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Abstract

This study empirically examines the impact of the interaction between market and default

risk on corporate credit spreads. Using credit default swap (CDS) spreads, we find that

average credit spreads decrease in GDP growth rate, but increase in GDP growth volatility

and jump risk in the equity market. At the market level, investor sentiment is the most

important determinant of credit spreads. At the firm level, credit spreads generally rise with

cash flow volatility and beta, with the effect of cash flow beta varying with market conditions.

We identify implied volatility as the most significant determinant of default risk among firm-

level characteristics. Overall, a major portion of individual credit spreads is accounted for by

firm-level determinants of default risk, while macroeconomic variables are directly responsible

for a lesser portion.
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1. Introduction

Credit risk and market risk are inherently linked. It has been documented that default

probabilities and recovery rates vary through business cycles.1 It is also well known that

interest rates and corporate bond yield spreads fluctuate over business cycles, as aggregate

and firm-level outputs critically depend on the state of the economy. For instance, Fama and

French (1989) find that bond yields rise when economic conditions are weak. However, these

empirical findings have not been fully understood in a structural framework. In fact, tradi-

tional structural models based on the seminal Merton (1974) model have generally ignored

the interaction between market risk and credit risk. Consequently, they have failed to match

the levels of observed credits spreads (“the credit spread puzzle”).

This paper examines the intrinsic link between market risk and credit risk inspired by

recently developed structural models that directly explore the impact of market risk on credit

spreads.2 Specifically, we use individual firms’ credit default swap (CDS) spreads to investi-

gate new empirical implications from these structural models. For instance, in addition to the

previously documented negative correlation between GDP growth rate and credit spreads, we

show that credit spreads also increase in growth volatility as implied by these models. We

further demonstrate that credit spreads decrease with a sentiment measure based on the Con-

ference Board Consumer Confidence Index. Because consumer/investor sentiment is usually

negatively correlated with the market-wide risk aversion and uncertainty about future eco-

1See, e.g., Acharya, Bharath, and Srinivasan (2007), Bonfim (2009), Bruche and González-Aguado (2009),
Carling, Jacobson, Lindé, and Roszbach (2007), Duffie, Saita, and Wang (2007), and Pesaran, Schuermann,
Treutler, and Weiner (2006).

2These models include Bhamra, Kuehn and Strebulaev (2007), Chen (2007), Chen, Collin-Dufresne and
Goldstein (2007), David (2007), Hackbarth, Miao, and Morellec (2006), and Tang and Yan (2006).
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nomic growth, this result is consistent with the notion that credit spreads depend on investors’

risk attitude and uncertainty about future economic prospects, as predicted by the models.

A number of existing empirical studies use yield spreads of corporate bond indices or

average yield spreads within a particular rating class to characterize the dynamics of credit

spreads (see, e.g., Huang and Huang, 2003). This approach may obscure the importance of

firm heterogeneity and lead to underestimation of expected losses, as pointed out in Hanson,

Pesaran and Schuermann (2008). With aggregate credit spreads, macro variables tend to

explain a big portion of their variations over time. However, when we re-examine these

relations in a panel regression, we find that firm characteristics traditionally determining

default risk account for the bulk of the explanatory power, while a monthly time dummy that

captures the time series variation in credit spreads accounts for just about 6% of the overall

variation. Much of that explanatory power stems from the macro variables implied by the

structural models, such as the sentiment indicator.

Recent models also provide additional cross-sectional predictions. We confirm that, across

firms, credit spreads decrease with firm-specific growth rate of cash flows and increase with

cash flow volatility, as predicted. More interestingly, we detect an important and time-varying

role of cash flow beta, which measures the covariation of the firm-level cash flow with the

aggregate output. In particular, the evidence suggests that during economic expansions, a

high cash flow beta helps reduce credit spreads, while during economic recessions, a high cash-

flow beta may increase credit spreads. This pattern highlights the effect of the interaction of

market risk and credit risk on the dynamics of credit spreads.
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Jarrow and Turnbull (2000) suggest that incorporating macroeconomic variables may im-

prove a reduced-form model of credit spreads. Duffie, Saita and Wang (2007) use macroe-

conomic variables, such as industrial production growth, to help better predict corporate

defaults. Our study represents an effort in a systematic investigation of the impact of market

conditions on firm-level credit spreads in the structural framework provided by the recent

theoretical models mentioned above. It also bridges the two strands of literature on credit

risk that tend to focus separately on the macro and micro determinants and hence allows

us to assess the relative explanatory power of macro and micro variables for firm-level credit

spreads and examine the interaction between market conditions and firm characteristics.

The rest of this paper is organized as follows. Section 2 discusses the empirical implications

of the recently developed models that incorporate market conditions into defaultable bond

pricing. Section 3 introduces the CDS data used for the empirical analysis. Sections 4 and 5

present results of the time-series and cross-sectional patterns of credit spreads based on the

model implications, respectively. Section 6 concludes.

2. Empirical implications of recent theories

The recent literature has seen a number of theoretical papers attempting to understand

the link between credit spreads and macroeconomic risk. For example, Tang and Yan (2006)

investigate the dynamics of firm-level credit spreads by highlighting the role of a firm’s cash

flow beta that measures its exposure to macroeconomic risk. They show that incorporat-

ing a macroeconomic influence on a firm’s cash flow process helps improve significantly the

fit of default probabilities and credit spreads. Other papers introduce habit-formation or
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recursive preference structures in order to illustrate the connection between the equity risk

premium puzzle and the credit spread puzzle (Bhamra, Kuehn and Strebulaev (2007) and

Chen, Collin-Dufresne and Goldstein (2007)), or reconcile the observed high credit spreads

with low corporate leverage ratios (Chen, 2007). Moreover, Chen (2007) and David (2007)

consider the impact of inflation and allow for regime-switching in the growth rate of aggregate

consumption or production to capture the uncertainty in the business cycle.3 These models

are calibrated to aggregate historical data and demonstrate a good fit with credit spreads on

average.

Analysis in these papers manifests the significant impact of macroeconomic conditions on

credit spreads, with major predictions consistent across all models. First, credit spreads are

counter-cyclical, widening during recessions and narrowing during expansions. This result

is related to the observed negative correlation between interest rates and credit spreads, as

discussed in Longstaff and Schwartz (1995), due to an inherently close relation between the

economic growth rate and the risk-free rate. While the counter-cyclical nature of credit

spreads has been documented before, the intuition for this result is much more clear in these

structural models: the growth rate of a firm’s cash flow process is generally positively related

to the economic growth rate. All else being equal, an increase in the economic growth rate,

such as the GDP growth rate, will increase the firm-level growth rate and hence decrease the

default probability and the credit spread.

3The regime-switching mechanism, also considered in Hackbarth, Miao, and Morellec (2006) and Bhamra,
Kuehn and Strebulaev (2007), introduces a jump component in the pricing kernel and through its correlation
with the flow-level cash flow prices a jump component at the firm level as well. This provides an economic
backdrop to a structural model proposed by Leland (2006), who shows that with the addition of a jump
component and liquidity costs, traditional structural models can be made to match both default probabilities
and credit spreads.
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Second, theoretical analysis indicates that credit spreads increase with the volatility of

the economic growth rate. A firm is more likely to experience cash flow shortfalls in a more

volatile economic environment, and hence more likely to default. Therefore, this represents

the effect of intertemporal economic risk, as the volatility of the economic growth rate tends

to be higher in recessions than expansions. Hence, this implication distinguishes the risk

effect from the growth effect discussed above.

Third, credit spreads also widen when investors are more risk averse. It has been argued

that investors become more risk averse during economic downturns, and this effect has been

linked to the “flight to quality” phenomenon. Even though some of the papers we discussed

above do not explicitly model the endogenous change of investors’ preferences, comparative

static analysis provides a gauge of the sensitivity of credit spreads to changes in preferences.

One possible proxy for investors’ preferences is the measure of their sentiments. We will

discuss further the use of sentiment measures to proxy for investors’ attitude towards risk in

our empirical examination.

The firm-level analysis also yields cross-sectional implications for credit spread dynam-

ics and for the effect of the interaction between macroeconomic conditions and industry or

firm-level characteristics. First, it indicates that credit spreads should decrease with the cur-

rent firm-specific growth rate and increase with the volatility of cash flows. Secondly, the

correlation between the firm-level cash flow and the aggregate output introduces an effect of

cash flow beta. Credit spreads may increase with cash flow beta during an economic down-

turn while decrease with cash flow beta during an economic expansion. This highlights the
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impact of the interaction between market risk and credit risk on credit spreads due to firm

heterogeneity.

In the remainder of this paper, we empirically examine these implications with the credit

default swap (CDS) data, which we describe in the next section.

3. Data and sample description

Several data issues make empirical analysis of credit risk difficult. Corporate bond yields

are known to contain substantial liquidity and tax premia due to illiquidty of the corporate

bond market and different tax treatments between corporate bonds and Treasury bonds.

Many corporate bonds also have embedded options, further complicating the measurement of

credit spreads based on corporate bond yields. To make the matter worse, there is a debate

about an adequate reference for the risk-free rate in order to obtain yield spreads.

The rapidly growing credit derivatives market provides a relief for the data problem.

Without concerns of a reference risk-free rate and embedded optionality and with improved

liquidity in the credit default swap (CDS) market, CDS spreads have become a preferred

proxy for credit spreads. Duffie (1999) shows that under certain conditions, CDS spreads

indeed equal credit spreads. Ericsson, Jocobs, and Oviedo (2007) and Tang and Yan (2007),

among others, show that a large portion of CDS spreads can be directly attributed to credit

risk.

Our CDS data are from two major CDS brokers: CreditTrade and GFI. Both data sources

were previously used in the literature (e.g., GFI data in Hull, Predescu, and White (2004),
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and CreditTrade data in Blanco, Brennan, and Marshall (2005)). It is a rare instance to

combine these two data sources. Our CreditTrade dataset spans from June 1997 to March

2006, and our GFI dataset covers the period between January 2002 and November 2006.4 In

this study, we use CDS prices for non-sovereign U.S. corporate bond issuers denominated in

U.S. dollars, with the reference issue ranked senior. The CDS contracts in our sample have

maturities between 4.5 and 5.5 years. Monthly data are obtained by averaging transactions

within the month. In our dataset, there are 26548 issuer-month CDS spread observations

with an average CDS spread of 110.5 basis points.

Average CDS spreads are plotted in Figure 1. There is a significant time-series variation in

average CDS spreads. CDS spreads peaked in the second half of 2002 due to the turbulence in

the credit market. They subsequently declined, possibly due to (1) improved macroeconomic

conditions which tend to reduce the aggregate credit risk; (2) increasing dominance of high

quality issuers in the market; or (3) increased competition in the market that has improved

the efficiency in the prices of CDS contracts.

In addition to CDS spreads, we also conduct some analysis with default probabilities

using Moody’s KMV’s Expected Default Frequency (EDF). This measure is widely used in

the industry. Its advantage comes from the frequent updating of credit situations because the

indicator is based on the stock price of a reference firm. The time series of five-year market

average EDF is plotted in Figure 1. It shows that EDFs and CDS spreads tend to move

together, although there are periods when these two measures diverge (such as in 2001 and

4According to Risk magazine’s inter-dealer rankings, CreditTrade was the number one CDS broker before
2004, and GFI has been the top credit derivatives broker in the last several years.
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2004).

Our sample selection is therefore limited to the firms with outstanding CDS contracts dur-

ing the time period between June 1997 and November 2006. There are additional requirements

pertaining to the number of observations needed in our analysis. These requirements will be

discussed in the following two sections as they become relevant, together with descriptions of

additional data of macroeconomic variables and firm-level characteristics.

4. Macroeconomic conditions and credit spreads

In this section, we empirically test several predictions from the structural credit risk

models conditioned on macroeconomic variables. Our analysis employs the CDS data for

credit spreads and Moody’s KMV EDF data for the default probability measure. Hence,

compared to existing empirical studies, our examination has two distinct advantages: high

quality firm-level data of credit spreads and default risk, and a theory-motivated hypothesis.

4.1. Hypothesis and variable construction

The first implication of the theory is that default probability and credit spread decrease

with the economic growth rate. The most intuitive proxy for economic growth is the real GDP

growth rate. We obtain the real GDP data from the Federal Reserve Economic Database

(FRED).5 GDP numbers are only available at the quarterly frequency. We interpolate quar-

terly GDP numbers to obtain monthly growth rates. For robustness check, we also report the

results using the monthly industrial production growth rate, also from FRED, as a proxy for

5http://research.stlouisfed.org/fred2/
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economic growth.

The second implication of the theory is that default probability and credit spread increase

with volatility of the economic growth rate. Estimating economic growth volatility, however,

is a daunting task because economic growth rates are usually reported at a low frequency. To

mitigate the problem with the lack of high-frequency macroeconomic data for a contempo-

raneous estimate of volatility, we follow McConnell and Perez Quiros (2000) and Stock and

Watson (2002) and use the unexpected GDP growth rate to proxy for growth volatility by

estimating the following AR(1) model:

∆µt = ω + φ∆µt−1 + εt, (1)

where ∆µt is the monthly growth rate, φ measures the persistence of the growth rate. Mc-

Connell and Perez-Quiros (2000) show that
√

π/2|εt| is an unbiased estimate of the true

volatility. Hence, we use |εt| to proxy for growth volatility.6 We also apply this procedure to

the growth rate of industrial production.

When investors are more risk averse, they require a higher risk premium for holding risky

assets. Hence changing risk aversion will change the market risk premium and affect credit

spreads as well. Unfortunately, we do not directly observe the level of investor risk aversion

and its variation through time. A typical approach to estimate risk aversion is to extract

6We acknowledge a potential problem of measurement error with this proxy, especially with regime switch-
ing in GDP growth as shown by Stock and Watson (2005). However, this concern may be mitigated because
the known structural break seems to have occurred in the mid-1980’s, outside our sample period. We thank an
anonymous referee for pointing out this measurement issue. For robustness check, we have also used monthly
average implied volatility of the at-the-money S&P 500 index options from OptionMetrics to proxy for the
volatility of economic growth rate and obtain similar results.
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risk premium using option prices (see, e.g., Bliss and Panigirtzoglou (2004)). This approach

generates one risk aversion estimate for each option and then a certain type of aggregation is

needed to obtain an estimate for the market risk aversion. Instead of this elaborate process

of estimating the market risk aversion, which is inherently model-dependent, we opt to using

a measure of investor sentiment as a simple proxy.7 Therefore, we will investigate whether

credit spread decreases with investor sentiment. Among several available measures of investor

sentiment, only Conference Board Consumer Confidence Index and University of Michigan

Consumer Sentiment are updated monthly.8 We report results using the monthly Conference

Board Consumer Confidence Index as our sentiment measure, since similar results are obtained

using the Michigan Consumer Confidence Index.

Leland (2006) argues that a jump component in a firm’s asset process is critical to matching

observed default probabilities with theoretical ones. The implication is that default probability

and credit spread increase with jump risk. Empirically, we measure jump risk using the slope

of implied volatility over strike prices (the “smile”) for S&P 500 index options, following

Cremers, Driessen and Maenhout (2007).

Putting these implications together, the hypothesis we will test regarding the effect of the

market risk on credit spreads can be summarized as the following:

7We recognize the important distinction between investor sentiment and risk aversion. Sentiment reflects
investors’ belief about future market movement. Risk aversion measures investors’ taste for risky assets over
risk-free assets. Nevertheless, these two measures are highly correlated. When investor sentiment is low,
investors may save more in preparation for upcoming bad times, and hence raise the risk premium. Similar
behavior may be observed in a market with highly risk averse investors.

8Other sentiment proxies include Barron’s weekly investor confidence index, Investor Intelligence Index,
State Street Investor Confidence Index, Hulbert Nasdaq Newsletter Sentiment Index, etc. Baker and Wur-
gler (2006) construct a sentiment measure, but it is only available on an annual basis. Qiu and Welch (2004)
show that survey-based sentiment measures are superior to other constructed measures.
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Hypothesis 1 Default probability and credit spread are lower if the GDP growth rate is

higher, if the growth volatility is lower, if the sentiment is stronger, and if the implied volatility

smile of S&P 500 index options is flatter.

Figure 2 plots the time series of those macroeconomic variables, along with the market

average CDS spreads. It illustrates that credit spreads are negatively correlated with investor

sentiment but positively correlated with growth volatility. Table 1 provides the descriptive

statistics of those macroeconomic variables. It shows that correlations among those series are

rather low, thus mitigating the concern of multi-collinearity in multivariate regressions.

4.2. Methodology

Traditionally, empirical studies on the relations between credit spreads and macroeconomic

variables use aggregated bond yield spreads because of data limitation. Our unique dataset

allows us to employ various versions of regression analysis in order to evaluate the joint effects

of macroeconomic variables and firm characteristics.

First, consistent with the traditional approach, we aggregate the CDS data to obtain a

time series of market average CDS spreads and regress this series of average spreads on those

four economic variables (the market average approach). This approach assumes that firm

characteristics affecting credit spreads are not correlated with macroeconomic variables and

the level of average credit spreads is solely determined by macroeconomic conditions.

Admittedly, this assumption is rather strong. For instance, Korajczyk and Levy (2003)

show that firm leverage is strongly influenced by macroeconomic conditions. In order to
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relax this assumption, in the firm-by-firm approach, we regress firm-level CDS spreads on

macroeconomic variables. We keep firms with at least 16 monthly observations and obtain

176 such time series regressions. We then calculate the cross-sectional means and standard

errors of these coefficient estimates. The standard errors are adjusted by the number of firms

in the cross-section. This approach, used by Collin-Dufresne, Goldstein, and Martin (2001),

implicitly assumes that firms are independent in order to justify the standard errors.

In addition, we adopt a two-stage approach and denote it as the residuals approach. In

the first stage, we regress CDS spreads on cross-sectional fundamental determinants of credit

spreads with issuer fixed effects and monthly dummies. The coefficients for monthly dummies

can be attributed to the time-series effect unaccounted for by cross-sectional variables. In the

second stage, we regress the coefficient estimates for monthly dummies on macroeconomic

variables.

Finally, we perform a panel regression analysis to assess the relative explanatory power of

macroeconomic conditions and firm-level characteristics for credit spreads.

4.3. Empirical analysis

We start our analysis using the first three regression methodologies. We regress CDS

spreads on the four macroeconomic variables and report the results in Table 2. Over-

all, macroeconomic conditions have a significant impact on credit spreads. Hypothesis 1

is strongly supported in all three approaches, with some variations in parameter estimates

and their respective statistical significance across specifications.
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During our sample period, the GDP growth rate is a significant determinant of average

credit spreads. As implied by Panel A of Table 2, on average, a one-percent increase in the

GDP growth rate lowers credit spreads by 6-7 basis points. If we take the difference in GDP

growth rates between expansions and recessions to be 7%, then the credit spread difference

across business cycles is in the neighborhood of 42-49 basis points. We also find that growth

volatility is positively related to credit spreads. A one-percent increase in growth volatility

raises credit spreads by 2-7 basis points. In our sample, growth volatility can differ by about

3.5% across time, generating a change in credit spreads around 7-25 basis points.9

Investor sentiment is significantly and negatively associated with credit spreads. It has

the highest t value among the four macroeconomic variables in all three specifications. A

one-standard deviation move in investor sentiment is associated with CDS spread change of

about 25 basis points. Therefore, the effect of investor sentiment on credit spreads is also

economically significant.

The effect of jump risk on credit spreads is positive but the significance level varies across

specifications. In the Average and Residuals time-series regressions, a one-standard-deviation

change in the jump risk affects average CDS spreads by about 4.6 basis points, at the 15%

significance level. However, firm-level regressions show a highly significant jump risk effect,

both statistically and economically. This result is actually sensible, because both Average and

Residuals regressions are equivalent to examining the time-series properties of credit spreads

of portfolios, thus ignoring the heterogeneity across firms pointed out in Hanson, Pesaran

9We find that the implied volatility of S&P index options has a much stronger effect on credit spreads.
However, because the implied volatility may reflect other influences in addition to growth volatility, we report
here only the results on the growth volatility and will discuss the role of implied volatility later.
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and Schuermann (2008). The firm-level regressions take into account firm heterogeneity and

demonstrate the importance of the systematic jump risk at the individual firm level.10 This

is also consistent with the argument of Leland (2006) that a jump component is crucial for

fitting credit spreads with structural models.

The differences in R2s across the three specifications are worth noting. First, about 57%

of the variation in market average CDS spreads is accounted for by the four macroeconomic

variables. The R2 in the Residuals regression, which is similar to the market average re-

gression in that it involves a times series regression of a cross-sectionally aggregated variable

(time dummy), is consistent with this conjecture. In untabulated tests, we find that the

time-series regression R2 improves to 71% after we include other macroeconomic variables

such as risk-free rate, term spread, AAA-BAA spread, etc. Secondly, the average R2 of the

firm-by-firm regressions is only 32%, indicating that omitted firm heterogeneity could play a

significant role in firm-level analysis, consistent with the argument in Hanson, Pesaran and

Schuermann (2008).

As mentioned before, our monthly time series of the GDP growth rate is obtained through

the interpolation of the quarterly data. We do, however, arrive at qualitatively similar results

using quarterly data directly, albeit with fewer observations and hence reduced power. For a

robustness check, we use the monthly observable industrial production (IP) instead of GDP in

an analysis reported in Panel B of Table 2. The coefficient on the IP growth rate is significantly

negative, consistent with that for the GDP growth rate. However, IP growth volatility is

10We find that distributions of firm-level regression coefficients are uni-modal, suggesting that credit risk
induced by firm heterogeneity is to some extent diversifiable in portfolios.
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insignificant with an opposite sign compared to that for GDP growth volatility. Overall, the

effect of IP growth on credit spreads appears to be weaker than that of GDP growth, and

the R2s are generally lower in the IP analysis than in the GDP analysis. Furthermore, in an

untabulated analysis, we find that the IP growth rate becomes insignificant after we include

the GDP growth rate. This may indicate that GDP growth as a measure of the growth rate

of the aggregate economic output, in which industrial production has a shrinking portion in

recent years, may be a better state variable.

To alleviate concerns over the relatively short time series of the CDS data, we reexamine

our analysis in Table 3 with Moody’s Baa-Aaa spreads. This proxy of the aggregated market

credit spreads is available over a much longer time span. We use data from 1976 until 2007

so that all independent variables, except for the jump proxy, are available and report the

results of time-series analysis, which is comparable to the market average approach in Table 2.

We do not include the jump proxy because the OptionMetrics data are only available after

1996. In column (1), the independent variables include the IP growth rate, which is used

for its monthly availability, IP growth volatility, and the sentiment measure. All of them

have statistically significant coefficients. Column (2) adds the short-term interest rate as an

independent variable which improves the R2 from 27.5% to 52%. Column (3) sees the addition

of other macro variables, such as long-term interest rate, term spread, stock market return

and inflation rate, as explanatory variables and an improved R2 of 58.4%.

As an additional confirmation of the effect of macroeconomic conditions on default risk,

we use Moody’s KMV’s EDF as a measure of default probability and regress EDFs on the
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macroeconomic variables. This exercise serves two important purposes. First, default proba-

bility is a purer measure of the risk of default, while credit spreads contain additional effects

of recovery and liquidity. Secondly, the EDF measure has both one-year horizon and five-

year horizon, and thus allows us to differentiate the impact of market conditions on the term

structure of credit risk. This is not feasible at this time with the CDS data as prevailing CDS

contracts in our dataset are of a five-year term. The time period of our analysis using the

EDF measure is from January 1996 to October 2004, which overlaps a great deal with the

time period in our analysis with CDS spreads.

The results of this analysis are reported in Table 4 with Panel A for 5-year EDFs and

Panel B for 1-year EDFs. The overall results are consistent with the findings for credit spreads

discussed above. We make two interesting observations. First, the statistical significance of

the macroeconomic effect appears much stronger in firm-level regressions than in regressions

on average or residual EDFs, a phenomenon that is more pronounced than in Table 2 with

CDS spreads. This again highlights strongly the importance of firm heterogeneity in assessing

credit risk. Secondly, the systematic jump risk is more significant for the short-term default

risk than for the long-term default risk. This is consistent with the findings in Leland (2006)

and Duffie and Lando (2001) that a jump component is instrumental for matching short-term

default probabilities and credit spreads.

Traditional studies of determinants of credit spreads have focused separately on either

macroeconomic variables or firm-level characteristics. Few have investigated the relative ex-

planatory power of macro and micro variables for credit spreads. We address this issue in

16



Table 5, where we first investigate the explanatory power of macro variables alone in the panel

in Panel A. The first column contains only the monthly dummy as the independent variable,

which should capture all the time-series variations attributed to macroeconomic conditions.

It indicates that the aggregate macro effect accounts for 6.3% in the overall variation of CDS

spreads. This is a far cry from the high R2 observed in earlier studies of aggregated credit

spreads.

In order to see how well the proposed macro variables we discussed before represent market

conditions, we replace monthly dummies with our four macro variables in column (2) in Panel

A. The resulting R2 is 2.7% or about 43% of the total macro effect. We are mindful of the

potential measurement problem with GDP growth volatility and proxy for growth volatility

using the implied volatility of at-the-money S&P 500 index options instead in column (3). We

find that this implied volatility proxy has much more explanatory power than our measure of

GDP growth volatility, as the R2 increases from 2.7% to 4.1%. This may be due to the fact that

the implied volatility measure contains information beyond the market expectation of future

growth volatility, such as aggregate default probability since equity is generally leveraged.

Hence, the alternative measure of growth volatility helps increase explanatory power to 65%

of the total macro effect. Moreover, including other six common measures of macroeconomic

variables (short rate, long rate, term spread, credit spread, stock market return, and inflation)

can eventually increase the R2 to 5.1% or 81% of the total macroeconomic effect. Therefore,

our four macro variables capture a reasonable amount of the total macro effect.

In Panel B, we compare the explanatory power of macroeconomic conditions relative to
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firm characteristics such as leverage, volatility and jump that are commonly used determinants

of firm-level default probability. We find that firm characteristics explain much more of the

overall CDS spread variations (R2 of 47.2% without monthly dummies in column (3) versus

53.7% with monthly dummies in column (4)). However, the macroeconomic effect is distinct

from the effect of firm characteristics. Their explanatory power is largely complementary: the

aggregate explanatory power of 53.7% is about the sum of the R2 for monthly dummies, 6.1%

in column (1), and the R2 for firm characteristics, 47.2% in column (3). Note that, as shown

in column (2), a strong explanatory variable is the firm-level implied volatility, as it captures

the bulk of cross-sectional variations, consistent with Campbell and Taksler (2003). While

still a large portion of the CDS spread variation is not explained, consistent with Collin-

Dufresne, Goldstein, and Martin (2001), the macroeconomic effect accounts for about 11% of

the explained portion of overall CDS variations.

The high explanatory power of macroeconomic variables for aggregated credit spreads and

their relatively low explanatory power for firm-level credit spreads suggest that macroeconomic

conditions impact credit spreads through multiple channels. One is a direct channel, through

a common factor variation in the pricing kernel, as reflected in the effect of market volatility,

growth rate and investor sentiment. Another is an indirect channel, through their covariation

with firm-level default probabilities, as demonstrated in Table 4. Therefore, our analysis

suggests that most of the impact of market conditions on credit spreads appears to go through

the indirect channel.
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5. Firm characteristics and credit spreads

Our analysis thus far suggests the importance of firm heterogeneity. There have been

many studies that document the role of firm-level characteristics, such as leverage ratio,

profitability, and stock volatility, in determining firm-level default probabilities and credit

spreads. Theoretically, Tang and Yan (2006) make additional predictions on the effect of firm’s

cash-flow characteristics on credit spreads and on the interaction between market conditions

and credit risk. In this section, we empirically test these predictions.

5.1. Hypotheses and cash flow variable construction

The effect of cash flow variables on credit spreads has not been extensively examined in the

empirical credit risk literature. We are aware of only a couple of studies, such as Minton and

Schrand (1999) and Molina (2005), that analyze the effect of cash flow volatility on corporate

bond yield spreads. When a firm’s cash flow is more volatile, it is more likely that the firm

will have a cash shortfall, which may lead to financial distress and even default. Therefore,

we should expect that credit spread increases with cash flow volatility. Indeed, Minton and

Schrand (1999) and Molina (2005) have presented evidence in support of this prediction. We

re-evaluate this relation, along with other new predictions, using a different credit spread

measure and a different econometric method.

We measure the quarterly operating cash flow (OCF) as operating income before depre-

ciation (Compustat data item 21) adjusted for working capital accruals (Dechow, 1994).11

11Minton and Schrand (1999) argue that debtholders can only claim the firm value after investments. They
adjust this operating cash flow number for investment expenditures that are expensed as part of operating
income by adding back quarterly R&D and advertising expenses. Our results are not qualitatively affected by
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Cash flow volatility is measured as the coefficient of variation in a firm’s quarterly operating

cash flows over the past six year period:

CVCF = 100× standard deviation of OCF

|mean of OCF| . (2)

A minimum of twelve quarterly observations is required to calculate CVCF. We use a six-

year rolling window to calculate CVCF in order to obtain a more accurate measure. Similar

windows are used by Minton and Schrand (1999) and Molina (2005).

Some firms thrive even during economic downturns. Firms with higher firm-specific growth

rates are more likely to avoid default, ceteris paribus. Therefore, we should expect that credit

spread decreases with the firm specific growth rate. Accordingly, we run the following regression

for each firm i using data from the previous six years to obtain the firm-specific growth rate,

αi, for each month:

ξi
t = αi + βiµt + εi

t, (3)

where ξi
t is firm i’s total cash flow growth rate, µt is the GDP growth rate, βi is firm i’s cash

flow beta, and εi
t is random noise. Alternatively, we use αi + εi

t to proxy for the firm-specific

growth rate and the results are similar with those using αi alone.

Moreover, a higher systematic growth component should affect credit spreads. Cash flow

beta (βi) in (3) measures the systematic exposure of firm-level cash flows. Since economic

expansions are much longer than recessions, we should expect that unconditionally, credit

this adjustment. We do not make such an adjustment here because it would significantly reduce the number
of available observations.
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spread decreases with cash flow beta across firms. Hence, we can summarize the discussion

above into the following hypothesis:

Hypothesis 2 In the cross section, credit spread increases with cash flow volatility, decreases

with firm-specific growth rate and with cash flow beta.

There is also a conditional effect of cash flow beta (βi) on credit spreads that varies with

macroeconomic conditions. Firms with a high beta are more likely to perform well in an

up market. In a down market, however, high correlation with the market is not desirable.

Campbell and Vuolteenaho (2004) distinguish cash flow beta from discount rate beta and

argue that cash flow beta should have a higher price of risk. Here, we test the following

hypothesis on the interaction between firm characteristics and macroeconomic conditions:

Hypothesis 3 Credit spread decreases with the firm-level cash flow beta during economic

expansions, while increases with the firm-level cash flow beta during economic downturns.

In order to test this hypothesis, we need to identify different economic conditions. In

our data sample period, there are only three quarters with negative GDP growth: 2001Q3

(−1.41%, annualized), 2001Q1 (−0.49%), 2000Q3 (−0.46%). We regress credit spreads on

cash flow betas, obtained from (3), separately for negative growth periods and for positive

growth periods and examine whether the signs are different in different economic phases.

Cash flow estimates are summarized in Panel A of Table 6. The cross-sectional variations

of all three variables are quite significant. Firm-level cash flows are very volatile, consistent
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with the accounting literature, with the sample average cash-flow volatility around 173%.12

Cash flow growth is also very sensitive to the economic growth rate. The average of firm cash

flow beta is 82.68, although the distribution of cash flow betas appears to be quite skewed.

Firms with higher firm specific growth rates have more volatile cash flows and lower cash flow

betas, as illustrated in the correlation matrix.

5.2. Methodology

Our dataset is a pooled time-series and cross-section unbalanced panel. Extra care needs

to be taken to analyze such a panel. Thompson (2006) and Petersen (2009) provides a

detailed analysis on the performance of various approaches for this type of analysis. We

follow their suggestion and conduct our regression analysis by adjusting for issuer clustering

and controlling for the time effect with monthly dummies. Because of the use of time dummies,

we do not include any other macroeconomic variables in our analysis. The specification we

use in our regression analysis is then:

CDSSpreadit = γ0 + γ1 × CV CFit + γ2 × FSGit + γ3CFBetait + Controls + εit, (4)

with issuer-clustered t-statistics for the coefficients, where CVCF is the cash flow volatility,

FSG is the firm-specific growth rate, and CFBeta is the cash flow beta.

For firm-level control variables, we include leverage (measured as the book debt over the

sum of book debt and market equity), asset volatility (proxied by the at-the-money option-

12Cash flows, unlike earnings, are hard to smooth by managers.
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implied volatility from OptionMetrics), and jump risk (proxied by the slope of the implied

volatility curve from OptionMetrics), following the literature (see, e.g., Zhang, Zhou, and

Zhu (2008)). Panel B of Table 6 provides summary statistics for the control variables. The

average firm has leverage of 30%, implied volatility of 0.33 and jump risk of 0.27%.

5.3. Empirical analysis

Table 7 presents the panel regression results. The coefficient estimates on those monthly

dummies are not shown to save space. Issuer clustering, cross correlation, and heteroskadas-

ticity are adjusted to obtain robust t-statistics.

We find cash flow volatility to be a statistically significant explanatory variable for CDS

spreads, consistent with Minton and Schrand (1999) and Molina (2005). However, its eco-

nomic significance seems modest (column 1), as a one-standard-deviation move in cash flow

volatility only changes credit spreads by about 9 basis points. The firm-specific growth rate is

only marginally significant, at the 10% level. Note that the firm-specific growth rate embodies

the firm-specific risk, so in a well-diversified market, its pricing impact should be diminished,

even though the option nature of bonds may retain some of its effect. Our result is therefore

consistent with the notion that systematic, not firm-specific, factors exert a stronger impact

on bond pricing. This notion is further bolstered by the significant impact of cash flow beta

on credit spreads. Overall, the results are consistent with the predictions in Hypothesis 2.

Although firm-level cash flow variables have stand-alone explanatory power, represented

by R2 of 6.2% in column 1 of Table 7, their marginal explanatory power is negligible once

time dummy and other firm characteristics such as leverage, implied volatility, and jump are
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included in the regression, as indicated by R2s in column 3 and in column 4. In a related

study, Das, Hanouna and Sarin (2009) show that accounting-based and market-based models

have similar explanatory power for CDS spreads and argue that information from these two

types of models may be complementary in pricing financial distress.

Hypothesis 3 is a novel prediction. It demonstrates the effect of the interaction between

macroeconomic conditions and firm characteristics. To test this hypothesis, we run separate

cross-sectional regressions for periods with negative and positive economic growth and report

results in Table 8. We find some supportive evidence for the hypothesis, which comes mainly

from positive growth periods (Panel A) when high-beta firms have lower credit spreads, con-

sistent with the unconditional result in Table 7. We also find that firms with higher cash

flower beta have higher credit spreads when the economy has a negative growth rate, al-

though the coefficient estimate is not statistically significant due to the paucity of negative

growth periods (three quarters) in our data span (Panel B). To test the sign difference of the

coefficients across different economic states, we add an interaction term (cash flow beta with

negative growth dummy) to the regression model. As reported in Panel C, the interaction

term is significant at the 10% level with a t-statistic of 1.84. Therefore, the effect of cash flow

beta on credit spreads is indeed different in economic expansions than in recessions. More-

over, we confirm that this pattern persists when we use the NBER classification of economic

expansions and recessions (March - November 2001) during our sample period. The signs are

different with a t-statistic of 2.63.

In this part of our empirical investigation, we use regression estimates (firm-specific growth
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rate and cash flow beta) as independent variables. This could potentially introduce an error-in-

variable problem. Shanken (1992) shows that, in the presence of the error-in-variable problem,

the two-pass Fama-MacBeth approach could result in biased coefficient estimates and incorrect

standard errors. If estimation errors within the same cluster are highly correlated, however,

our clustering adjustment in the panel data regression may alleviate this concern because

the cluster-level correlation is controlled for. At this point, we are not aware of any formal

procedure that handles the error-in-variable problem in panel regressions.

6. Conclusion

We empirically examine the effect of market conditions on credit spreads, motivated by

the recent structural models that explicitly consider the joint effect of market risk and credit

risk. Our study uses large scale firm-level CDS data that allow us to investigate the relative

explanatory power of macroeconomic conditions and firm characteristics and the effect of

their interactions. We show that the macroeconomic condition accounts for about 6% of

the overall variation of credit spreads (11% of the explained portion), and the model-based

variables such as growth rate, growth volatility, investor sentiment, and jump risk, contribute

much of the explanatory power. Firm-level determinants account for a bigger portion of the

overall variation of credit spreads, highlighting the importance of firm heterogeneity for credit

risk modeling and management.

We identify investor sentiment at the aggregate market level and implied volatility at the

firm level as the most important credit spread determinants. Firm-specific cash flow charac-

teristics such as growth rate, growth volatility, and beta also have stand-alone explanatory
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power. Moreover, we provide evidence on the importance of the interaction between market

conditions and firm-specific characteristics. Specifically, during economic expansions, firms

with high cash flow betas have lower credit spreads, ceteris paribus, than firms with low cash

flow betas. This relation reverses during economic recessions.

This study illustrates one of the ways the interaction of market risk and credit risk can

transpire in the credit market. The empirical findings provide support to a cash flow beta

representation, which may facilitate further investigation of credit risk in a portfolio context

and enable the development of better risk management tools for banks and corporations.
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Figure 1. Market average 5-year CDS spreads and 5-year EDFs.
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Figure 2. CDS and Macroeconomic Variables.
This figure plots the market monthly average 5-year CDS spreads and the monthly time series
of four macroeconomic variables: real GDP growth rate, GDP growth volatility estimated
as the unexpected growth rate, investor sentiment proxied by Conference Board Consumer
Confidence Index, and jump risk proxied by S&P 500 index option implied volatility slope.
GDP growth and growth volatility are multiplied by 1000. Jump is multiplied by 10000.
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Table 1
Descriptive statistics for macroeconomic variables

Correlation
Variable Obs Mean Std. Min Max AR(1) (1) (2) (3)
GDP Growth (1) 106 3.21% 2.24% -1.98% 8.28% 0.85 1.00
GDP Vol (2) 106 0.97% 0.84% 0.04% 3.60% 0.27 0.10 1.00
Sentiment (3) 106 113.06 21.15 61.42 144.71 0.89 0.15 0.26 1.00
Jump (×104) 106 7.69 5.73 -6.72 26.42 0.18 -0.02 -0.06 0.01

Notes: This table presents descriptive statistics of the four monthly macroeconomic series:
real GDP growth rate, GDP growth volatility estimated as the unexpected growth rate,
investor sentiment proxied by Conference Board Consumer Confidence Index, and jump risk
proxied by S&P 500 index option implied volatility slope. GDP growth rate is interpolated
from quarterly observations to a monthly series. The time period spans from July 1997 to
November 2006.
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Table 2
Macroeconomic conditions and credit spreads

Average Firm-by-firm Residuals
Coef t-stat Coef t-stat Coef t-stat

Panel A: GDP as Macroeconomic Proxy
Intercept 244.43 15.85 234.67 12.29 129.68 8.57
GDP Growth -700.61 -5.45 -562.72 -8.20 -655.44 -5.21
Growth Volatility 555.62 1.97 158.65 1.81 701.52 2.14
Sentiment -1.22 -8.65 -1.39 -8.57 -1.16 -8.42
Jump (×104) 0.79 1.45 3.23 11.31 0.78 1.45
N 95 284 94
R2 0.572 0.321 0.555

Panel B: Industrial Production (IP) as Macroeconomic Proxy
Intercept 224.65 12.80 258.73 12.10 81.54 4.58
IP Growth -130.41 -2.48 -100.84 -6.01 -135.71 -2.53
Growth Volatility -15.65 -0.18 -78.17 -1.86 -8.69 -0.10
Sentiment -1.14 -7.68 -1.58 -9.19 -1.06 -7.07
Jump (×104) 1.02 1.66 2.08 3.55 0.87 1.40
N 95 284 94
R2 0.463 0.242 0.430

Notes: This table reports the regression results of credit spreads on macroeconomic variables.
The dependent variable is the 5-year monthly average CDS spreads in basis points. The CDS
sample includes US dollar denominated contracts for US corporations with reference issues
being senior unsecured bonds for the time period spanning from January 1999 to November
2006. The independent variables for Panel A are the four monthly macroeconomic series: real
GDP growth rate, GDP growth volatility estimated as the unexpected growth rate, investor
sentiment proxied by Conference Board Consumer Confidence Index, and jump risk proxied
by S&P 500 index option implied volatility slope. In Panel B, GDP is replaced by Industrial
Production. For the Average regression, market average CDS spread is the dependent variable.
The firm-by-firm regression regresses firm CDS spreads on macroeconomic variables and then
coefficients are averaged across all issuers. Standard errors were adjusted by the number of
issuers. In the Residuals regression, firm CDS spreads are first regressed in a panel regression
with monthly time dummies. The coefficient estimates for time dummies are then regressed
on macro variables. First order autocorrelation is corrected for the Average and Residuals
specifications.
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Table 3
Long time series with Baa-Aaa spreads

(1) (2) (3)
Coef t-stat Coef t-stat Coef t-stat

Intercept 1.85 19.37 1.40 16.60 0.81 5.06
IP growth -0.84 -3.33 -0.61 -2.96 -0.84 -4.33
IP growth vol 1.22 3.09 0.40 2.21 0.80 2.58
Sentiment -0.01 -9.44 -0.01 -10.56 -0.01 -5.07
Short rate 0.07 13.71 0.04 1.24
Long rate 0.07 2.65
Term spread 0.06 1.09
Stock return 0.82 1.93
Inflation -1.61 -1.95
N 379 379 379
Adj. R2 27.5% 52.0% 58.4%

Notes: This table demonstrates how much various macroeconomic variables explain Moody’s
Baa-Aaa spreads. The dependent variable is monthly Moody’s Baa-Aaa spreads. The re-
ported results are for the time period spanning from July 1976 to December 2007. The
independent variables include three monthly macroeconomic series: real industrial produc-
tion (IP) growth rate, IP growth volatility estimated as the unexpected growth rate, and
investor sentiment proxied by Conference Board Consumer Confidence Index. Short rate is
three-month Treasury bill yield. Long rate is ten-year government bond yield. Term spread
is the yield difference between 10-year and 2-year Treasury bonds. Stock return is monthly
S&P stock return. Inflation is year-over-year CPI percentage change. Robust t-statistics are
reported.
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Table 4
Macroeconomic conditions and default probabilities

Average Firm-by-firm Residuals
Coef t-stat Coef t-stat Coef t-stat

Panel A: 5-Year EDF
Intercept 3.94 12.85 4.14 34.85 1.51 4.89
GDP Growth -13.86 -5.64 -13.99 -34.68 -13.88 -5.66
Growth Volatility 12.66 1.87 15.36 18.80 12.38 1.83
Sentiment (×102) -0.69 -2.55 -0.90 -10.13 -0.71 -2.64
Jump 20.46 1.21 20.15 2.44 16.11 1.17
N 106 6423 105
R2 0.300 0.333 0.305

Panel B: 1-Year EDF
Intercept 3.91 12.73 4.08 29.81 1.08 3.50
GDP Growth -12.83 -5.20 -14.70 -31.27 -12.86 -5.24
Growth Volatility 12.50 1.84 19.03 19.16 12.18 1.80
Sentiment (×102) -0.42 -1.54 -0.63 -6.06 -0.44 -1.65
Jump 50.17 1.53 74.30 7.34 45.27 1.48
N 106 6035 105
R2 0.248 0.323 0.253

Notes: This table reports the regression results of default probabilities on macroeconomic
variables. The dependent variables are the 5-year (Panel A) and 1-year (Panel B) monthly
Expected Default Frequency (EDF) from Moody’s KMV. The reported results are for the
time period spanning from January 1996 to October 2004. The independent variables are
the four macroeconomic variables measured at the monthly interval: real GDP growth rate,
GDP growth volatility estimated as the unexpected growth rate, investor sentiment prox-
ied by Conference Board Consumer Confidence Index, and jump risk proxied by S&P 500
index options’ implied volatility slope. For the Average regression, market average EDF is
the dependent variable. The firm-by-firm regression regresses firm EDFs on macroeconomic
variables and then coefficients are averaged across all issuers. Standard errors were adjusted
by the number of issuers. In the Residuals regression, firm EDFs are first regressed in a panel
regression with monthly time dummies. The coefficient estimates for time dummies are then
regressed on macro variables. First order autocorrelation is corrected for the Average and
Residuals specifications.
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Table 5
Relative explanatory powers

(1) (2) (3) (4)
Coef t-stat Coef t-stat Coef t-stat Coef t-stat

Panel A: Macroeconomic Variables
Dummies Yes No No No
GDP growth -819.61 -14.58 -528.09 -8.92 -494.74 -8.35
GDP vol 321.66 2.44
Implied vol 323.15 17.38 268.10 9.32
Sentiment -1.11 -16.78 -0.62 -9.46 -1.04 -7.03
Jump (×104) 1.71 6.81 -0.29 -1.00 -0.44 -1.52
Short rate -1.39 -0.42
Long rate 2.13 0.52
Term spread -17.96 -3.36
Credit spread 62.76 9.38
Stock return 30.41 0.89
Inflation -717.36 -4.26
Constant 138.42 15.35 237.70 33.43 143.05 18.06 168.50 9.12
N 24281 24281 24281 24281
Adj R2 6.3% 2.7% 4.1% 5.1%

Panel B: Macroeconomic Condition vs Firm Characteristics
Dummies Yes No No Yes
Leverage 142.06 4.09 149.98 4.49
IV 640.65 16.36 592.13 17.63 736.36 15.55
Jump (×104) 0.13 6.15 0.11 5.47
Constant 97.20 7.25 -97.01 -9.71 -125.38 -10.36 -145.48 -9.89
N 13551 13551 13551 13551
Adj. R2 6.1% 40.6% 47.2% 53.7%

Notes: This table demonstrates how much various macroeconomic variables explain total
variation of a panel of CDS spreads. The dependent variable is the 5-year monthly average
CDS spreads in basis points. The independent variables for Panel A are the four monthly
macroeconomic series: real GDP growth rate, GDP growth volatility estimated as the unex-
pected growth rate, investor sentiment proxied by Conference Board Consumer Confidence
Index, and jump risk proxied by S&P 500 index option implied volatility slope. Short rate is
three-month Treasury bill yield. Long rate is ten-year government bond yield. Term spread
is the yield difference between 10-year and 2-year Treasury bonds. Credit spread is Moody’s
Baa-Aaa yield spread. Stock return is monthly S&P stock return. Inflation is year-over-year
CPI percentage change. Issuer-clustering, cross-correlation, and heteroskedacity are adjusted
to obtain robust t-statistics. Panel B independent variables include firm leverage, implied
volatility and jump risk.
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Table 6
Descriptive statistics of firm characteristics

Correlation
Variable Obs Mean Std. Min Max (1) (2)

Panel A: Cash Flow Data
CVCF (1) 20105 173.70 1912.09 1.41 168654.60 1.000
Firm Growth (2) 15894 -1.15 43.31 -2507.20 537.68 -0.002 1.000
Cash Flow Beta 17600 82.68 1598.29 -8924.99 54788.09 0.010 -0.091

Panel B: Control Variables
Leverage (1) 20701 0.30 0.22 0.00 1.00 1.000
IV (2) 20444 0.33 0.14 0.02 2.08 0.188 1.000
Jump (×102) 20444 0.27 1.02 -24.35 16.54 0.115 0.014

Notes: This table summarizes select characteristics of our sample firms. Panel A reports
cash flow estimates. CVCF is the coefficient of variation in quarterly operating cash flow, a
measure of cash flow volatility, in percentage. Firm Growth is firm specific growth rate. CF
Beta is cash flow beta. Panel B describes the control variables for our multivariate regressions:
Leverage is measured as the book value of debt over the sum of book value of debt and market
value of equity, IV as the option implied volatility, and Jump as the slope of option implied
volatility curve. Data cover the period from July 1997 to November 2006.
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Table 7
Credit spreads and cash flow characteristics

(1) (2) (3) (4)
Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

MonthDummies No Yes Yes Yes
CVCF 0.48 3.39 0.48 2.95 0.27 2.70
FSG -1.85 -1.85 -2.27 -1.63 -0.55 -1.72
CFBeta -0.57 -2.12 -0.18 -2.38 -0.21 -2.04
Leverage 149.98 4.49 150.29 4.51
IV 736.36 15.55 735.70 15.51
Jump (×104) 0.1147 5.47 0.1143 5.44
Constant 96.61 7.21 96.80 8.34 -145.48 -9.89 -145.67 -9.92
N 13551 13551 13551 13551
Adj. R2 0.062 0.069 0.537 0.537

Notes: This table reports regression results for the effects of cash flow variables on credit
spreads. The dependent variable is the 5-year monthly average CDS spreads in basis points.
The independent variables are CVCF, FSG, CF Beta, Leverage, IV, and Jump as described
in Table 6. All regressions include monthly time dummies (not shown). Issuer-clustering,
cross-correlation, and heteroskedacity are adjusted to obtain robust t-statistics.
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Table 8
Credit spreads and cash flow beta in different economic states

GDP growth Predicted sign Coef. t-stat N Clusters

Panel A: Positive Growth

3.08% − -0.13 -2.07 12250 416

Panel B: Negative Growth

-0.79% + 0.04 0.97 379 106

Panel C: Tests of Sign Difference in CF Beta Coefficients

Sample Comparison t-stat
Positive GDP Growth vs Negative GDP Growth -1.84
NBER Expansion vs NBER Recession periods -2.63

Notes: This table reports the results of the full regression in Table 7 over two subsamples:
positive GDP growth periods between July 1997 and November 2006 (Panel A) and negative
GDP growth periods (Panel B) covering 2000Q3, 2001Q1, and 2001Q3. The dependent
variable is the 5-year monthly average CDS spreads in basis points. Only the coefficient
estimate for CF Beta is reported. Panel C tests the significance of the sign difference on CF
Beta between positive and negative GDP growth periods, as well as NBER expansion periods
and one recession period (March 2001 – November 2001).
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