·,·,2n)
I(N(x,y,2n))

Pixels in odd scan
Pixels in even scan
Interpolated Pixels in Fd

Keys

 3

to-noise ratio (PSNR) for all the test sequences,
when compared with three other similar algorithms.
The reconstructed progressive frames (de-interlaced
frames) obtained from the proposed algorithm also
appear to be artifacts-free with visually best
performance.

 This paper is organized as follows. Section 2
first presents the generalized framework for motion
adaptive de-interlacing methods, followed by
Section 3 which details our proposed de-interlacing
algorithm. Section 4 provides the experimental
results, discussions on the data gathered and the
performance comparison of different algorithms.
Finally, Section 5 concludes the whole paper.

2 Generalized Framework for Motion
and Edge Adaptive Interpolation De-
Interlacing Methods

2.1 De-interlacing Problem Statement
Let Fp(x, y, 2n) and Fp(x, y, 2n + 1) be the luminance
of the pixel at the spatial coordinate (x, y) in the 2n-
th and (2n + 1)-th frames of a progressive video
sequence, respectively. In TV systems, a sequence
of progressive frames will first be decomposed into
a sequence of alternating odd and even fields, Fo and
Fe, respectively, defined as follows:

Fo(x, y, n) = Fp (x, 2y, 2n) , (1)
Fe(x, y, n) = Fp (x, 2y + 1, 2n + 1) , (2)

for 0 ≤ x < W and 0 ≤ y < ⎣H/2⎦, where W and H
denote the width and height of the progressive
frame, respectively.

Given a flow of field images, an interlaced frame
Fi(x, y, 2n) which interleaves the odd and even fields
is thus defined as:

⎪
⎩

⎪
⎨

⎧

≠
−

=
=

02mod),
2

)1(,(

02mod),
2

,(
)2,,(

yifnyxF

yifnyxF
nyxF

e

o

i
 . (3)

As illustrated above, a sequence of field images is
essentially a flow of vertically decimated
progressive images with twice the temporal
sampling rate of Fi.

 With these understandings, the de-interlacing
problem can then be formulated as finding some
ways to reconstruct a progressive frame Fd(x, y, 2n),
from Fi(x, y, 2n), such that it is as close to Fp(x, y,
2n), both subjectively and objectively, as possible.

 Although the de-interlacing problem formulated
here considers only the luminance component of an
image, it is straightforward to extend the same
concept in handling images with chrominance
components.

2.2 Proposed Motion and Edge Adaptive
Interpolation De-interlacing Framework

Motion adaptive interpolation can generally be
considered as the problem of interpolating even field
samples in Fd(x, y, 2n) from Fi(x, y, 2n) while
keeping the odd field samples unaltered. This
follows from (1) and (3) which shows that Fi(x, y,
2n) = Fp(x, y, 2n) whenever y is divisible by two. As
such, the way for motion adaptive interpolation
methods to construct Fd(x, y, 2n) can be generalized
as:

⎩
⎨
⎧

≠
=

=
02mod))2,,((
02mod)2,,(

)2,,(
yifnyxNI
yifnyxF

nyxF i
d

, (4)

where N(x, y, 2n) denotes the set of neighboring
pixels to the current pixel at spatial coordinates (x,
y) in Fi(·,·,2n), and I(·) is the interpolation function
that interpolates the missing even scan line pixels in
Fd from N(x, y, 2n).

 To get rid of severe blurring effect, we propose
to limit the number of neighboring pixels to be
considered in N(x, y, 2n). In particular, we define it
as:

{ }1|'|,|':|)2,','()2,,(≤−≤−= yywxxnyxFnyxN i . (5)

In a sense, N(x, y, 2n) consists of the luminance
values of the pixels that is within a window of size
(2 w + 1) × 3, centered at (x, y). It limits the
neighborhood of the interpolated pixel to the pixels
within the current scan line and immediate
neighboring scan lines as depicted in Fig. 2.

Suppose we further define Nupper(x, y, 2n), Ncurrent(x,
y, 2n) and Nlower(x, y, 2n) as:

{ }

⎭
⎬
⎫

⎩
⎨
⎧ ≤−

−
=

≤−−=

wxxnyxF

wxxnyxFnyxN

o

iupper

|':|),
2

1,'(

|':|)2,1,'()2,,(
, (6)

{ }

⎭
⎬
⎫

⎩
⎨
⎧ ≤−

+
=

≤−+=

wxxnyxF

wxxnyxFnyxN

o

ilower

|':|),
2

1,'(

|':|)2,1,'()2,,(
, (7)

 4

{ }

⎭
⎬
⎫

⎩
⎨
⎧ ≤−

−
=

≤−=

wxxnyxF

wxxnyxFnyxN

e

icurrent

|':|),
2

1,'(

|':|)2,,'()2,,(
. (8)

Hence, N(x, y, 2n) = Nupper(x, y, 2n) ∪ Ncurrent(x, y,
2n) ∪ Nlower(x, y, 2n), which means that N(x, y, 2n)
can be separated into three different sets of
neighboring pixels. Two sets of which come from
the upper and lower scan lines from the odd field,
while the remaining comes from the current scan
line which maps into the even field. With this
formulation, we can then define the interpolation
function I in such a way that interpolating pixels
from odd fields and even fields are first separately
filtered within their set of pixels, motion intensity
dependent interpolation can then be applied to these
filtered pixels to obtain the interpolated pixels for
filling up the even field pixel in Fd(x, y, 2n).

We suggest the interpolation function to be defined
like this:

))2,,((
))2,,(()1(

))2,,(())2,,((

nyxNG
nyxNG

nyxNGnyxNI

lowerll

currentclu

upperuu

α
αα

α

+
−−+

=
, (9)

where Gu(·), Gc(·)and Gl(·) are the filtering functions
for the pixels in the upper, current and lower scan
lines respectively; and αu, αl are the interpolation
coefficients that can vary according to the motion
intensity estimated at the current pixel (x, y). Note
that Gu(·), Gc(·) and Gl(·) can be customized in such
a way that they are edge dependent to realize edge
dependent interpolation scheme.

 With this framework, it is possible to derive a
number of de-interlacing algorithms with different
characteristics, as will be described in the following
sub-section.

2.3 Mapping of Typical Algorithms into the

Proposed Framework
It can be shown that, most of the typical de-
interlacing algorithms can actually be mapped
successfully into the proposed framework.

2.3.1 Line Doubling Algorithm (LDA)
Line doubling algorithm (LDA) can be realized with
the following settings according to the proposed
framework:
αu = 1, αl = 0, w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1,
2n); Gu is an all pass filter s.t. Gu(Nupper(x, y, 2n)) =
Fi(x, y – 1, 2n)

2.3.2 Line Averaging Algorithm (LAA)

Line Averaging Algorithm (LAA), which is also
known as simple interpolation algorithm,
interpolates the missing pixels in the even scan line
from the pixels in immediate upper and lower odd
scan lines. This can be realized by setting αu = αl =
0.5, w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1, 2n) and
Nlower(x, y, 2n) = Fi(x, y + 1, 2n); Gu and Gl are all
pass filter s.t. Gu(Nupper(x, y, 2n)) = Fi(x, y - 1, 2n)
and Gl(Nlower(x, y, 2n)) = Fi(x, y + 1, 2n). From these
settings,

,
2

)2,1,()2,1,(
))2,,((

nyxFnyxF
nyxNI ii ++−

= (10)

which is equivalent to the averaging operation in
LAA.

2.3.3 Motion Detection based Interpolation
(MDI)

By making αu, αl, and αc adaptive to motion
detection result, motion adaptive interpolation de-
interlacing can be realized. For instance, when
motion intensity is large, the interpolation function I
should acts like line averaging filter to get rid of the
line crawling artifact, whereas when motion
intensity is low, the interpolation function I should
preserve as much detail as possible in Fi(x, y, 2n) for
higher vertical resolution. A simple way to do this is
to formulate αu, αl, and αc as follows:

⎩
⎨
⎧ ≥

==
otherwise

ThresholdnyxMDif motion
lu 0

)2,,(5.0
αα , (11)

where MD(x, y, 2n) is a scalar obtained from the
motion detector at pixel (x, y) in frame 2n. The value
of this scalar increases with motion intensity, and
Thresholdmotion is the threshold for differentiating
high intensity motions from lower ones.

 With these interpolation coefficients defined, the
interpolation function will switch between averaging
operation and interleaving function according to
motion intensity.

 When working together with the following
settings: w = 0 s.t. Nupper(x, y, 2n) = Fi(x, y - 1, 2n),
Nlower(x, y, 2n) = Fi(x, y + 1, 2n), Ncurrent(x, y, 2n) =
Fi(x, y, 2n); Gu, Gc and Gl are all pass filter s.t.
Gu(Nupper(x, y, 2n)) = Fi(x, y - 1, 2n), Gc(Ncurrent(x, y,
2n)) = Fi(x, y, 2n), Gl(Nlower(x, y, 2n)) = Fi(x, y + 1,
2n), a motion detection based interpolation de-
interlacing algorithm can be realized.

 5

2.3.4 Edge Dependant Interpolation (EDI)

Edge dependant interpolation de-interlacing
algorithms are essentially directional interpolation
method to preserve edge directions. These
algorithms estimate the direction of the edge of the
interpolated pixel, and perform interpolation along
the edge direction to reduce jagged edge artifact.
Under the proposed framework, this can be realized
by setting Gu and Gl to be selective filters as
depicted in Fig. 3.
 As illustrated above, many typical de-interlacing
algorithms can be mapped into our framework
according to different parameter settings. There are
actually numerous ways to play around with
different settings to come up with various kinds of
de-interlacing algorithms, indicating the generality
of the proposed framework. In the next section, we
will propose a new de-interlacing algorithm.

3 Proposed De-interlacing Algorithm

The new de-interlacing algorithm proposed in this
section addresses the problem of switching artifact

in motion detection based interpolation algorithm.
We believe that the origin of switching artifact
comes from incorrect decisions made in switching
between the interpolation and interleaving modes,
especially when such decision making is merely
based on thresholding operation as stated in (11).
Although adaptive or multilevel thresholding
techniques might help to reduce the number of
undesirable artifacts, erroneous detections of motion
are not completely avoidable. Hence, instead of
relying on motion detector for making binary
decision in mode switching, we propose to adapt the
interpolation coefficients according to the motion
intensity to enable smooth transition between the
interpolation and interleaving modes. To do this, we
first state the requirements for coefficients
adaptation.

3.1 Coefficients Adaptation Requirements

Assume a motion detector return a scalar MD(x, y,
2n), with values falling within [0, ∞), which
represents the motion intensity for a pixel at spatial
position (x, y) in the 2n-th interlaced frame, the
interpolation coefficients αu and αl should satisfy
the following constraints:
(I) 0lim,0lim

0)2,,(0)2,,(
==

→→ lnyxMDunyxMD
αα

(II)
2
1lim,

2
1lim

)2,,()2,,(
==

∞→∞→ lnyxMDunyxMD
αα

Constraint (I) ensures that the interpolation
coefficients will approach to the values that
correspond to the interleaving operation for static
regions, while constraint (II) ensures that the
coefficients will result in interpolation operation for
those regions with fast motion.

3.2 Proposed Interpolation Coefficients

We suggest to use the following coefficients for the
proposed de-interlacing algorithm

22

2

)2,,(2
)2,,(
TnyxMD

nyxMD
lu +
== αα . (12)

In this way, the two constraints presented in Section
3.1 can be satisfied. The parameter T is a
configurable parameter that controls the sensitivity
of the coefficients to the motion intensity. The
relation of T to αu, αl can be best illustrated in Fig.
4.
 As shown in Fig. 4, the coefficients αu and αl
increase with motion intensity. The parameter T
controls the rate of increase of αu and αl, where a
larger T indicates a smaller sensitivity of αu and αl
to the increase in the motion intensity. With αu and

Nupper(x,y,2n)
with w = 1

Fi(x,y,2n)

… …

Gu(Nupper(x,y,2n)) = Fi(x-1,y-1,2n)

Nlower(x,y,2n)
with w = 1

Gl(Nlower(x,y,2n)) = Fi(x+1,y+1,2n)

- 45° edge direction

(b)

Nupper(x,y,2n)
with w = 1

Fi(x,y,2n)
… …

Gu(Nupper(x,y,2n)) = Fi(x,y-1,2n)

Nlower(x,y,2n)
with w = 1

Gl(Nlower(x,y,2n)) = Fi(x,y+1,2n)

90° edge direction

(c)

Nupper(x,y,2n)
with w = 1

Fi(x,y,2n)

… …

Gu(Nupper(x,y,2n)) = Fi(x+1,y-1,2n)

Nlower(x,y,2n)
with w = 1

Gl(Nlower(x,y,2n)) = Fi(x-1,y+1,2n)

45° edge direction

(a)

Fig. 3. Example settings for edge dependent interpolations (a)
45° directional interpolation, (b) -45° directional interpolation,
and (c) 90° directional interpolation.

 6

αl defined this way, the interpolation coefficient for
the current scan line becomes:

22

2

22

2

)2,,(2)2,,(2
)2,,(211

TnyxMD
T

TnyxMD
nyxMD

lu +
=

+
−=−− αα

 (13)
which indicates that the contribution from the
current scan line will decreases with the motion
intensity.

α u & α l vs MD (x , y , 2n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300

MD (x , y , 2n)

T=8 T=16 T=32 T=64

Fig. 4. αu, αl vs MD(x, y, 2n) for different values of T.

 By this formulation of interpolation coefficients,
the algorithm blends the interpolation with
interleaving results according to the motion intensity
instead of abrupt switching between the two modes
of operation. This can help to remove the switching
artifact that is sensitive to human vision systems.

3.3 Motion Detection

To illustrate the robustness of the proposed
framework and to ensure efficient operations, we
employ the simplest form of motion detector in our
algorithm. Specifically, the motion intensity is
defined as the mean-absolute-difference (MAD)
over a 3x3 window from the previous interlaced
frame, which is defined as:

∑∑
−= −= −++−

++
=

1

1

1

1))1(2,,(
)2,,(

9
1)2,,(

i j i

i

njyixF
njyixF

nyxMAD .

 (14)
In order to make the motion detector less sensitive to
noises and errors, we smooth the motion intensity
along the temporal domain and thus the actual
motion intensity function is defined as follows:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−+

−≥
=

otherwisenyxMDnyxMAD

nyxMDnyxMADifnyxMAD

nyxMD

2
))1(2,,()2,,(

))1(2,,()2,,()2,,(

)2,,(

 (15)

Defined in this way, the motion intensity function
will be responsive to sudden increase in motion,

while smoothing out erroneous detection for slow
movement which MAD sometimes fails to catch.

3.4 Edge Dependent Interpolation

We also incorporate the concept of edge dependent
interpolation in our proposed algorithm. We adapt
the filtering functions Gu and Gl based on the three
edge orientations (-45°, 45°, 90°) as we have
mentioned in Section 2.3.4. We employ the method
in [7] for edge orientation estimation.

 To this end, we have our new de-interlacing
algorithm completely defined.

4 Experimental Results

We evaluated the performance of our algorithm on
five video sequences, namely “Akiyo”, “Mother and
Daughter”, “Silent”, “Foreman” and “Stefan”. These
sequences are chosen because they represent
different classes of motions, which give a complete
evaluation of the algorithm under different
scenarios. Fig. 5 shows one representative frame for
each sequence. “Akiyo” is a sequence with almost
completely static background and very slow head
and shoulder motions. From this sequence, we can
evaluate how well our algorithms preserve the
details in static background. “Mother and Daughter”
and “Silent” are also sequences with static
background, but with faster movements in
foreground objects. In particular, “Silent” sequence
contains fast hands and fingers movements, which
can trigger switching artifacts. Finally, “Foreman”
and “Stefan” are sequences with large foreground
and camera panning motions. As such, jagged edge
artifact can easily appear in de-interlaced frame as
the motion adaptive interpolation filter tends to
reduce the vertical resolution, which induces
aliasing problem. Each test sequence consists of 300
progressive frames, and we extracted odd and even
fields in alternating frames and interleaved the two
fields to produce 150 interlaced frames. By doing
so, the quality of the de-interlaced frames can be
evaluated by the objective measure, Peak-Signal-to-
Noise Ratio (PSNR), where the corresponding
progressive frames can serve as the ground truth for
PSNR calculations.

 The performance of our algorithm was evaluated
against three other algorithms, namely Line
Doubling Algorithm (LDA), Line Averaging
Algorithm (LAA), and Motion Detection Based
Interpolation (MDI). To make a fair comparison and

 7

to illustrate the effectiveness of our coefficients
adaptation scheme, we also incorporated the same
edge dependent interpolation (EDI) to both LAA
and MDI. In addition to that, we employed the same
motion detector in both the MDI and our algorithm,
which is defined in (15). The parameters T and
Thresholdmotion for the proposed algorithm and MDI
are both set to 32.

Table 1 summarizes the average PSNR
improvements of each algorithm, over the
corresponding interlaced sequence, for each test
sequence. It can be seen from the table that the
newly proposed algorithm achieved the best PSNR
improvements. The ranking for all the algorithms
according to the PSNR improvements is consistent
among all the test sequences, with MDI being the
second best algorithm, while LAA got the worst
performance. For sequences with static background
such as “Akiyo”, “Mother and Daughter”, and
“Silent”, we can see that LAA and LDA did not
have PSNR improvement at all over the
corresponding interlaced sequences, indicating that
they were not objectively better after the de-
interlacing operations. In particular, it is not
surprising that LDA had the worst performance
because it did not take edge orientation into account
for de-interlacing. As for our proposed algorithm
and MDI, their better performance can be justified
by that fact that they preserved as much details as
possible in static area, while performing the
necessary interpolation operations only for those
moving regions.

For sequences “Foreman” and “Stefan”, in which

fast foreground and camera panning motions
dominate, LAA and LDA did show positive average
PSNR improvements because virtually all pixels in
the even field need interpolation, which is inline
with the strategy of LAA and LDA. It is interesting
to note that LAA performed better than MDI for the
foreman sequence, indicating MDI might suffer
from switching artifact, which we will describe later.
Our proposed algorithm and MDI still performed
well for these two sequences, indicating that the

incorporation of motion information for de-
interlacing can help boosting up the video quality.

Table 1: Average PSNR Improvement of each algorithm for the
five test sequences, over the corresponding interlaced
sequences.
Seq. / Algorithm Proposed MDI LAA LDA

Akiyo 0.581 0.078 -3.989 -9.921
Mother and Daughter 3.270 1.709 -2.386 -7.423
Silent 6.478 5.359 -0.802 -4.679
Foreman 5.550 4.612 4.817 0.827
Stefan 6.001 5.799 5.552 2.165

 Fig. 6(c) to 6(f) show the de-interlaced results of
a frame in the “Foreman” sequence for each
algorithms. The progressive frame and the interlaced
frame, shown in Fig.6 (a) and 6(b) respectively, are
also included for subjective evaluation. From Fig.
6(b), it shows that there is slow camera panning
motion in this frame as indicated by the small
movements in the background, while there are small
movements in the facial and head regions and fast
movements of fingers. LDA suffered severely from
jagged edge artifact as depicted in Fig 6(c), while
LAA performed significantly better due to the edge
dependent interpolation scheme as illustrated in Fig.
6(d). LAA did not suffer from switching artifacts,
and generate quite visually pleasant de-interlaced
frames. However, it cannot preserve the details in
static regions, notably in the text overlay regions in
the top-left corner of the image. MDI, on the other
hand, does not suffer much from jagged edge
artifact, and the characters “SIEMENS” in the top-
left corner of the image is clearly visible, indicating
its ability to switch between interpolation and
interleaving mode. However, it suffered from
switching artifact, which is noticeable in the eyes,
mouth and fingers regions. The de-interlaced frame
from the proposed algorithm appears to be the best,
in the sense that it correctly preserves the static text
overlay regions, and suppresses unwanted switching
artifacts for moving regions. This shows that the
proposed coefficients adaptation scheme presented
in Section 3.2 works well enough to enable smooth
transition from interpolation to interleaving mode,
and vice versa.

(a) (b) (c) (d) (e)
Fig. 5. Representative frame in each sequence (a) Akiyo, (b) Mother and Daughter, (c) Silent, (d) Foreman, (e) Stefan.

 8

5 Conclusion
In this paper, a generalized motion and edge
adaptive interpolation de-interlacing framework is
presented. The framework is general in the sense
that many typical de-interlacing algorithms can be
successfully mapped into the framework, while it
enables a structured way for algorithmic tuning.
Based on this framework, a new motion and edge
adaptive de-interlacing algorithm has also been
proposed. Although the new algorithm only employs
the simplest form of motion detection and edge
orientation estimation methods, it enables smooth
transition from interpolation to interleaving mode
based on a novel interpolation coefficients
adaptation scheme. Experimental results show that
the proposed algorithm has the best objective
performance as indicated in average PSNR
improvements, while offering the visually best de-
interlaced frames with no noticeable artifact when
compared with similar algorithms. Besides, due to
its simplicity, this algorithm is computationally
efficient, which is a plus for hardware
implementation. Future directions will be focused on
improving the interpolation coefficients adaptation
scheme, and incorporating more sophisticated
motion detection and edge orientation methods to
achieve a better de-interlace algorithm.

References:
[1] M. Byun, M.K. Park, and M.G. Kang, “EDI-based

deinterlacing using edge patterns,” in Proc. ICIP05,

Genoa, Italy, Sep. 2005, pp. 1018-1021.
[2] S. H. Hong, R. H. Park, S. Yang, and J.Y. Kim,

"Edge-preserving spatial deinterlacing for still
images using block-based region classification," in
2006 Digest of Technical Papers Int. Conf.
Consumer Electronics, Las Vegas, NV, USA, Jan.
2006, pp. 85-86.

[3] S.F. Lin, Y.L. Chang, and L.G. Chen, “Motion
adaptive interpolation with horizontal motion
detection for deinterlacing,” in IEEE Trans. on
Consumer Elec., vol. 49, no. 4, Nov. 2003, pp.
1256-1265.

[4] S.C. Tai, C.S. Yu, and F.J. Chang, “A motion and
edge adaptive deinterlacing algorithm,” in Proc.
ICME2004, Taipei, Taiwan, Jun. 2004, pp. 659-662.

[5] A.M. Tourapis, O.C. Au, and M.L. Liou,
“Advanced de-interlacing techniques with the use of
zonal based algorithms,” in Proc. VCIP-2001, San
Jose, CA, Jan. 2001, pp. 948-958.

[6] X. Gao, J. Gu, and Jie Li, “De-interlacing
algorithms based on motion compensation,” in
IEEE Trans. on Consumer Elec., vol. 51, no. 2, May
2005, pp. 589-599.

[7] T. Doyle and M. Looymans, “Progressive scan
conversion using edge information,” in Signal
Processing of HDTV II, L. Chiariglione, Ed.
Amsterdam, The Netherlands: Elsevier, 1990, pp.
711-721.

Acknowledgment
This research was jointly sponsored by Multivision Intelligence
Surveillance Limited and the Innovation and Technology
Commission of the Government of the Hong Kong Special
Administrative Region, under the Grant UIM/167.

(a) (c)

Fig. 6. De-interlaced frames comparison: (a) Original progressive frame, (b) Interlaced frame, (c) De-interlaced frame by LDA,
(d) De-interlaced frame by LAA, (e) De-interlaced frame by MDI, (f) De-interlaced frame by proposed algorithm.

(b)

(d) (e) (f)

