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Abstract

The extent to which self-adopted or intervention-related changes in behaviors affect the course of epidemics remains a key
issue for outbreak control. This study attempted to quantify the effect of such changes on the risk of infection in different
settings, i.e., the community and hospitals. The 2002–2003 severe acute respiratory syndrome (SARS) outbreak in Hong
Kong, where 27% of cases were healthcare workers, was used as an example. A stochastic compartmental SEIR (susceptible-
exposed-infectious-removed) model was used: the population was split into healthcare workers, hospitalized people and
general population. Super spreading events (SSEs) were taken into account in the model. The temporal evolutions of the
daily effective contact rates in the community and hospitals were modeled with smooth functions. Data augmentation
techniques and Markov chain Monte Carlo (MCMC) methods were applied to estimate SARS epidemiological parameters. In
particular, estimates of daily reproduction numbers were provided for each subpopulation. The average duration of the
SARS infectious period was estimated to be 9.3 days (60.3 days). The model was able to disentangle the impact of the two
SSEs from background transmission rates. The effective contact rates, which were estimated on a daily basis, decreased with
time, reaching zero inside hospitals. This observation suggests that public health measures and possible changes in
individual behaviors effectively reduced transmission, especially in hospitals. The temporal patterns of reproduction
numbers were similar for healthcare workers and the general population, indicating that on average, an infectious
healthcare worker did not infect more people than any other infectious person. We provide a general method to estimate
time dependence of parameters in structured epidemic models, which enables investigation of the impact of control
measures and behavioral changes in different settings.
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Introduction

Emerging infectious diseases have been defined as, ‘‘infections

that have newly appeared in a population or have existed

previously but are rapidly increasing in incidence or geographic

range. [1]’’ Several features may make them particularly

threatening. First, recognizing the disease can be difficult when

the first cases appear, especially when the symptoms are non-

specific. Second, no vaccine or specific treatment may be known

initially. Moreover, heterogeneities in disease transmission may

create high-risk groups, such as healthcare workers [2–5] and

high-risk geographical areas, thereby dramatically enhancing the

impact of the outbreak [6].

The 2003 severe acute respiratory syndrome (SARS) outbreak in

Hong Kong is remarkably illustrative of the above issues: symptoms

were similar to pneumonia [7]; the incubation period was long

enough for local and international transmission to occur [8]; no

vaccine or treatment was available; as much as 21% of cases

worldwide were healthcare workers [9]. The outbreak also

demonstrated the possible existence of super-spreading events

(SSEs) [10], during which a few infectious individuals contaminated

a high number of secondary cases. Hong Kong had two SSEs: the

first occurred in Hospital X around March 3 and led to about 125

cases [11]; the second occurred in Housing Estate Y on March 19,

and led to over 300 cases [12,13]. Despite its particularly

threatening features, the outbreak was brought under control.

In this context, once the epidemic is detected, spontaneous changes

in behavior will occur, and non-pharmacological measures are

usually initiated to control the outbreak. The resulting effects of these

two phenomena on disease transmission is not easily quantified.

The effective contact rate, which reflects the combined influences

of social proximity (the number of contacts per time unit) and the

probability of infection through each contact, is an essential

determinant of disease spread. Our aim was to estimate the temporal

variation of this parameter in the community and hospitals, over the

course of the outbreak.

Previously published mathematical models of parameter

estimation addressed the issues of temporal variability [12,14] or

social heterogeneity [2,15]. Here we present an approach that

deals with both issues, together with the occurrence of SSEs. Then

the method is applied to the 2003 SARS epidemic in Hong Kong

(SARSID database [13]).
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Materials and Methods

Data
Among the 1755 patients admitted to Hong Kong hospitals in

2003 for suspected SARS, 1467 serologically confirmed SARS

cases were retained for analysis. For each case, occupation, date of

symptom onset, date of hospital admission, duration of hospital

stay and discharge status (dead or alive) were recorded. Durations

of hospital stay were missing for 12 cases and imputed to 100 days.

Transmission Model
The epidemic process was cast into a discrete time stochastic

susceptible-exposed-infectious-removed (SEIR) compartmental

model, designed to reflect a two-way classification of individuals

according to disease status and ‘social’ category (Figure 1).

The latter was defined in three categories: hospitalized patients

(hp), healthcare workers (hw), and the general population (gp).

According to these three social categories, SARS cases were

qualified: nosocomial when the patient had been hospitalized for

$5 days before symptom onset (n~72); healthcare workers when

the subjects were indeed healthcare workers and not nosocomial

(n~394); or general population, all others (n~1001). Their

corresponding epidemic curves are shown in Figure 2.

Disease status was described in five compartments: susceptible

(S), exposed (E), infectious non-hospitalized (I), infectious hospi-

talized (H), and removed (R). Individuals are initially susceptible to

the disease and infected through contact with infectious subjects.

Once infected, individuals are first exposed (infected, non-

infectious) and then become infectious. The infectious stage is

defined as the period of time during which infectious individuals

can transmit the disease through contact with susceptibles. Finally,

the infectious individuals are removed, either through recovery or

death. Quarantine or isolation was not documented in the

database, and was not specifically described: possibly isolated

infectious individuals remain in stage I or H , and quarantined

contacts remain in stage S.

Thus, depending on social category, susceptible individuals may

be in compartments Sgp (general population), Shw (healthcare

workers), or Shp (hospitalized patients); similarly, exposed and

recovered individuals may be in compartments Egp, Ehw or Ehp,

and Rgp, Rhw or Rhp, respectively; while infectious subjects are in

compartments Igp or Ihw before hospitalization, and in compart-

ments Hgp, Hhw or Hhp once hospitalized.

The size of the Hong Kong population (N~7000000) was

obtained from local census data (http://www.info.gov.hk/info/

hkbrief/eng/living2.htm). The number of hospitalized patients

(Nhp~34000) equaled the number of hospital beds in Hong Kong

(http://www.info.gov.hk/info/hkbrief/eng/living2.htm). The num-

ber of healthcare workers (Nhw~59000) was derived from the

healthcare worker-to-bed ratio in the Hospital X [13]. Ngp, Nhw and

Nhp were assumed to be constant throughout the epidemic. Under

this steady-state assumption, transitions between compartments Sgp,

Shw, and Shp did not have to be included explicitly in the model.

The model assumes that there is no direct contact between

hospitalized individuals and non hospitalized individuals from the

Author Summary

Recent epidemics have shown that healthcare workers
may be overrepresented among cases and how critical it is
to protect them. For example, during the 2002–2003
severe acute respiratory syndrome (SARS) epidemics in
Hong Kong, 27%of cases were healthcare workers when
they were ,1% of the population. Better means of
protection require understanding how healthcare workers
were infected and assessing their role in disease transmis-
sion. Here, we describe a method for estimating the
temporal profile of the risk of infection and probability of
transmission in the community and hospitals. The 2002–
2003 SARS outbreak in Hong Kong is used as an example.
For the SARS epidemic, we show that the risk of infection
in the community and hospitals decreased with time down
to zero in hospitals but remained larger in the community.
This observation suggests that public health measures and
behavioural changes most effectively reduced transmis-
sion in hospitals. Besides, we find that the large number of
cases observed among healthcare workers is more likely a
result of large and sustained exposure to hospitalized
cases than to transmission among healthcare workers.
These results are of interest to design control measures in
the event of an influenza pandemic.

Figure 1. Compartmental Model for SARS Transmission in Hong Kong. Superscript letters denote social categories: gp, general population;
hw, healthcare workers; hp, hospitalized patients. Disease states are: S, susceptible; E, exposed (infected but not yet infectious); I , infectious not
hospitalized; H , infectious hospitalized, and R, removed (recovered or dead).
doi:10.1371/journal.pcbi.1000471.g001
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general population. In particular, susceptible individuals in the

general population (Sgp compartment) cannot be infected by

infectious hospitalized SARS cases (Hgp, Hhw, and Hhp compart-

ments), and susceptible hospitalized patients (Shp compartment)

cannot be infected by infectious not-yet-hospitalized cases from the

general population (Igp compartment).

Statistical Model
In the following, 1{.} denotes the indicator function, defined by

1 Xf g~1 if X is true, and 0 otherwise.

For each Hong Kong inhabitant i i~1, . . . ,Nð Þ, let Oi be the

time of symptom onset, Ai the day of hospital admission, Di the

day of hospital discharge, Vi the day of death (Vi~z? if the case

did not die from SARS), and Pi the social category (Pi~hp if

Aiz5ƒOi, Pi~hw if Aiz5wOi and inhabitant i is a healthcare

worker, and Pi~gp otherwise). For all inhabitants who were not

infected by SARS, we let Oi~Ai~Di~Vi~z?.

For each individual i i~1, . . . ,Nð Þ, let Yi~ Oi,Ai,Di,Vi,Pið Þ.
The observed data Yi were augmented with Vi~ vi,ni,ai,yi,di,kið Þ,

where vi, ni, ai and yi correspond to the dates of transition into the

E, I , H and R states respectively ; di is the date of death, and ki is the

social category for case i (ki~gp, hw or hp).

Letting Y~ Yi,i~1, . . . ,Nf g and V~ Vi,i~1, . . . ,Nf g, the

joint density f of Y , V, and of the vector h of unknown parameters

is written as the following product:

f Y ,V,hð Þ~P Y jVð ÞP Vjhð ÞP hð Þ

where P Y jVð Þ~PN
i~1

P YijVið Þ, and P hð Þ is a prior distribution

for h.

As defined by Auranen et al. [17], P YjVð Þ, P Vjhð Þ and P hð Þ
refer to the observation level, the transmission level and the prior

level respectively.

The observation level ensures that the observed data are

consistent with the augmented data.

During the SARS outbreak, few cases were reportedly infected

by asymptomatic persons, but cases rapidly became infectious after

Figure 2. Daily Incidence of SARS Symptom Onset (Observed and 56104 Simulated Epidemics), Hong Kong, 2003. Cases were defined
as: nosocomial when patients had been hospitalized for $5 days before symptom onset (n~72); healthcare workers when they were indeed
healthcare workers and not nosocomial (n~394); and general population, otherwise (n~1001). The grey cloud surrounding the observed epidemic
curve corresponds to simulated epidemic curves.
doi:10.1371/journal.pcbi.1000471.g002
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symptom onset [12,18,19]. Therefore, for each case i, the onset of

symptom was considered acceptable if ni{4ƒOiƒniz1.

The day Ai of hospital admission was consistent with the

augmented data if Ai~ai when the case was infectious prior to

hospitalization (nivaivyi) Aiƒni when the case was infectious

only after hospitalization (ai~ni) Ai§yi when the case was not

infectious anymore at the time of hospitalization (ai~yi).

It was also assumed that the infectious period did not outlast

hospital discharge, that is Di§yi

The date of death was Vi~di.

Finally, the professional category Pi was acceptable if Pi~ki.

Hence:

P YjZ,Vð Þ~ P
i,nivz?

1 Oi{1ƒniƒyiz4f g1 Di§yiƒf g1 Vi~dif g1 Pi~kif g

| P
i,nivaivyi

1 Ai~aif g| P
i,ai~nivz?

1 Aiƒnif g| P
i,ai~yivz?

1 Aiƒyif g

The transmission level describes SARS transmission, assuming

Z and V are known, conditional on the day v1 of infection of the

first case.

A deterministic latent period of 5 days was assumed for all cases

(vi~ni{5 for i such that Oivz?) [13].

The duration of the infectious period (yi{ni) for SARS cases

was gamma-distributed, with mean m and variance q2. We let fm,q2

and Fm,q2 denote its density and cumulative distribution function

respectively. For SARS patients dead on discharge, the infectious

period was considered censored by death. Since the infectious

period was defined as the period during which infectious cases can

transmit the disease through contact with susceptibles, its

distribution was assumed to remain the same over the course of

the epidemic.

The specific stochastic infection rates on day t for susceptible

individuals in compartments Sgp, Shw, and Shp are: lgp
t ~

bt
I

gp
t zIhw

t

NgpzNhwzjY1 tY
0

ƒtƒtY
1f g, lhw

t ~bt

I
gp
t zIhw

t

NgpzNhw
z~bbt

H
gp
t zHhw

t zH
hp
t

Nhp

zjX 1 tX
0

ƒtƒtX
1f g and lhp

t ~~bbt

Ihw
t zH

gp
t zHhw

t zH
hp
t

NhwzNhp
, where

I
gp
t ,Ihw

t ,H
gp
t ,Hhw

t and H
hp
t denote the numbers of individuals in

compartments Igp,Ihw,Hgp,Hhw and Hhp, respectively; bt and ~bbt are

the daily effective contact rates in the community and hospitals,

respectively; jX and jY are temporary level shift interventions [4]

reflecting the increment of infectiousness during the Hospital X and

Housing Estate Y SSEs, i.e. from days tX
0 and tY

0 to days tX
1 and tY

1 .

This leads to:

P Z,Vjhð Þ~ P
i=Oivz?

1 ni~viz5f g| P
i=Oivz?

di~z?

fm,q2 yi{nið Þ

| P
i=Oivz?

divz?

1{Fm,q2 yi{nið Þ
� �

| P
z?

t~n1

P
C~gp,hw,hp

BinSC
t ,pC

t
JC

t

� �

where Binn,p kð Þ~ n

k

� �
pk 1{pð Þn{k

; pC
t ~1{e{lC

t (C~gp,hw,hp),

and JC
t ~

X
i=Oivz?

ki~C

1 vi~tf g (C~gp,hw,hp) is the incidence in

category-C on day t.

The vector h~ m,q, btð Þt~1,...,T , ~bbt

� �
t~1,...,T

,jX,tX
0 ,tX

1 ,jY,tY
0 ,tY

1

� �

comprised about 228 unknown parameters, the epidemic lasting

about T~110 days.

For all model parameters except the effective contact rates,

independent prior distributions were chosen. For the time of start of

SSEs, the prior distributions were informative (see Table 1). The

effective contact rates bt and ~bbt were modeled as second-order

Gaussian random walks, on the log scale, with flat exponential priors

on the first two states of the random walk. In this approach, the

respective variances s2 and ~ss2 of innovations correspond to the

smoothing parameters of cubic smoothing splines [21]; smaller

values of s2 and ~ss2 are associated with smoother trajectories. For the

two precision parameters 1=s2 and 1=~ss2, exponential hyperpriors

with mean g~300 were selected. A sensitivity analysis of the

hyperparameter value was performed (see Text S1).

Parameter Estimation
A Markov chain Monte Carlo (MCMC) method was used to

sample the joint posterior distribution f Y,Z,V,hð Þ [22,23]. More

details on the sampler are provided in Text S2.

From the joint posterior distribution of the parameters, a

number of meaningful epidemiological quantities, such as daily

case-reproduction numbers [24] in each category (see Text S3),

could be derived. In particular, the number of cases generated by

each SSE could be estimated.

Results

Estimates of the days of SSE starts and ends, increments (jX ,

jY ), and the number of SSE cases in Hospital X and Housing

Estate Y are shown in Table 2. Despite the somewhat shorter SSE

Table 1. Prior Distributions for Model Parameters.

Parameters Description Prior Distributions

1

s2
,

1

~ss2

Inverse variance of innovations of random walks Exponential distribution (mean g~300)

m, q Mean and standard deviation of the infectious period Gamma distribution (mean 200, variance 40000)

b1 , b2 Effective contact rates in the community during the first two days Exponential distribution (mean 1000)

~bb1 , ~bb2
Effective contact rates in hospitals during the first two days Exponential distribution (mean 1000)

jX tX
1 {tX

0

� �
, jY tY

1 {tY
0

� �
Area under SSE curves Exponential distribution (mean 1000)

tX
0

Day Hospital X SSE starts Uniform distribution on 02/18–03/10

tY
0

Day Housing Estate Y SSE starts Uniform distribution on 03/14–03/24

tX
1 {tX

0 , tY
1 {tY

0
SSE durations Poisson distribution (mean 3)

doi:10.1371/journal.pcbi.1000471.t001

Temporal & Social Disease Transmission Differences

PLoS Computational Biology | www.ploscompbiol.org 4 August 2009 | Volume 5 | Issue 8 | e1000471



duration for Housing Estate Y than for Hospital X, 2.5 times more

cases occurred in Housing Estate Y than Hospital X.

The estimated mean of the infectious period was 9.3 days (95%

credible interval: (8.6–9.9)), with an estimated standard deviation

of 2.3 days (95% credible interval: (1.8–2.9)). The proportion of

the infectious period spent in the community decreased continu-

ously with time (.60% at the beginning, ,20% as early as early

April). Toward the end of the epidemic, .95% of the infectious

period was spent inside hospitals (see Figure 3).

The daily effective contact rates in the community (bt) and

hospitals (~bbt) exhibited progressive a decrease in time, as shown in

Figure 4. However, while the contact rate was almost 0 by late

March inside hospitals, it remained .0.17 in the community.

The case-reproduction number first increased to 5.1 in the

general population in late February and to 3.0 for healthcare

workers in early March (see Text S3). It then decreased until the end

of the epidemic. The case-reproduction numbers was ,1 on March

13 for healthcare workers and on March 20 for the general

population. Among nosocomial cases, the case-reproduction

number was always ,1, with a maximum value of 0.2 on March 14.

The model’s ability to reproduce the main features of the

epidemic was checked by simulating 5000 epidemics with

parameters sampled from the estimated joint posterior distribu-

tion, as described in Text S4. The size and duration of simulated

epidemics, as well as cases breakdown in categories (gp, hw, hp)

mirrored the Hong Kong epidemic (see Figure 2).

We also simulated 100 epidemics with a single set of parameters,

sampled from the posterior distribution. Then, the estimation

procedure was applied to each simulated epidemic in order to

reestimate the parameters. The original parameters were in the

estimated corresponding 95% credible interval in 87% of cases.

Discussion

To rapidly and economically design and assess control measures

for epidemics in modern societies, added insight into the dynamics

of disease transmission is needed. These dynamics are conveniently

summarized by critical, albeit non-observable, characteristics, such

as the duration of the infectious period and effective contact rates.

Estimation of these parameters from the observed data requires the

development of mathematical models. Herein, we presented a

model for epidemics that provides for social heterogeneity and time

variability of transmission parameters. As a working example, the

model was applied to the 2003 SARS epidemic in Hong Kong.

Table 2. Estimated Parameters for Super Spreading Events in Hospital X and Housing Estate Y.

Site Parameter Unit Mean 95% Credible Intervals

Hospital X tX
0

March 1, 2003 February 28–March 2, 2003

tX
1

March 11, 2003 March 10–March 13, 2003

jX Days21 1.461024 (1.161024–1.861024)

Size Cases 94 (72–118)

Housing Estate Y tY
0

March 18, 2003 March 17–March 18, 2003

tY
1

March 23, 2003 March 23–March 24, 2003

jY Days21 5.261026 (4.161026–6.461026)

Size Cases 235 (185–288)

doi:10.1371/journal.pcbi.1000471.t002

Figure 3. Proportion of Infectious Period Spent in the Community before Hospitalization as a Function of Week of Symptom Onset.
doi:10.1371/journal.pcbi.1000471.g003
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Figure 4. Mean Effective SARS Contact Rates (solid line) and 95% Credible Intervals (dashed line) in the Community and Hospitals
as a Function of Time and Dates of Important Events.
doi:10.1371/journal.pcbi.1000471.g004
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The effect of interventions and/or changes in behavior during

the 2003 SARS outbreak may be modelled as time varying contact

rates [12,15,25] or involve shortening of the infectious period [19].

Here, we adopted the first view. To assess if the data supported

this choice, a model was fit where, in addition to time varying

contact rates, we allowed the mean infectious period to change

over three consecutive periods. The three posterior means were

9.5 days (before March 20), 9.2 (March 21 to April 9) and 10 days

(after April 10), indicating that the time varying contact rates alone

model the data adequately.

While the duration of the infectious period is an obvious

determinant of disease transmission, no estimate has been

available for SARS. The distribution of the viral load was found

to peak 8–10 days after symptom onset [13,18,26,27]. Here,

assuming that the infectious period started between 1 day before

and 4 days after symptom onset, it was estimated to extend over an

average period of 9.3 days. We also found that the proportion of

time infectious people spent outside hospitals decreased during the

outbreak and was ,5% at the very end, in agreement with

Anderson et al. [18] and Leung et al. [13] who showed that the

time from symptom onset to admission was shorter at the end of

the epidemic.

One of the most striking features of the Hong Kong SARS

epidemic was the occurrence of two SSEs. By definition, SSEs

correspond to exceptional circumstances that are usually limited to

well-circumscribed areas, such as Hospital X and Housing Estate

Y, and last for only a few days [10]. In this respect, the very high

contact rates generated by the SSEs were modeled as ‘innovation

outliers’ [28], to avoid spurious overestimation of contact rates

among the Hong Kong population.

Whether SSEs are a result of a few particularly highly infectious

cases (excreting much virus and/or highly connected socially), or

of particular environmental circumstances, or maybe both,

remains unclear [16,29,30]. In our model, the force of infection

associated with each SSE was independent on the number of

currently infectious cases. The duration of SSEs was estimated

independently for each SSE, and was independent on the duration

of the infectious period. Therefore, our model was consistent with

all possible causes of SSEs: one or several super-spreaders, or

particular environmental circumstances, etc.

The level shift interventions [20] that were superimposed on the

process describing the time evolution of the infection rates differed

significantly from zero. Taking into account only serologically

confirmed cases, we estimated that the Hospital X SSE began on

March 1st, lasted 11 days and was responsible for 94 cases; and

that the Housing Estate Y SSE began on March 18, lasted 6 days

and caused 235 cases. Previous studies investigating SSEs in Hong

Kong used all cases. By contact tracing, Lee et al. [11] found that

the Hospital X SSE started on March 4 and involved 125 cases;

the Housing Estate Y SSE had been estimated to start on March

19 [13] and to involve 312–330 [13] or 331 [12] cases.

Effective contact rates were estimated on a daily basis, in the

community and hospitals. Both rates tended to decline, probably

reflecting the effect of control measures (listed in Figure 4 [31,32])

or self-adopted behavioral changes. The measures seem to have

been particularly effective in hospitals, where the effective contact

rate was 0 by late March, whereas the risk in the community did

not decrease as sharply. In both settings, the effective contact rate

was almost constant after late March, when no more control

measures were introduced.

Others who studied the dependence of disease transmission on

time reported reproduction numbers rather than effective contact

rates [12,14]. While the daily effective contact rates are sensitive to

short-term day-to-day variations in transmission, the reproduction

numbers reflect the integrated influences of the temporal evolution

of effective contact rates, the infectious period duration and other

factors, such as time spent in the community before hospitaliza-

tion. Here, estimates of daily reproduction numbers were obtained

for each social category. Notably, unlike Cauchemez et al. [14], it

was not necessary to assume prior knowledge or constancy of the

generation interval. The reproduction numbers showed a trend

similar to the effective contact rates, with a clearly decreasing

trend over time, suggesting that the epidemic was under control as

early as mid-March (see Figure in Text S3). Moreover, the

temporal patterns for the general population and healthcare

workers were similar, with the reproduction numbers being higher

for the general population, thereby indicating that on average, an

infectious healthcare worker did not infect more people than any

other infectious person. The reproduction numbers for nosocomial

cases were much lower, either because they had fewer contacts or

because the people they were in contact with were protected

(typically healthcare workers wearing masks).

Our estimation procedure, applied to a set of 100 simulated

epidemics, showed that in 87% of cases, the parameters used for

simulation were inside the corresponding posterior 95% credible

intervals. While most parameters were well estimated, the procedure

tended to overestimate the duration of each SSE, while simulta-

neously underestimating its strength. The number of people affected

by each SSE (i.e. population6duration6strength) was therefore

correct, but its extent in time less robust. Ignoring the 17 days

corresponding to both SSEs, 98% of the remaining parameters used

for simulation were inside the posterior corresponding 95% credible

intervals, indicating very little bias in our estimation procedure.

Herein, we described an approach to estimate the role of time

variability and social heterogeneity in epidemic dynamics. Our

model’s simplifying assumptions such as the fixed duration of the

latency period or the constant probability of transmission

throughout the infectious period of cases, can be relaxed at the

price of increasing complexity. Similarly, a more detailed model

taking into account household transmission, and transmission

inside and between hospitals, rather than assuming homogeneous

mixing in the community and in hospitals, could be implemented,

at the cost of a dramatic increase in the number of model

parameters. More generally, the model can be easily accommo-

dated to fit the specificities of any transmissible disease.
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Found at: doi:10.1371/journal.pcbi.1000471.s001 (0.09 MB PDF)

Text S2 Sampler Used for Parameter Estimation

Found at: doi:10.1371/journal.pcbi.1000471.s002 (0.07 MB PDF)

Text S3 Estimation of the Case-Reproduction Number RARB
t

Found at: doi:10.1371/journal.pcbi.1000471.s003 (0.39 MB PDF)

Text S4 Epidemic Simulation

Found at: doi:10.1371/journal.pcbi.1000471.s004 (0.04 MB PDF)
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