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Abstract

When there is not one obvious candidate technology, entrants to a new in-

dustry face a non—trivial choice between longer lead times in the setting up of

production and a better chance that the technology could successfully deliver.

This paper shows how this tradeoff may yield gradual diffusion. Diffusion is

more protracted in industries where learning opportunities are more bountiful.

The equilibrium minimizes the long—run equilibrium price, just as in the stan-

dard Marshallian model of a competitive industry. The market structure does

not seem to affect the rate of diffusion with the monopoly choosing the same

rate of diffusion that prevails in competition despite restricting output.

JEL classificaions : L10, L11, O33.

Keywords : Technology choice, Production lead times, Diffusion, Learning
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1. INTRODUCTION

Often entrants to a new industry face a substantial amount of uncertainty as to

what technology may work in the new setting. The natural response is to adapt

and try out technologies that have proven to work elsewhere. But there is usually

not a single obvious candidate technology. There are technologies that call for few

adaptations and short lead times before production may be attempted. There are

technologies that require substantially more adaptations and longer lead times. But

more adaptations and longer lead times could improve the chance that the chosen

technology would ever work in the new setting at all. These ideas go back to Alchian

(1959), who argued that the payoff for firms to choose a longer lead time is that

production costs tend to be lower to follow.

How long to wait out before production should be attempted is an important and

conscious decision for entrants. In this paper, we study how these decisions of non—

atomistic producers collectively yield gradual diffusion. The period of time to wait

out before attempting production is a period of learning by doing. Our analysis

assumes that it cannot be substituted at all by heavier investment in physical capital

or in personnel. This is probably somewhat extreme. But empirical evidence abound

to support the notion that productivity increases with experiences (Bahk and Gort

(1993), among many others). This suggests, at the very least, that firms cannot

entirely substitute away time as an input in the setting up of production.

The investment in terms of foregone income for technologies with shorter waiting

times is lower. But these technologies could be less likely to work at all. That the

benefits and costs of technologies with various waiting times could just cancel out

in equilibrium is a distinct possibility. In this case, there are staggered entries into

full—fledge production and gradual diffusion in equilibrium. We show that under

some appropriate parameterization of the demand curve, output follows the familiar

2



S—shaped diffusion curve, and the density of technology choice is bell-shaped.

Clearly, the option to wait out longer before attempting production should only

be taken up if it yields a large enough improvement in the chance that production

could be successfully commenced. The analysis to follow shows that in competitive

markets, this turns into the condition that the last technology to be adopted is as-

sociated with the lowest long—run equilibrium price — a result only to be expected.

What is somewhat unexpected is that a monopoly would choose the same range of

technologies to try out as well. True, the monopoly restricts output. But the out-

put restriction is entirely through running each technology less intensively, while the

range of technologies to be tried out coincides with the range of technologies selected

in competitive markets.

This paper is, by all means, not the first paper to invoke learning by doing to help

generate gradual diffusion. The defining difference between the present paper and

previous analyzes that include, among others, Jovanovic and Lach (1989) and Rein-

ganum (1981), is that we assume that the benefits of learning are entirely internal,

whereas previous analyses concentrate on the spillovers of benefits from early to late

entrants. There are two major differences in the implications. First, where the bene-

fits of learning by doing are external, market size and the distribution of consumers’

willingness to pay could play decisive roles in the pace of diffusion. In a larger market

and in a market with more high income consumers, more firms would enter initially.

If the experiences acquired by early entrants spillover to subsequent entrants, the rate

of entry increases even further, speeding up the diffusion to low income consumers

as a result (Jovanovic and Lach (1989); Matsuyama (2002)). In the present model,

where the benefits of learning are purely internal, the pace of diffusion is a function

of technology only, but not of demand. And how long it takes for the product of the

new industry to diffuse to any given consumer does not depend on market size nor

the distribution of income. Second, entry and diffusion tend to be more gradual in
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models of external learning when productivity increases rapidly with industry—wide

experience. The reason is that if entries instead cluster temporally, a deviating firm

that chooses to wait just a bit longer before entry would become an order of magni-

tude more productive (Jovanovic and Lach (1989). We show that the opposite is true

in this paper. That is, with internal learning, entry tends to be concentrated tempo-

rally in case the benefits of learning increase rapidly with experience and flattens out

quickly.

As a theory of how different technologies would be simultaneously adopted, the pa-

per is related to the literature on appropriate technology (Basu andWeil (1998)). This

paper is closest to Jovanovic (2004) who also considers how differences in production

lead times among firms result in staggered entries and exits and gradual diffusion.

The major difference is that the present paper models lead times as conscious de-

cisions of firms, whereas Jovanovic (2004) assumes that production lead times for

individual producers follow the same stochastic process.

The rest of the paper is organized as follows. The next section explains the basic

setup and presents a 2—technology example. Section 3 generalizes to analyzing where

there is a continuum of technology. Section 4 illustrates, via two examples, how

the lifecycle of the industry depends on whether learning is primarily active in the

sense of Ericson and Pakes (1995, 1998) or passive in the sense of Jovanovic (1982).

Section 5 explains how in the present model the roles played by demand on the rate

of diffusion is decidedly minor. Section 6 compares the monopoly’s technology choice

with a competitive industry’s technology choice. Section 7 concludes.

2. TECHNOLOGY CHOICE

We study an industry that faces a demand curve q = D (p), where q is industry

output and p is industry price. Potential entrants into the industry suddenly become

aware of its existence at date zero. There is a menu of technologies indexed by z —
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the waiting time until production starts. If it commits to technology z, the firm’s

output depends on the firm’s age, t, as follows:

yt =


0 if t < z 1 with prob. φz

0 with prob. 1− φz
if t ≥ z

, (1)

where φz < 1 is the probability that technology z would succeed for the given firm.

The outcomes are independent over firms, so that with a continuum of firms, φz is

also the fraction of such firms that succeed to produce. The firm must be present in

the industry throughout the period to learn and to adapt the chosen technology for

production in the industry. While it develops its technology the firm forgoes income

of w per unit of time.

We shall assume that immediate production is infeasible for any of the technologies

on the menu, so that φ0 = 0. At some point L, φz starts to rise above zero and

asymptotes to a value not exceeding unity. Figure 1 plots two possible φz.

We shall show that no successful producers will choose to exit. This means that

output can only rise or, at least remains constant. Thus pt must fall over time. This

implies that all entries take place at t = 0, and firms whose technologies fail to deliver

at the chosen z would exit the industry permanently to return to earning w elsewhere.

The present value, Vz, that goes with technology z is

Vz = e
−rz

µ
[1− φz]

w

r
+ φz

Z ∞
z
e−r(s−z)psds

¶
, (2)

where r is the rate of interest. Let Nz be the mass of firms adopting technology with

a waiting time not longer than z. If N is continuous, we define nz = N 0
z. Industry

output at t is

qt =
Z t

0
φzdNz.

Equilibrium.–is the pair of functions (p,N) that satisfies:
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Fig. 1. Two learning curves

1. Market clearing:

qt = D(pt). (3)

2. Free entry:

Vz =
w

r
, (4)

for all z in the support of N and

Vz ≤ w
r
,

outside the support of N.

Note from (4) and (2) that the successful producers are strictly better off if they

remain in the industry. Hence indeed no successful entrants would choose to exit.

2.1 One—technology example

As a preamble to the analysis for which firms face genuine tradeoffs in their tech-

nology choices, it is instructive to examine the simpler case in which no such tradeoffs
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exist. Suppose

φz =

 0 if z < bz,bφ if z ≥ bz.
Choosing a z < bz is a lost cause and a z > bz is wasteful. Technology choice is trivially
at z = bz for all entrants. The zero-profit condition is

w

r
= e−rbz µh1− bφi w

r
+ bφp

r

¶
,

where p is the equilibrium price at time bz and thereafter. Rearranging,
p =

1 + erbz − 1bφ
w. (5)

There is a percentage markup of price over marginal cost equal to erbz−1bφ , which is

increasing in bz and decreasing in bφ.
All Nbz entrants at time 0 would stay until t = bz. Then at t = bz, a fraction bφ of the

entrants begin production, and so output from thereafter is qt = Nbzbφ. Since firm size
is fixed at 1, equilibrium price is a function of technology only. The demand curve

determines only the number of entrants, Nbz, via the condition:
Nbz = 1bφD

1 + erbz − 1bφ
w

 .
Because technology choice is trivially at bz for all entrants, there would only be

trivial dynamics in pt and qt : pt = D−1 (0) and qt = 0 until t = z; thereafter pt falls

to and stays at the level given in (5) , while qt rises to and stays at Nbzbφ. Further
all exits take place at the same time z. True, firms do experience different fortunes

over time as only a fraction of all entrants successfully make the transition to become

bona fide producers. But such is not enough to paint a picture where p falls and q

rises gradually, and technology choices are dispersed and exits are staggered.

7



Fig. 2. Identical technology choice

2.2 Two—technology example

Since everyone prefers a shorter waiting time and a higher success probability, we

can rule out choices of z at which φz is non—increasing. But if φz is strictly increasing

over at least a given range of waiting times, firms would face genuine tradeoffs between

shorter waiting times and higher success probabilities. To analyze this tradeoff in the

simplest setting possible, assume

φz =


0 if z < z1

φ1 if z1 ≤ z < z2
φ2 if z ≥ z2

,

for some z2 > z1 and φ2 > φ1. Each firm’s technology choice is between the more

ambitious z1 and the more certain z2.

By (5), if all entrants adopt the same technology zi, i = 1 or 2, the equilibrium

price from time zi and thereafter would be

ρzi ≡ w
Ã
1 +

erzi − 1
φi

!
.
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First, assume ρz2 > ρz1, as depicted in figure 2. Say all entrants adopt technology

z2. But then there must be positive expected profit for a deviating firm that adopts

technology z1. This firm only requires pt = ρz1 , for t ≥ z1, to break even. But in an
“all z2 equilibrium”,

pt =

 D−1 (0) t < z2

ρz2 t ≥ z2
.

Moreover, there cannot be an equilibrium in which both z1 and z2 are adopted. In

any such equilibrium, for t ≥ z2, pt = ρz2 must still hold. In case both z1 and z2 are

chosen, we must have qz1 < qz2 ; thus for t ∈ [z1, z2), pt > ρz2

³
> ρz1

´
. Indeed, in case

ρz2 > ρz1 , the unique equilibrium is where all entrants adopt z1. This is equilibrium

since any deviating firm adopting z2 requires pt = ρz2 for t ≥ z2 to break even, but
for all such times, pt remains equal to ρz1

³
< ρz2

´
in equilibrium.

Next suppose ρz1 > ρz2 instead, as depicted in figure 3. Can equilibrium still be

all entrants choosing the same shorter waiting time z1? A deviating firm choosing

z2 in an “all z1 equilibrium” can more than break even since in such an equilibrium,

pt = ρz1 > ρz2 , for all t ≥ z1 > z2. The equilibrium cannot be all entrants choosing

the same longer waiting time z2 either if the maximum price the market will bear,

D−1 (0) , is sufficiently high. In an “all z2 equilibrium”, a deviating firm adopting

z1 could sell at pt = D−1 (0), for t ∈ [z1, z2). If this D−1 (0) is sufficiently high, the
expected discounted profit could well rise above w/r for the deviating firm. In this

case, both z1 and z2 be would adopted in the unique equilibrium.

In this 2-technology example, the nature of equilibrium depends crucially on whether

or not ρz2 < ρz1 holds, or equivalently,

φ2
φ1
>
erz2 − 1
erz1 − 1 . (6)

If the condition is met, both technologies would be adopted in equilibrium. Otherwise,

the option to wait out a longer period of time before attempting production would
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Fig. 3. Dispersed technology choice

not be taken up by firms. Condition (6) is only met if φ2 exceeds φ1 by more than an

amount that is a function of the forgone income of waiting out longer. In this case

and only in this case, firms find it worthwhile to wait out longer than is absolutely

necessary before attempting production.

Moreover, in the 2—technology example, the last technology adopted is the one with

the lower ρz. Intuitively, entry should not have stopped if the long—run equilibrium

price can possibly be lower still. But it should not have proceeded past where the

long—run equilibrium price is lowest either.

Finally, in this example, as in where the technology choice is trivially at a given z,

demand plays no role in determining {pt} as long as there is a sufficiently highD−1 (0) .
Would these conjectures apply in general where φz is continuously increasing over a

range of waiting times? To this we now turn.
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3. DISPERSED TECHNOLOGY CHOICE AND WAITING TIME

We begin the analysis by assuming that adoption is spread out over some interval

[τ , T ]. Having derived some results in this way, we shall then show that adoption is

indeed spread out as we claim. But first we can rule out a mass of producers adopting

the same technology z, except possibly at the lowest z.

Proposition 1 Suppose D is continuous and that φ0z > 0 for z ∈ [τ , T ], and that N
is increasing on [τ , T ] . Then N is continuous on [τ , T ].

Proof. Let ξz =
R∞
z e−r(s−z)psds. Then since each z ∈ [τ , T ] is chosen by some firm,

Vz = e
−rz

µ
[1− φz]

w

r
+ φzξz

¶
=
w

r

is constant on [τ , T ]. Therefore V 0 = V 00 = 0 on [τ , T ]. That V 00 = 0 implies that ξ0

is continuous. But

ξ0 = −pz + rξ

so that pz = rξ − ξ0 is continuous. And continuity of D then implies that N too is

continuous.

A corollary of proposition 1 is that:

Corollary 1 If D is continuous and that φ0z > 0 for z ≥ L, the only possible mass
point in N is at z = L, and for all z > L, N must be continuous.

Although the conditions referred to in corollary 1 are not the only set of conditions

under which technology choices and waiting times would be dispersed in equilibrium,

they do refer to an environment most amenable to analysis. We proceed with the

analysis under such an environment. First if N has supports over [τ , T ] , where τ ≥ L,
combining (2) and (4) and rearranging, for all t ∈ [τ , T ],

w

r

Ã
1 +

ert − 1
φt

!
=
Z ∞
t
e−r(s−t)psds. (7)
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Differentiating with respect to t,

w

r

Ã
rertφt − φ0t (e

rt − 1)
φ2t

!
= −pt + r

Z ∞
t
e−r(s−t)psds.

But from (7),

r
Z ∞
t
e−r(s−t)psds = w

Ã
1 +

ert − 1
φt

!
,

and hence

pt = w

Ã
1 +

φ0t
φ2t

ert − 1
r
− 1

φt

!
. (8)

This is the solution for pt, t ∈ [τ , T ] .
We must yet determine the interval [τ , T ]. At T and thereafter, output becomes

stationary, and so does price. If T is the last technology adopted, equilibrium price

thereafter is given by

pT = ρT ≡ w
Ã
1 +

erT − 1
φT

!
. (9)

But this must be the same as the RHS of (8) when evaluated at T . Thus we have the

restriction; i.e., the implicit function for T :

φ0T
φT

erT − 1
r

= erT . (10)

Next, we determine τ . There are two cases to consider.

1. D−1 (0) > pL, where pL is the RHS of (8) evaluated at t = L. In order that

pτ = pL when production first begins, there will have to be a mass of entrants

NL at L satisfying

pL = D
−1 (NLφL) . (11)

2. D−1 (0) < pL. Here τ satisfies

pτ = D
−1 (0) , (12)

in which case N has no mass points throughout.
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All this pins down pt and the interval [τ , T ] on which it is defined. In the above

derivation, we assume that there are no holes in Nz on [τ , T ]. This is guaranteed to

be the case as long as long as

1. pt, as defined in (8) , is strictly decreasing on [τ , T ] .1

For (8)− (12) to constitute a unique equilibrium, we also require that

2. pt stays above w on [τ , T ] .

3. A unique and positive solution to (10) exists.

4. No one would want to enter outside of the support of N ; i.e.,

Vz ≤ w
r

for z /∈ [τ , T ] .

Proposition 2 A unique equilibrium where technology choices are dispersed, as char-

acterized by (8)− (12) , exists if, in addition to the conditions stated in corollary 1,

−φ0t
φt

³
ert − 1

´
+ rert < 0, (13)

for t arbitrarily close to L, and
φ00t
φ0t
≤ r, (14)

for all t ≥ L.

We illustrate the idea of the proposition in figure 4. First ρt, which is the long-run

equilibrium price as a function of the date when output stabilizes, is plotted as an

U-shaped curve. Given that φt is bounded below 1, ρt, as can be seen from (9), must

eventually slope upward. Differentiating (9) yields the LHS of (13). Thus, if (13)

holds, ρt must first slope downward.
1Suppose there is some subinterval [t1, t2] within [τ , T ] , along which N has no positive support.

Then pt = pt1 , for all t ∈ [t1, t2], which contradicts a strictly decreasing pt, as given by (8), over the
entire [τ , T ] interval.
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Fig. 4. Existence and uniqueness of equilibrium

Next we can use (13) to verify that, over the interval where ρt is decreasing, pt as

defined by (8) does stay above w. Moreover if (14) holds, it is strictly decreasing.2

The date when output stabilizes T is given by (10) . But then (10) holds at where the

LHS of (13) vanishes. Insofar as the LHS of (13) is the slope of ρt, T is at where ρ is

at the minimum. The last technology to be adopted must help bring forth the lowest

long—run equilibrium price.

The similarity of price determination in figure 4 with the textbook Marshallian

model of a competitive industry is apparent. In the latter model, free entry ensures

that, in the long run, the price is equal to the minimum of the U—shaped average cost,

at which average and marginal costs are equated. In the present model, the long—
2Differentiate (8) with respect to t :

∂pt
∂t

=

µ
2

·
rert − φ0t

φt

¡
ert − 1¢¸+ ·¡ert − 1¢µφ00t

φ0t
− r
¶¸¶

φ0t
φ2t

w

r
,

which is guarantied to be negative if (13) and (14) hold.
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run equilibrium price is equal to the minimum of the U—shaped ρt curve at which

the ρt and the pt curves intersect. This long—run equilibrium is reached gradually

as successive cohorts of entrants turn to become bona fide producers over time, in a

process akin to how entries are thought to drive individual firms to move down the

marginal cost curve in the textbook model.

The final step in establishing the existence of equilibrium is to make sure that no

firms find it advantageous to enter outside [τ , T ] : If output stabilized at T, for all

t ≥ T , pt = ρT . Entry at any z > T would have yielded a value equal to w/r if, for

all t ≥ z, pt = ρz. Now that T minimizes ρ, for all z > T, ρz > ρT = pT . Entering at

any z > T must then yield a value below w/r.

In figure 4, we assume D−1 (0) < pL, so that pτ = D−1 (0). In this case, the value

of entering at some z < τ would have been equal to w/r if pt had followed (8) for all

t ∈ [z, T ]. But for all t ∈ [0, τ ], pt = D−1 (0) instead. Entering at any z < τ must

then yield a value below w/r. In case D−1 (0) > pL, τ = L. Clearly, no one would

want to enter at any z < L, with φz assumed equal to 0 for all such waiting times.

The key to dispersed technology choice is condition (13), which can be rewritten

as
φ0t
φt
>

rert

ert − 1 . (15)

This is the counterpart of (6) in the 2—technology example. In the present analysis

and in the 2—technology example, whether or not firms would ever wish to wait out

longer than is absolutely necessary before attempting production hinges on whether

there would be a lower long—run equilibrium price to follow. In turn, this will be

the case when the profile of success probability is sufficiently steep over a range of

technology choice. That is, when (15) above and (6) for the 2—technology example

hold.

We now resume to complete the characterization of equilibrium. When the condi-

tions of proposition 2 are met, N is differentiable. This allows us to determine nt as
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follows: From (3), Z t

τ
φsnsds = D (pt) .

Differentiating and rearranging,

nt =
1

φt
D0 (pt)

dpt
dt
. (16)

Since we know pt we also know dpt/dt, and so we have nt.

4. LEARNING CURVE AND INDUSTRY LIFECYCLE — TWO

EXAMPLES

Our goal in this section is to describe how a new industry would evolve under two

different scenarios : (i) when very little is known about what would work in the

new industry, and (ii) when the technology used in the new industry is expected

to be very similar to those used elsewhere. In the first scenario, the payoffs for

waiting out longer before attempting production to learn what may work could be

bountiful. This corresponds to, in our model, a φz function that rises rather gradually

as z increases. Learning in the industry is primarily active in the sense of Ericson

and Pakes (1995, 1998), where an individual firm’s survival is largely determined

by its choice of learning investment in terms of time lost to production. In the

second scenario, on the contrary, the necessary adaptations of existing technologies

would be relatively minor. The φz function in such an industry would rise toward

its upper bound relatively rapidly. Learning in this case is primarily passive in the

sense of Jovanovic (1982), where learning investment plays a relative minor role in

an individual firm’s survival probability, which depends largely on the firm’s initial

endowement.

Specifically, we examine the technology choices and evolutions of pt and qt under

two specifications of φz :

1. φSz = 0.01z
2 − 0.00038z3,
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2. φRz = 0.105z + 0.018z
2 − 0.002z3,

for z ≥ L = 0.5. The two learning curves are those plotted in figure 1. In the analysis
to follow, we set r = 0.05 to give a unit of time an interpretation of a year, and

assume w = 1 and a demand curve: D (p) ≡ (12− p)6, whereby D−1 (0) = 12.
The major implication of our analysis is that diffusion should be more gradual when

there is a longer range of waiting times over which ρz remains downward sloping, or

equivalently, when there is a longer range of waiting times over which φz remains

relatively steep. Hence, the major difference in the life—cycles of the two industries

seems to be that there should be more gradual and protracted output increase under

the more gentle learning curve φSz (active learning) than under the more rapid learning

curve φRz (passive learning).

τ T T − τ pT/pτ

φSz 3.25 10.87 7.62 0.17

φRz 0.5 3.57 3.07 0.69
Table 1 : Two industry lifecycles

In table 1, we report the various characteristics of the life—cycles of the two indus-

tries. Under φSz , pL > D
−1 (0), and there are no mass points throughout N . In this

case, τ is pinned down by pτ = D−1 (0) = 12. Under φRz , pL < D
−1 (0), however, and

so τ = L, and equilibrium is supported by a mass of entrants at τ = L. Under the

more gentle learning curve φSz , where learning is primarily active, there is indeed more

protracted diffusion inasmuch as [τ , T ] spans a longer time interval than when learn-

ing is relatively rapid and passive as under φRz . To accompany the more protracted

diffusion, industry φSz also experiences a more substantial fall in pt, and therefore a

greater output increase over time. That output increase should be more gradual but

also more substantial under active, as opposed to passive, learning is a conclusion also

reached in Ericson and Pakes (1998) under rather different specifications of the two
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types of learning. Perhaps then this difference should be considered as a rather robust

prediction of how, in a broad sense, active learning compares with passive learning.

Output increase under φSz is not just more protracted but also more S—shaped

than under φRz , as shown in figures 5 and 6, respectively. The S—shaped diffusion

curve, along which output first increases at an increasing rate, has been reported

to well describe the pattern of output increase in many industries since Griliches

(1957). Figures 7 and 8 show, respectively, that technology choices under φSz are

more dispersed and bell—shaped than under φRz .
3 The S—shaped diffusion curve in

figure 5 then seems to have been a result of the bell-shaped pattern of technology

choice in figure 7 : Output would increase at an increasing rate for a period of time

if nt increases rapidly in the interim. Previous theoretical analyses largely rely on

some kinds of ex-ante heterogeneity among firms or external effect, whether explicit

or implicit, to help generate a S—shaped diffusion curve.4 In contrast, the present

analysis shows that a S—shaped diffusion curve may arise in the entire absence of any

ex-ante heterogeneity among producers and non—pecuniary externality.

Finally, the present analysis suggests that passive and active learning may also be

distinguished by the patterns of exit. If under passive learning, the choices of lead

times tend to cluster temporally as shown in figure 8, so do exits. Then the shakeout,

defined by Gort and Klepper (1982) as the episode when the number of producers in

an industry is falling from its peak, comes sooner, is more discernable, and ends more

abruptly.5

3In fact, technology choices under φRz are even more concentrated at the first available technology

z = L than is shown in figure 8, where a mass of entrants adopting z = L is not depicted in the

figure.
4Jovanovic and Lach (1989) and Davies (1979), for example. See also the surveys in Lissoni and

Metcalfe (1994) and Geroski (2000).
5Jovanovic and Tse (2006), in a vintage capital model, find that the shakeout should come sooner

when technological change proceeds at a faster pace. The present analysis presumes a shakeout a
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Fig. 5. qt under φ
S
z : A more protracted and S—shaped diffusion

Fig. 6. qt under φ
R
z : A more rapid diffusion
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Fig. 7. nt under φ
S
z : Bell—shaped and dispersed

Fig. 8. nt under φ
R
t :Skewed and concentrated
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5. MARKET SIZE, INCOME DISTRIBUTION, AND DIFFUSION

A ubiquitous implication of models of learning by doing is that market size and the

distribution of income among consumers, through their impacts on demand, could

play important roles in determining the pace of diffusion (Jovanovic and Lach (1989);

Matsuyama (2002)) A larger population of all consumers in general and a larger

population of high income consumers in particular raise the profitability of entry and

investment at the outset. Subsequent entrants then benefit from the industry—wide

learning by doing that originated from the higher initial entry. All this speeds up

the diffusion to low income consumers. The present model is a model of learning by

doing in which the time that an entrant must wait before production commences is

a period of learning and adaptation. But where the benefits of learning are purely

internal, demand plays no role in determining the pace of diffusion.

The argument can be formalized as follow. Suppose the market is populated by a

continuum of H consumers, each of whom share the same preference :

u = Iv + x,

where I = 1 if the consumer buys a unit of the good and 0 otherwise, v the value the
consumer attributes to the consumption of the good, and x the quantity of an outside

good consumed. Consumer i has income yi to be allocated between the purchases of

the two goods:

Ip+ x ≤ yi,

where we normalize the price of the outside good to 1. No borrowing nor lending is

allowed. Hence if yi < p, consumer i spends his entire budget on the outside good.

priori, and is concerned with factors that determine the characters of the shakeout. This stands in

contrast but is complementary to Utterback and Suarez (1993), Hopenhayn (1993), Jovanovic and

MacDonald (1994), Klepper and Miller (1995) and Klepper (1996, 2002) and Jovanovic and Tse

(2006), whose focuses are on factors that help give rise to the shakeout.
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If yi ≥ p, the good becomes affordable, and consumer i will buy one unit if v > p as
well. That is, consumer i will buy if p ≤ min {yi, v}. Let the distribution of income
among consumers be given by G (y), with upper support equal to y. If v > y, the

quantity demanded at price p is given by

q = H (1−G (p)) . (17)

As p falls over time, the good will reach more and more consumers. Specifically, the

good will diffuse to consumer i at time t, where t solves pt = yi. In the present model,

however, pt is entirely determined by φz and w; it is invariant to the parameters of

the demand curve. Neither market size H nor the distribution of income G has any

effects at all on when a consumer with a given income may first start to buy.

Market size and income distribution affect equilibrium only in terms of qt and nt.

By (17), with pt staying at the same level asH varies, qt will rise in straight proportion

to increases in H. The same conclusion applies to nt too, as can be seen by a simple

substitution of (17) into (16).

6. MONOPOLY

In competitive markets, we find that the long—run equilibrium price minimizes ρz.

The extent of dispersion in technology choice and the rapidity of diffusion depends

on for how far ρz remains decreasing. Does a monopoly tend to adopt a wider or a

narrower range of waiting times? Or equivalently, does market power result in more

or less rapid diffusion?

Consider a monopoly hiring some MT managers at date 0, each of whom will be

assigned to work on a given technology. When the waiting time of a given technology

is over, the monopoly will release the assigned manager if the technology fails to

deliver. The wage per unit of time is the opportunity cost of managers, w. The

monopoly chooses the number of managers to be assigned to technology z = t, mt,
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to maximize

Π =
Z ∞
0
e−rt

h
D−1 (qt) qt − (MT −Xt)w

i
dt (18)

subject to
dqt
dt
= mtφt, q0 = 0; (19)

dXt
dt

= mt (1− φt) , X0 = 0; (20)

Mt =
Z t

0
msds. (21)

In (18) and (20) , Xt denotes cumulative exit at time t, and hence MT −Xt denotes
the number of managers who remain employed by the monopoly at time t. We prove

in the appendix that:

Proposition 3 Assuming the conditions in proportion 2 are met, the monopoly chooses

the same interval [τ , T ] on which mz > 0 as the interval selected in competition. For

each t ∈ [τ , T ] , the monopoly’s optimum satisfies

µt = w

Ã
1 +

φ0t
φ2t

ert − 1
r
− 1

φt

!
, (22)

where

µt =
³
D−1

´0
(qt) qt + pt

is the monopoly’s marginal revenue.

The next step is to determine whether there would be any systematic bias for the

monopoly to cluster his technology choices around any particular z ∈ [τ , T ] relative to
the profile of technologies chosen in competition. The answer seems to be no. Observe

that the competitive equilibrium price coincides with the left side of (22). True, the

monopoly produces less at each t, but otherwise, its marginal revenue is set equal to

the competitive price at each t. Hence the output restriction at each t is, roughly
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speaking, uniform. If we assume a demand curve of the form qt = A (p− pt)α , for
some A > 0, α > 0, and p ≥ 0, we can show that

mz = nz

µ
α

1 + α

¶α

. (23)

Where mz is proportional to nz, the probability densities of technology choice under

monopoly and competition just coincide for all z ∈ [τ , T ] .

7. CONCLUSION

This paper started out arguing that entrants to a new industry could face non—

trivial choices among technologies with different lead times and success probabilities.

We then showed that how in this environment, there can be gradual diffusion, and how

competition minimizes the long—run equilibrium price, via selecting the technology

consistent with the least long—run price as the last technology to be adopted. When

learning opportunities are more bountiful, diffusion tends to be more gradual and

exits more spread out. On the contrary, when learning opportunities are more limited,

the choices of lead times and thereby exits would cluster temporally. Furthermore,

we showed how under internal, as opposed to external, learning by doing, demand

plays at most a minimal role in determining the rate of diffusion. Finally, a similar

conclusion holds with respect to market structure, whereby a monopoly would choose

a rate of diffusion similar to the rate of diffusion under competition.

APPENDIX

Proof of proposition 3.–

The problem is almost a standard optimal control problem, except for the integral

constraint in (21) . To make it amendable to standard optimal control techniques, we

define a new state variable:

γt = −
Z t

0
msds,
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whereby
dγt
dt
= −mt. (24)

The initial and terminal conditions on γt are, respectively,

γ0 = 0 and γT = −MT , (25)

where the latter is simply a restatement of (21). The integral constraint in (21) can

thus be replaced by (24) and (25) . Further, rewrite (18) as

Π = Π1 − w
r
MT , (26)

where

Π1 =
Z ∞
0
e−rt

h
D−1 (qt) qt +Xtw

i
dt. (27)

The maximization of Π proceeds in two stages. First, we fix MT at some arbitrary

value and maximize Π1 subject to (19) , (20) , (24) , and (25) . This step yields the

maximized value of Π1 as a function of MT . We then proceed to maximize Π with

respect to MT .

Step 1: Write the Hamiltonian of (27) as

Ht = e
−rt hD−1 (qt) qt +Xtwi+ λqtmtφt + λXt mt (1− φt)− λγtmt,

where λqt , λ
X
t , and λγ

t are the co—state variables of the respective constraints. The

necessary conditions for maximum are

λqtφt + λXt (1− φt)− λγ
t ≤ 0 (with equality if mt > 0) , (28)

dλqt
dt

= −ertµ (qt) , where µ (qt) =
³
D−1

´0
(qt) qt +D

−1 (qt) , (29)

dλXt
dt

= −e−rtw, (30)

dλγ
t

dt
= 0, (31)
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lim
t→∞λqt = lim

t→∞λXt = 0, (32)

in addition to (19) , (20) , (24) , and (25) . Now by (31), λγ
t is time—stationary, and

we may drop the time subscript. Integrating both sides of (30), while making use of

(32) , yields

λXt = e
−rtw
r
. (33)

Suppose mt > 0 over some interval [τ , T ]. For t ∈ [τ , T ] , (28) holds as an equality:

λqt =
1

φt

µ
λγ − e−rtw

r
(1− φt)

¶
,

where we have made use of (33) to substitute out λXt . Differentiating:

dλqt
dt

= −φ0t
φ2t

µ
λγ − e−rtw

r
[1− φt]

¶
+
1

φt

µ
e−rtw [1− φt] + e

−rtw
r
φ0t

¶
.

Setting the RHS of the above equal to the RHS of (29) and simplifying,

µ (qt) =
φ0t
φ2t
ertλγ − w

r

"
φ0t
φ2t
+
1− φt
φt

r

#
. (34)

This characterizes the time-path of output over the interval [τ , T ] as a function of λγ .

Step 2: λγ , as the Lagrange multiplier of (24) and (25) in the maximization of Π1,

satisfies6

∂Π1

∂γT
= −λγ.

But γT = −MT ; hence
∂Π1

∂MT

= λγ .

The first order condition of maximizing (26) is then

λγ =
w

r
.

Substituting the above into (34) and simplifying yield (22). The boundaries of the

interval [τ , T ] are yet to be determined. When mt first turns positive, qt = 0. At zero
6See Chiang (1992), p.206.
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output, the marginal revenue of the monopoly is simply D−1 (0) . Then τ solves

D−1 (0) =

Ã
1 +

φ0τ
φ2τ

erτ − 1
r

− 1

φτ

!
w.

This derivation assumes D−1 (0) exceeds the RHS of the above evaluated at τ =

L. Were this condition not met, τ = L, analogous to how τ is pinned down in

competitive markets in such circumstances. To determine T, observe that the value

to the monopoly of hiring the last manager is

φT

Z ∞
T
µ (qT ) e

−rtdt,

whereas the cost is Z T

0
we−rtdt+ φT

Z ∞
T
we−rtdt,

and they must be equalized to maximize profit. This yields, after some simplification,

µ (qT ) =
1− e−rT (1− φT )

e−rTφT
w.

Equating the RHS of this equation to the RHS of (22) and evaluating at T yields

exactly (10).
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