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University of Hong Kong

WAI KEUNG LI
University of Hong Kong

This paper considers a local least absolute deviation estimation for unit root pro-
cesses with generalized autoregressive conditional heteroskedastic (GARCH) errors
and derives its asymptotic properties under only finite second-order moment for
both errors and innovations. When the innovations are symmetrically distributed,
the asymptotic distribution of the estimated unit root is shown to be a functional of
a bivariate Brownian motion, and then two unit root tests are derived. The simula-
tion results demonstrate that the tests outperform those based on the Gaussian quasi
maximum likelihood estimators with heavy-tailed innovations and those based on
the simple least absolute deviation estimators.

1. INTRODUCTION

In this paper we consider autoregressive (AR) unit root processes with generalized
autoregressive conditional heteroskedastic (GARCH) errors,

�yt = φyt−1 +μ+
k−1

∑
i=1

ψi�yt−i + et , (1)

et = εt

√
ht , ht = ω+

p

∑
i=1

αi e
2
t−i +

q

∑
j=1

βj ht− j , (2)

where k, p,q are known nonnegative integers, �yt = yt − yt−1, ω > 0, αi ≥ 0, i =
1, . . . , p, βj ≥ 0, j = 1, . . . ,q, k ≥ 1, k = 1 refers to the pure unit root case, and
innovations {εt } are independent and identically distributed (i.i.d.) with mean zero
and finite variance. The GARCH models were proposed by Bollerslev (1986) and
are usually considered in modeling the phenomena of time-varying conditional
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variance in financial and economic time series. If the parameters α1, . . . ,αp and
β1, . . . ,βq are assumed to be zero, then {et } will be an i.i.d. white noise sequence.
For this case, the problem of unit root testing has been extensively and well dis-
cussed. For both empirical and theoretical considerations, more and more statis-
ticians and econometricians recently focused on various unit root processes with
non-i.i.d. errors; see Phillips and Durlauf (1986), Phillips (1987), Chan and Wei
(1988), Herce (1996), etc. Obviously, in this literature, how to estimate and test
hypotheses on the unit root parameter φ in models satisfying (1) and (2) are im-
portant problems.

For model (1) with conditional heteroskedasticity, the least squares (LS) es-
timation and the augmented Dickey–Fuller tests may encounter some intrinsic
problems; see Pantula (1988). The simulation experiments in Kim and Schmidt
(1993) also showed that these tests are often overrejecting, especially for the near
integrated cases in which, e.g., α1 +β1 ≈ 1 for GARCH(1,1). This phenomenon
can be explained partly by loss of efficiency because the score function of LS es-
timation did not involve the structure of conditional variance. Ling and Li (1998)
and Seo (1999) investigated the local Gaussian quasi maximum likelihood es-
timation (QMLE) for models satisfying (1) and (2) under conditions Ee4

t < ∞
and Ee8

t < ∞, respectively. The tests based on the local Gaussian QMLE are
shown not only to be more powerful but also to have more stable sizes than
(augmented) Dickey–Fuller tests based on LS estimation; see Seo (1999) and
Ling, Li, and McAleer (2003). However, the parameter space of GARCH models
is much more limited for higher order moments, and the condition Ee4

t < ∞ may
be too stringent for some real data; see Ling (2007). For AR(1) unit root processes
with GARCH(1,1) errors, Ling and Li (2003) sharpened the results in Ling and Li
(1998) and proposed a one-step local Gaussian QMLE for the unit root parameter
φ with conditions Ee2

t < ∞ and Eε4
t < ∞ and with εt symmetrically distributed.

The unit root tests based on the one-step local Gaussian QMLE were shown to
outperform Dickey–Fuller tests based on LS estimation; see Ling et al. (2003).
However, how to perform estimation and test for unit roots in the general setting
of (1) and (2) with only finite second-order moment for et are important open
problems.

The innovations εt in (2) are generally assumed to be normally distributed, and
it is well known that a stationary GARCH process can exhibit more heavy-tailed
marginal distribution than the normal distribution. However, Mikosch and Stărică
(2000) showed that the tails of fitted GARCH models with normal innovations
seem to be much thinner than the tails appearing in the real data, and their em-
pirical experiments demonstrated that the innovations may be so heavy-tailed that
the fourth moment is infinite; see also Mittnik, Rachev, and Paolella (1998), Poli-
tis (2004), and Zhang, Li, and Yuen (2006). For pure GARCH processes with
Eε4

t = ∞, Hall and Yao (2003) showed that the Gaussian QMLE may not be
asymptotically normal and the range of possible limit distributions is extraordi-
narily large; see also Mikosch and Straumann (2006). Hence, for model (1) with
GARCH(1,1) errors under condition Eε4

t = ∞, the asymptotic distribution for the



1210 GUODONG LI AND WAI KEUNG LI

estimated unit root in Ling and Li (2003) may no longer be obtained, and the unit
root tests in Ling et al. (2003) may fail to correctly identify the unit root in the
data. Herce (1996) considered a simple least absolute deviation (LAD) estimation
for the unit root processes with finite variance errors, which may be correlated,
and developed several unit root tests that can still be used for the case of GARCH
errors with Eε4

t = ∞. Because of the loss of efficiency, these tests in Herce
(1996) may have lower powers, and this is supported by the simulation results in
Section 4.

In this paper, we propose a LAD estimation methodology for unit root pro-
cesses with GARCH errors, taking into account both efficiency and heavy tails.
The asymptotic distribution of a local LAD estimator is derived under only finite
second moments for both errors and innovations. When the innovations are sym-
metrically distributed, the asymptotic distribution of the estimated unit roots is
shown to be a functional of a bivariate Brownian motion, and then two unit root
tests are derived. These tests are found to have asymptotically either conditional
or unconditional normal distributions, and the simulation results in Section 4
demonstrate that they outperform those based on the one-step local Gaussian
QMLE in Ling and Li (2003) for the case with heavy-tailed innovations and out-
perform those based on the simple LAD estimators in Herce (1996) for all cases.

This paper is arranged as follows. Section 2 discusses the asymptotic properties
of a local LAD estimator for models satisfying (1) and (2). Section 3 introduces
two derived unit root tests, and the simulation results are presented in Section 4.
The proof of Theorem 2.1 is given in the Appendix. Throughout this paper, ‖ · ‖
is the euclidean norm, op(1) denotes a series of random numbers converging to
zero in probability, Op(1) denotes a series of random numbers that are bounded
in probability, →d denotes convergence in distribution, and D = D[0,1] denotes
the space of functions on [0,1] that is defined and equipped with the Skorokhod
topology (Billingsley, 1968).

2. ASYMPTOTIC PROPERTIES OF LAD ESTIMATION

For models satisfying (1) and (2), denote their parameter space by 	, a compact
set in Rk+p+q+2. Let α= (α1, . . . ,αp)

′, β = (β1, . . . ,βq)′, ψ = (μ,ψ1, . . . ,ψk−1)
′,

γ = (ω,α′,β ′)′, δ = (ψ ′,γ ′)′, and θ = (φ,δ′)′, where θ is the parameter vector.
The true parameter vector θ0 = (0,δ′

0)
′ is supposed to be an interior point of 	.

Note that the true value of the parameter μ is also equal to zero.

Assumption 2.1. The median of εt is equal to zero, E|εt | = 1, Eε2
t = σ 2 < ∞,

and the density function f (x) of εt is continuous at the origin.

Assumption 2.2. αi > 0, i = 1, . . . , p, βj > 0, j = 1, . . . ,q, Ee2
t < ∞, and the

polynomials ∑p
i=1 αi zi and 1−∑q

j=1 βj z j have no common root.

Assumption 2.3. All roots of the polynomial ψ(x) = 1−ψ1x −·· ·−ψk−1xk−1

are outside the unit circle.
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Note that Assumption 2.1 unitizes the quantity E|εt | instead of Eε2
t , so that

Eε2
t = var(|εt |)+1 > 1. Hence, we need to rescale the parameters in the GARCH

process (2), and the necessary and sufficient condition for Ee2
t < ∞ is σ 2 ∑p

i=1 αi +
∑q

j=1 βj < 1; see Li and Li (2005). For simplicity, we assume that these parameters
in (2) have already been rescaled to satisfy Assumption 2.1.

Given observations y1, . . . , yn from a model satisfying (1) and (2) with the ini-
tial value y0 = 0, we consider the LS estimator φ̂LS and the simple LAD estimator
φ̂ SLAD as follows:(
φ̂LS, ψ̂ ′

LS

)′ = argmin
n

∑
t=1

[et (θ)]2 and
(
φ̂ SLAD, ψ̂ ′

SLAD

)′ = argmin
n

∑
t=1

|et (θ)|,

where et (θ) = et (φ,ψ) = �yt −φyt−1 −ψ ′zt−1 and zt = (1,�yt , . . . ,�yt−k+2).
The estimator φ̂LS can be used to construct augmented Dickey–Fuller tests and
is well known to be sensitive to outliers. The estimator φ̂SLAD is a direct im-
provement of φ̂LS, and the tests based on φ̂SLAD should be more powerful under
heavy-tailed errors. Note that the structure of conditional variance is ignored by
the score functions of these two estimators and hence they are expected to be
inefficient.

To take into account the structure of conditional variance, we first define the
function ht (θ) satisfying the iterative equation ht (θ) = ω+∑p

i=1 αi e2
t−i (θ)+∑q

j=1
βj ht− j (θ). In real applications, initial values are needed to calculate the functions
ht (θ) and are set to be zero for simplicity. By the proof in the Appendix, the
initial values have no effect on the asymptotic results. Note that the two quantities,
ht (θ0) and ht , are quite different, where θ0 is the true parameter vector and ht

is the exact conditional variance. On the other hand, ht can be considered as a
function of δ0, and we can define its first- and second-order derivative functions,
denoted, respectively, by ∂ht/∂δ and ∂2ht/∂δ∂δ′. Furthermore, the behaviors of
∂ht (θ)/∂φ are different from those of ∂ht (θ)/∂δ, and we cannot even define the
quantity ∂ht/∂φ.

We now introduce the LAD estimation for models satisfying (1) and (2), taking
into account efficiency and heavy tails. As we know for linear models, the LAD
estimation can be considered as the maximum likelihood estimation (MLE) under
assumption of double exponential innovations; see Bassett and Koenker (1978),
Davis and Dunsmuir (1997), etc. In this paper, we just use this approach to define
the LAD estimation for a model satisfying (1) and (2). Suppose that εt , instead of
et , in (2) follows a double exponential distribution with density g(x) = 0.5e−|x |
and then, for time series {yt } generated by (1) and (2), the log transformation of
the conditional likelihood function is equal to −Ln(θ)−n log2, where

Ln(θ) =
n

∑
t=1

lt (θ) and lt (θ) = |et (φ,ψ)|√
ht (θ)

+ 1

2
loght (θ).

Hence, the LAD estimator is defined as follows:

θ̂n = argmin
θ∈	

Ln(θ).
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To present the asymptotic results of the preceding LAD estimation, we first
state some notation as follows:

F1 = E[ψ−1(B)et ]
2, F2 = I1 +0.5κ1E

[
1√
ht

∂ht

∂δ

]
, �1 = E

[
1

h2
t

∂ht

∂δ

∂ht

∂δ′

]
,

�2 =
(

E[h−1
t zt−1z′

t−1] 0

0 0

)
, � =

(
F1 F ′

2

F2 �2 +0.25κ2�1

)
,

F = f (0)E

[
1

ht

]
+ 1

8
E

[
1

ht

∂ht

∂μ

]2

,

F3 =
(

f (0)E

[
z′

t−1

ht

]
,0, . . . ,0

)′
+ 1

8
E

[
1

h2
t

∂ht

∂μ

∂ht

∂δ

]
,

� = f (0)�2 + 1

8
�1, � =

(
F
∫ 1

0 B2
1 (τ )dτ F ′

3
∫ 1

0 B1(τ )dτ

F3
∫ 1

0 B1(τ )dτ �

)
,

where zt = (1,�yt , . . . ,�yt−k+2), ψ−1(B)et = ∑∞
j=0 ψ̄j et− j with ψ(z) · ∑∞

j=0

ψ̄j z j = 1, I1 = (1,0, . . . ,0)′, κ1 = E(|εt |εt ), κ2 = E(|εt | − 1)2, 0 is a scalar,
and 0 is a zero vector or matrix with corresponding dimensions. Based on the
preceding notation, we state the asymptotic distribution of the LAD estimator θ̂n

as follows.

THEOREM 2.1. If Assumptions 2.1–2.3 are satisfied, then there exists a local
minimizer θ̂n = (φ̂n, ψ̂

′
n, γ̂

′
n)′ of Ln(θ) such that⎡⎢⎣ nφ̂n√

n(ψ̂n −ψ0)√
n(γ̂n −γ0)

⎤⎥⎦ −→d 0.5�−1

⎡⎢⎣
∫ 1

0 B1(τ )dB(1)
2 (τ )

B2(1)

B3(1)

⎤⎥⎦ ,

where B(τ ) = [B1(τ ), B ′
2(τ ), B ′

3(τ )]′ is a (k + p +q +2)-dimensional Brownian

motion with covariance τ� and B(1)
2 (τ ) is the first component of B2(τ ).

The proof of the preceding theorem is delayed to the Appendix. Note that the
matrix � generally is not diagonal and it makes the asymptotic distribution of the
estimated unit roots φ̂n complicated. By some algebra, we can show that

nφ̂n −→d

∫ 1
0 B1(τ )dB(1)

2 (τ )− F ′
3�

−1[B ′
2(1), B ′

3(1)]′
∫ 1

0 B1(τ )dτ

2[F
∫ 1

0 B2
1 (τ )dτ − F ′

3�
−1 F3(

∫ 1
0 B1(τ )dτ)2]

. (3)

Denote by �1 a lower triangular matrix such that �1�
′
1 = � and it has the form

�1 =
(√

F1 0 0

X1 X2 ∗

)
,
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where Xi = (xi1, . . . , xi(k+p+q+1))
′ with i = 1,2. Note that ω(τ) = �−1

1 B(τ )
is a (k + p + q + 2)-dimensional standard Brownian motion with independent
components. Then, following Ling and Li (2003), we can rewrite the asymptotic
distribution in (3) as

x11
∫ 1

0 ω1dω1 − F ′
3�

−1 X1ω1(1)
∫ 1

0 ω1dτ + x21
∫ 1

0 ω1dω2

−(F ′
3�

−1 X2ω2(1)+η∗)
∫ 1

0 ω1dτ

2
√

F1[F
∫ 1

0 ω2
1dτ − F ′

3�
−1 F3(

∫ 1
0 ω1dτ)2]

, (4)

where ω1(τ ) and ω2(τ ) are the first two components of ω(τ) and η∗ is a normal
distribution with variance F ′

3�
−1(�2 + 0.25κ2�1 − X1 X ′

1 − X2 X ′
2)�

−1 F3 and
independent of w1(τ ) and w2(τ ).

It is a challenging problem to directly determine the LAD estimators θ̂n for
models satisfying (1) and (2) because the log-likelihood function Ln(θ) has no
derivatives with respect to φ and ψ . We here introduce the local quadratic ap-
proximation (Fan and Li, 2001) to overcome this problem; i.e., we can iteratively
minimize

n

∑
t=1

{
e2

t (φ,ψ)

|et (φ(m),ψ(m))|√ht (φ,ψ,γ )
+ 1

2
loght (φ,ψ,γ )

}
,

where φ(m) and ψ(m) are the results of the mth iteration. For the initial values,
we can take φ(1) and ψ(1) to be the simple LAD estimators. Then some classical
algorithms such as the Newton–Raphson method can be used to obtain estimates
for the current iteration because the new objective function is smooth.

For the LS estimator φ̂LS, by an argument similar to that of φ̂n , we can show
that

nφ̂LS →d γ̄1

∫ 1
0 ω1dω1 −ω1(1)

∫ 1
0 ω1dτ∫ 1

0 ω2
1dτ − (∫ 1

0 ω1dτ
)2 + γ̄2

[∫ 1

0
ω2

1dτ −
(∫ 1

0
ω1dτ

)2
]−1/2

ηLS,

(5)

where γ̄1 = Ee2
t/F1, γ̄2 =

√
Ee2

t/F1 − (Ee2
t/F1)2, ω1(τ ) is defined as in (4), and

ηLS is a standard normal random variable independent of
∫ 1

0ω2
1(τ )dτ −(∫ 1

0 ω1dτ
)2;

see Phillips (1989). The asymptotic distribution of the simple LAD estimator
φ̂ SLAD has an even more complicated form than that of φ̂n , and we omit it here.

3. UNIT ROOT TESTS BASED ON LAD ESTIMATES

In the previous section, the asymptotic distribution of the local LAD estimator φ̂n

is derived under some very general conditions; however, it is rather complicated
to be useful in practice. In this section, some simplifying conditions are imposed
to make it more applicable for unit root tests.
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When εt is symmetrically distributed, it holds that

E
[
h−1

t �yt−i
] = 0 and E

[
h−2

t (∂ht/∂μ)(∂ht/∂δj )
] = 0, (6)

where i = 1, . . . ,k − 1, j = 2, . . . ,k + p + q + 1, and δj is the j th element of
the vector δ. The matrix � is then diagonal, and we can simplify the asymptotic
distributions in (4) now. Furthermore, we can also obtain that κ1 = 0, F2 = I1, and
F3 = FI1. Hence, the asymptotic distribution in (4) can be simplified as

nφ̂n →d γ1

∫ 1
0 ω1dω1 −ω1(1)

∫ 1
0 ω1dτ∫ 1

0 ω2
1dτ − (∫ 1

0 ω1dτ
)2 +γ2

[∫ 1

0
ω2

1dτ −
(∫ 1

0
ω1dτ

)2
]−1/2

η LAD,

(7)

where F4 = E
[
h−1

t
] + 0.25κ2E

[
h−1

t (∂ht/∂μ)
]2, γ1 = 1/(2F F1), γ2 =√

F1 F4 −1/(2F F1), ω1(τ ) is defined as in (4), and η LAD is a standard normal
random variable independent of

∫ 1
0 ω2

1(τ )dτ − (∫ 1
0 ω1dτ

)2.
Note that there are two nuisance parameters, γ1 and γ2, in (7). As in Phillips

(1987) and Phillips and Perron (1988), we may modify the quantity nφ̂n such that
these two nuisance parameters can be removed from the asymptotic distributions
of the resulting test statistics; see also Lucas (1995), Herce (1996), and Ling and
Li (2003). The random variables, η LS and η LAD, in (5) and (7) generally depend
on each other in a complicated way, and we need some extra quantities to simplify
the asymptotic distributions. We here consider the LS estimator for an auxiliary
regression,

(φ̂SR, μ̂SR) = argmin
n

∑
t=1

[�yt −φyt−1 −μ]2.

We can readily show the following lemma.

LEMMA 3.1. If Assumptions 2.1–2.3 are satisfied, then

nφ̂SR →d

∫ 1
0 ω1dω1 −ω1(1)

∫ 1
0 ω1dτ∫ 1

0 ω2
1dτ − (∫ 1

0 ω1dτ
)2 ,

where ω1(τ ) is defined as in (4).

The asymptotic distribution in Lemma 3.1 is just the first term of that in (7), up
to a constant γ1. Using this result and (7), we can construct a unit root test,

Lφ = nφ̂n − γ̂1nφ̂ SR

γ̂2
,

where γ̂1 (or γ̂2) is a consistent estimator of γ1 (or γ2). Furthermore, we can also
consider the corresponding t-ratio test as follows:

Lt =
[

1

F̂1n2

n

∑
t=2

( yt−1 − ȳ)2

]1/2

Lφ,
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where ȳ = (1/n)∑n
t=1 yt . For the quantities F̂1, γ̂1, and γ̂2 in Lφ and Lt , we

suggest the following method. Let êt = et (θ̂n), ĥt = ht (θ̂n), and ε̂t = êt/

√
ĥt . It

can be shown that the quantities (1/n)∑n
t=2(�yt )

2, (1/n)∑n
t=1 ĥ−1

t , (1/n)∑n
t=1[

ĥ−1
t (∂ht (θ̂n)∂μ)

]2, and (1/n)∑n
t=1(|ε̂t | − 1)2 are consistent estimators of the

items F1, Eh−1
t , E

[
h−1

t (∂ht∂μ)
]2, and κ2, respectively. For f (0), we can use

a kernel method to estimate the density function of the sequence {̂εt }, which is
assumed to be i.i.d., and it can be shown that f̂ (0) is a consistent estimator of
f (0), where f̂ (x) is the fitted density; see Silverman (1986) and Roussas (1988).
By using the preceding estimated values to replace the corresponding terms in γ1
(or γ2), we can obtain a consistent estimator γ̂1 (or γ̂2).

Based on (7), Lemma 3.1, and Theorem 2.1, we can show that the preceding
test statistics are asymptotically distributed with conditional or unconditional nor-
mality under the null hypothesis of unit root.

THEOREM 3.1. Under Assumptions 2.1–2.3, if εt is symmetrically distributed,
then

(i) Lφ →d
[∫ 1

0 ω2
1dτ − (∫ 1

0 ω1dτ
)2]−1/2

η,

(ii) Lt →d η,

where ω1(τ ) is a standard Brownian motion and η is a standard normal random
variable independent of

∫ 1
0 ω2

1dτ − (∫ 1
0 ω1dτ

)2
.

The distribution of εt is assumed to be symmetrical in the preceding theorem,
and, as pointed out by the referees, this restriction may be violated in real applica-
tions. However, to construct practical unit root tests, this condition, or condition
(6) at least, is necessary to simplify the asymptotic distribution in (4). By the sim-
ulation results in Section 4, we note that the distortion of the sizes of Lφ and Lt is
not serious when the condition of symmetry is violated. Note also that in practice
εt is often assumed to have either a normal or Student’s t-distribution.

The asymptotic distributions in Theorem 3.1 have the classical forms, and some
of the critical values for the test Lφ can be referred to Table 1 of Herce (1996)
or Table 5 of Ling et al. (2003). Furthermore, the test Lφ has normalization n;

however, the test Lt is normalized by
[

∑n
t=2( yt−1 − ȳ)2

]1/2, which is Op(n1/2)
under the stationary alternatives. This suggests that the test Lφ is more powerful
than its t-ratio statistic when the sample size is large.

For the simple LAD estimator φ̂ SLAD, if εt is symmetrically distributed, we can
show that

nφ̂SLAD →d γ̃1

∫ 1
0 ω1dω1 −ω1(1)

∫ 1
0 ω1dτ∫ 1

0 ω2
1dτ − (∫ 1

0 ω1dτ
)2

+γ̃2

[∫ 1

0
ω2

1dτ −
(∫ 1

0
ω1dτ

)2
]−1/2

η SLAD, (8)
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where γ̃1 = E|et |/
[
2F1 f (0)E

(
h−1/2

t
)]

, γ̃2 =√
F1 − (E|et |)2/

[
2F1 f (0)E

(
h−1/2

t
)]

,
ω1(τ ) is defined as in (4), and η SLAD is a standard normal random variable inde-
pendent of

∫ 1
0 ω2

1dτ − (∫ 1
0 ω1dτ

)2. Note that, for AR(1) unit root processes, the
condition of symmetry can be removed in deriving the asymptotic distribution
in (8). Similarly, by Lemma 3.1 and (8), the unit root tests based on the simple
LAD estimator can be constructed as follows:

L̃φ = nφ̂ SLAD − ̂̃γ1nφ̂ SR̂̃γ2
and L̃ t =

[
1

F̂1n2

n

∑
t=2

( yt−1 − ȳ)2

]1/2

L̃φ,

where ̂̃γ1 and ̂̃γ2 are, respectively, consistent estimators of γ̃1 and γ̃2. We call L̃φ

and L̃ t Herce tests because they are the direct extension of those in Herce (1996).
It can be shown that the asymptotic distributions of the preceding two tests are the
same as those of the statistics Lφ and Lt , respectively.

Based on the LS estimator φ̂LS, by Lemma 3.1 and (5), we can construct the
augmented Dickey–Fuller tests for AR(k) unit root process with k > 1,

Z̃φ = nφ̂LS − ̂̄γ1nφ̂SR̂̄γ2
and Z̃t =

[
1

F̂1n2

n

∑
t=2

( yt−1 − ȳ)2

]1/2

Z̃φ,

where ̂̄γ1 and ̂̄γ2 are, respectively, consistent estimators of γ̄1 and γ̄2. It can be
shown that the preceding augmented Dickey–Fuller tests have the same asymp-
totic distributions as those of the statistics Lφ and Lt , respectively. However, when
the true values of the parameters ψ1, . . . ,ψk−1 are all equal to zero, the second
item of the asymptotic distribution in (5) vanishes, i.e., γ̄1 = 1 and γ̄2 = 0, and
the tests Z̃φ and Z̃t cannot be used again. Let Z̃φ = nφ̂LS and Z̃t be its corrected
t-ratio test. Then they are just the Dickey–Fuller tests, and some of their critical
values can be found in Tables 10.A.1 and 10.A.2 of Fuller (1996). Note that the
symmetry of εt is not used in deriving the augmented Dickey–Fuller tests.

4. SIMULATION RESULTS

In this section, we present the results of some simulation experiments that we
performed to compare the test statistics designed in Section 3 with (augmented)
Dickey–Fuller tests, Herce tests, and the unit root tests in Ling et al. (2003)
(henceforth LLM tests).

Recall that, for the AR(1) unit root processes with GARCH(1,1) errors, LLM
tests have the forms of

Zφ = E(e2
t )F∗nφ̂ML −nφ̂ SR√

E(e2
t )K ∗ −1

and Zt =
[

1

F̂1n2

n

∑
t=2

( yt−1 − ȳ)2

]1/2

Zφ,

where φ̂ML is the one-step local Gaussian QMLE and F∗ (or K ∗) is just the
quantity F (or K ) in Ling et al. (2003). It has been shown that these tests have the
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same asymptotic distributions as the Herce tests and our tests. In the following
simulation experiments, we used the same critical values for these three types of
tests. Specifically, the significance level was set to 0.05, and the acceptance region
was (−6.79,6.71) for Lφ , L̃φ , and Zφ and (−1.96,1.96) for the other three; see
Table 1 of Herce (1996).

For the sake of comparison, we employed the same generating processes as in
Ling et al. (2003),

�yt = −φyt−1 + et , et = εt

√
ht , ht = ω+α1e2

t−1 +β1ht−1,

where ω = 0.1 and (α1,β1) = (0.2,0.7), (0.3,0.6), and (0.4,0.5). Four distribu-
tions, the standard normal, the double exponential, and t-distributions with 5 and
3 degrees of freedom (t (5) and t (3)), were considered to check the performance
of these tests with heavy-tailed innovations, and the pseudo random numbers were
first standardized to be mean zero and variance one. The AR parameter φ was set
to zero to check for the sizes and 0.05, 0.025, or 0.01 to check for the powers. We
considered the sample size n = 300, and there were 1,000 replications for each
combination of parameter vector (φ,ω,α1,β1) and distribution of innovations.

We applied all tests to each replication. Note that for replications driven by
t (3) innovations, the fourth moment of εt is infinite and LLM tests are not avail-
able. Hence, only the other three types of tests were considered for this case.
The simple LAD estimator φ̂ SLAD was calculated by the DRLAV subroutine, the
double precision version of the least absolute value regression subroutine in the
International Mathematical and Statistical Library (IMSL), as in Herce (1996).
For the LAD estimator φ̂n and the one-step local Gaussian QMLE φ̂ML, we
used, respectively, the algorithms in Section 2 and Ling and Li (2003), and the
Newton–Raphson method was employed to optimize the corresponding objective
functions. The nuisance parameters were estimated by the methods in Section
3 with a chosen bandwidth. It would be ideal, in practice, to use a data-driven
bandwidth as in Jones, Marron, and Sheather (1996); however, such an approach
may involve a huge amount of computation in the simulation experiment. For
simplicity, the bandwidth was set to be 0.3. Our experiments and simulation
results, which are available on request, demonstrate that the estimated values f̂ (0)
are all close to the true values. The significance level was set to 0.05, and
the critical values for Dickey–Fuller tests can be obtained from Tables 10.A.1
and 10.A.2 of Fuller (1996). The empirical powers and sizes are listed in Tables 1
and 2.

The sizes of the Dickey–Fuller tests in Tables 1 and 2 are all greater than the
nominal value 0.05, which is consistent with the finding in Kim and Schmidt
(1993). Note that the GARCH errors exhibit more heavy-tailed feature when the
value of α1 is larger and the innovations are more heavy-tailed. As in Ling
et al. (2003), the Dickey–Fuller tests are also more sensitive when the errors are
more heavy-tailed. Furthermore, in terms of power, the Dickey–Fuller tests also
perform the worst for time series with a near to unit root situation, i.e., φ = 0.01
or 0.025.
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TABLE 1. The empirical powers and sizes for the innovations with normal and
double exponential distributions

φ

Normal Double exponential

α1 β1 Test 0.05 0.025 0.01 0.0 0.05 0.025 0.01 0.0

0.2 0.7 Z̃φ 0.592 0.221 0.073 0.065 0.599 0.221 0.096 0.081
Z̃t 0.426 0.145 0.053 0.066 0.462 0.149 0.065 0.088
Zφ 0.458 0.402 0.194 0.082 0.645 0.387 0.200 0.107
Zt 0.229 0.228 0.137 0.088 0.393 0.254 0.174 0.111
L̃φ 0.363 0.242 0.144 0.066 0.712 0.378 0.134 0.057
L̃ t 0.130 0.105 0.088 0.069 0.398 0.226 0.100 0.041
Lφ 0.458 0.262 0.148 0.067 0.875 0.598 0.265 0.066
Lt 0.229 0.140 0.103 0.066 0.673 0.427 0.201 0.049

0.3 0.6 Z̃φ 0.570 0.241 0.086 0.073 0.615 0.210 0.116 0.068
Z̃t 0.449 0.164 0.056 0.072 0.488 0.142 0.091 0.087
Zφ 0.781 0.493 0.200 0.080 0.731 0.490 0.256 0.100
Zt 0.530 0.344 0.166 0.072 0.513 0.336 0.207 0.108
L̃φ 0.426 0.269 0.152 0.063 0.730 0.460 0.136 0.061
L̃ t 0.181 0.121 0.083 0.072 0.450 0.294 0.096 0.048
Lφ 0.584 0.364 0.167 0.069 0.921 0.691 0.281 0.063
Lt 0.344 0.204 0.130 0.069 0.774 0.529 0.238 0.054

0.4 0.5 Z̃φ 0.617 0.245 0.095 0.086 0.612 0.263 0.116 0.082
Z̃t 0.492 0.172 0.063 0.085 0.490 0.199 0.086 0.094
Zφ 0.861 0.605 0.247 0.082 0.768 0.570 0.267 0.120
Zt 0.648 0.425 0.210 0.085 0.547 0.393 0.216 0.100
L̃φ 0.462 0.283 0.154 0.080 0.752 0.452 0.123 0.059
L̃ t 0.232 0.152 0.115 0.070 0.496 0.275 0.102 0.043
Lφ 0.656 0.432 0.215 0.073 0.951 0.743 0.310 0.070
Lt 0.411 0.281 0.152 0.072 0.813 0.576 0.268 0.058

Note: Dickey–Fuller tests: Z̃φ and Z̃t ; LLM tests: Zφ and Zt ; Herce tests: L̃φ and L̃t ; our tests: Lφ and Lt .

In contrast, the tests designed in Section 3 have acceptable sizes, which are
all close to their nominal value of 0.05. The sizes of Lt are comparable to those
of L̃ t ; however, the sizes of Lφ are slightly more sensitive than those of L̃φ .
Second, all powers of our tests in Tables 1 and 2 are significantly greater than
those of the Herce tests. This may be due to loss of efficiency of the simple
LAD estimators. Compared with the LLM tests, our tests also have larger powers
for cases with heavy-tailed innovations, i.e., double exponential or t (5). It is
within expectation that LLM tests perform best for the case with normal inno-
vations because the Gaussian QMLE is just the MLE and would be most
efficient.
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TABLE 2. The empirical powers and sizes for the innovations with t (5) and t (3)
distributions

φ

t (5) t (3)

α1 β1 Test 0.05 0.025 0.01 0.0 0.05 0.025 0.01 0.0

0.2 0.7 Z̃φ 0.590 0.231 0.096 0.070 0.618 0.225 0.117 0.068
Z̃t 0.457 0.163 0.068 0.074 0.487 0.158 0.082 0.083
Zφ 0.642 0.398 0.210 0.110
Zt 0.376 0.247 0.158 0.133
L̃φ 0.501 0.308 0.146 0.053 0.692 0.399 0.164 0.056
L̃ t 0.244 0.170 0.092 0.053 0.428 0.246 0.118 0.058
Lφ 0.667 0.401 0.175 0.061 0.825 0.557 0.255 0.069
Lt 0.405 0.254 0.125 0.063 0.606 0.397 0.195 0.066

0.3 0.6 Z̃φ 0.602 0.241 0.103 0.071 0.583 0.258 0.112 0.094
Z̃t 0.460 0.179 0.069 0.077 0.459 0.177 0.082 0.094
Zφ 0.722 0.471 0.211 0.099
Zt 0.488 0.318 0.175 0.097
L̃φ 0.590 0.333 0.165 0.070 0.695 0.442 0.152 0.051
L̃ t 0.331 0.202 0.106 0.065 0.456 0.291 0.117 0.049
Lφ 0.744 0.477 0.197 0.064 0.862 0.630 0.267 0.073
Lt 0.528 0.343 0.160 0.062 0.668 0.469 0.216 0.066

0.4 0.5 Z̃φ 0.612 0.252 0.105 0.080 0.618 0.286 0.122 0.097
Z̃t 0.483 0.186 0.075 0.085 0.491 0.215 0.083 0.101
Zφ 0.757 0.556 0.230 0.107
Zt 0.518 0.412 0.188 0.104
L̃φ 0.652 0.399 0.177 0.069 0.711 0.424 0.163 0.049
L̃ t 0.403 0.253 0.120 0.056 0.447 0.264 0.125 0.037
Lφ 0.816 0.565 0.244 0.073 0.875 0.628 0.279 0.073
Lt 0.626 0.423 0.192 0.064 0.688 0.448 0.244 0.059

Note: Dickey–Fuller tests: Z̃φ and Z̃t ; LLM tests: Zφ and Zt ; Herce tests: L̃φ and L̃t ; our tests: Lφ and Lt .

As suggested by the co-editor, we also conducted an experiment to check
the sizes of our tests in Section 3 when the innovations were asymmetrically
distributed. The same generating process as that in the previous experiments was
employed here, and the innovation sequence {εt } came from a mixed t-distribution,
taking values of a1|t f1 | and −a2|t f2 |, respectively, with probability 0.5, where the
two constants a1 and a2 made sure that Eεt = 0 and Eε2

t = 1. We considered the
following AR(2) unit root process to fit each sample:

�yt = −φyt−1 +μ+ψ�yt−1 + et , et = εt

√
ht ,

ht = ω+α1e2
t−1 +β1ht−1,
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TABLE 3. The empirical sizes in percentages for the mixed
t-distributed innovations with 5 and t f2 degrees of freedom

α1 β1 t f2 Z̃φ Z̃t L̃φ L̃ t Lφ Lt

0.2 0.7 7 6.4 6.7 7.2 6.5 6.6 6.5
11 7.4 7.8 6.5 6.1 6.3 5.7

0.3 0.6 7 7.8 8.5 7.4 6.1 6.8 6.0
11 7.8 8.4 7.7 6.5 7.3 6.7

0.4 0.5 7 8.5 8.0 7.8 6.7 7.5 6.1
11 7.4 9.0 8.1 7.2 7.9 7.0

Note: Augmented Dickey–Fuller tests: Z̃φ and Z̃t ; Herce tests: L̃φ and L̃t ; our tests:
Lφ and Lt .

and two different distributions of εt were considered in this experiment with
( f1, f2), respectively, equal to (5,7) and (5,11). Note that LLM tests cannot be
used here. The empirical sizes of the other three types of tests are listed in Table 3.
Furthermore, from the derivation in Section 3, the sizes of the augmented Dickey–
Fuller tests should be close to the nominal value, 5%, and those of the Herce tests
and our tests are supposed to be distorted. Nevertheless, Table 3 shows that the
sizes of all the tests are affected to some extent. Although the empirical sizes of
Lφ and Lt are slightly distorted, the situation seems better than for the other tests.

Finally, we conclude that our tests can be usefully applied when time series
have time-varying conditional variance with heavy-tailed innovations, even when
the fourth moment of innovations is finite.
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APPENDIX: Proof of Theorem 2.1

In this Appendix, we first state two lemmas, Lemmas A.1 and A.2, and then present the
proof of Theorem 2.1. To make the proof easy to understand, we also give the proofs of
(A.7) and some important inequalities at the end of this Appendix.
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LEMMA A.1. If Assumption 2.2 is satisfied, then it holds that, for 0 < ρ < 1,

E|ht −ht (θ0)| = O(ρt ), E

∥∥∥∥∂ht

∂δ
− ∂ht (θ0)

∂δ

∥∥∥∥ = O(ρt )

and

E

∥∥∥∥∥ ∂2ht

∂δ∂δ′ − ∂2ht (θ0)

∂δ∂δ′

∥∥∥∥∥ = O(ρt ).

Proof. Let

uq = (1,0, . . . ,0)′1×q and B =
(

β1 · · · βq

Iq−1 0(q−1)×1

)
q×q

,

where Ik is a k ×k identity matrix and 0k×l is a k × l zero matrix. Then the function ht (θ)
can be rewritten as

ht (θ) =
t−2

∑
j=0

[
ω+

min{p,t− j−1}
∑
i=1

αi e2
t− j−i (θ)

]
u′

q B j uq

in the almost sure sense. Note that, by Assumption 2.2 and Lemma A.1 of Li and Li (2008),
it holds that |u′

q B j uq | < C1ρ j for all j ≥ 0, where 0 < ρ < 1 and C1 is a constant. By
some straightforward calculation, we finish the proof of this lemma. n

LEMMA A.2. Under Assumptions 2.1–2.3, the following conditions are jointly
satisfied:

(i) 1
n2

n

∑
t=1

y2
t−1 −→d

∫ 1

0
B2

1 (τ )dτ ,

(ii) 1
n
√

n

n

∑
t=1

yt−1 −→d

∫ 1

0
B1(τ )dτ,

(iii) 1
n

n

∑
t=1

yt−1

[
sgn(et )√

ht
+ (|εt |−1)

2ht

∂ht

∂μ

]
−→d

∫ 1

0
B1(τ )dB(1)

2 (τ ),

(iv) 1√
n

n

∑
t=1

[
sgn(et )

zt−1√
ht

+ (|εt |−1)

2ht

∂ht

∂ψ

]
−→d B2(1),

(v) 1√
n

n

∑
t=1

[
(|εt |−1)

2ht

∂ht

∂γ

]
−→d B3(1),

where B(τ ) = [B1(τ ), B′
2(τ ), B′

3(τ )]′ is a (k + p + q + 2)-dimensional Brownian motion

defined as in Theorem 2.1 and B(1)
2 (τ ) is the first component of B2(τ ).

Proof. Let λ = (λ1,λ′
2,λ′

3)′ be a (k + p + q + 2)-dimensional constant vector with
λ′λ �= 0, where λ2 and λ3, are, respectively, k- and (p + q + 1)-dimensional vector. Let
Ft = σ(εt ,εt−1, . . .) be a σ -field generated by {εt ,εt−1, . . .} and denote

�t = λ1ψ−1(B)et +λ′
2

[
sgn(et )

zt−1√
ht

+ (|εt |−1)

2ht

∂ht

∂ψ

]
+λ′

3
(|εt |−1)

2ht

∂ht

∂γ
.

Note that {�t , t ∈ Z} is a martingale difference with respect to {Ft , t ∈ Z}.
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Denote Sm = n−1/2 ∑m
t=1 �t . It is readily shown that ES2

n = λ′�λ and 0 < λ′�λ < ∞,

where � is defined as in Theorem 2.1. Note that the sequences {�t } and {E(�t
2|Ft−1)} are

both strictly stationary and ergodic. Hence, it is easy to show that

1

n

n

∑
t=1

E(�t
2|Ft−1)

ESn
2 −→ 1 (A.1)

in the almost sure sense and, for any ε > 0,

1

n

n

∑
t=1

E
[
�t

2 I
(
�t ≥ √

nvar(�t )ε
)]

= o(1). (A.2)

By the invariance principle for martingales (Hall and Heyde, 1980), (A.1), and (A.2), we
have that

S[nτ ] = 1√
n

[nτ ]

∑
t=1

�t −→d W (τ ) in D,

where W (τ ) is a Brownian motion with variance τλ′�λ. Then, by Cramér’s device,

1√
n

[nτ ]

∑
t=1

[
ψ−1(B)et ,sgn(et )

z′
t−1√
ht

+ (|εt |−1)

2ht

∂ht

∂ψ ′ ,
(|εt |−1)

2ht

∂ht

∂γ ′

]′
−→d B(τ ) in D× D.

Hence, following Theorem 2.2 in Kurtz and Protter (1991), (i)–(v) hold jointly. n

Proof of Theorem 2.1. For any v = (v1,v ′
2,v ′

3)′, where v1 ∈ R, v2 ∈ Rk , and v3 ∈
R p+q+1, let φ = v1/n, ψ = ψ0 +v2/

√
n, γ = γ0 +v3/

√
n, δ = (ψ ′,γ ′)′, and θ = (φ,δ′)′.

Then,

Ln(θ)− Ln(θ0) =
n

∑
t=1

{ |et (φ,ψ)|√
ht (θ)

+ 1

2
loght (θ)− |et |√

ht (θ0)
− 1

2
loght (θ0)

}

=
n

∑
t=1

{ |et |√
ht (θ)

+ 1

2
loght (θ)− |et |√

ht (θ0)
− 1

2
loght (θ0)

}

+
n

∑
t=1

1√
ht (θ)

[|et (φ,ψ)|− |et |]

:= s(1)
n (v)+ s(2)

n (v),

where θ0 = (0,δ′
0)′ = (0,ψ ′

0,γ ′
0)′.

Note that s(1)
n (v) is a smooth function with respect to v . Then, by Taylor expansion,

Lemma A.1, and the inequalities at the end of this Appendix, it holds that

s(1)
n (v) = − v1

2n

n

∑
t=1

(|εt |−1)

ht

∂ht (θ0)

∂φ
− (v ′

2,v ′
3)

2
√

n

n

∑
t=1

(|εt |−1)

ht

∂ht

∂δ

+ v2
1

8n2

n

∑
t=1

1

h2
t

(
∂ht (θ0)

∂φ

)2
+ v1(v ′

2,v ′
3)

4n
√

n

n

∑
t=1

1

h2
t

∂ht (θ0)

∂φ

∂ht

∂δ

+ 1

8
(v ′

2,v ′
3)E

[
1

h2
t

∂ht

∂δ

∂ht

∂δ′

]
(v ′

2,v ′
3)′ +op(1). (A.3)
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We now consider the item ∂ht (θ0)/∂φ in the preceding approximation. Denote rt,i = ∑i
r=1

ψ−1(B)et−r . It holds that yt−i−1 = yt−1 − rt,i and Er2
t,i ≤ C2i , where C2 is a constant.

Then,

∂ht (θ0)

∂φ
= −2

t−2

∑
j=0

min(p,t− j−1)

∑
i=1

αi0et− j−i yt− j−i−1u′
q B j

0 uq = yt−1
∂ht (θ0)

∂μ
+2R∗

t ,

where B0 is just the matrix B in the proof of Lemma A.1 evaluated at the true parameter
vector and

E

[
R∗

t
ht

]2
= E

[
1

ht

t−2

∑
j=0

min( p,t− j−1)

∑
i=1

αi0et− j−i rt,i+ j u′
q B j uq

]2

≤ E

{
t−2

∑
j=0

min(p,t− j−1)

∑
i=1

√
αi0u′

q B j uqrt,i+ j

}2

≤ C3

with a finite constant C3. For the first item in (A.3), by Lemma A.1, we can show that

1

n

n

∑
t=1

(|εt |−1)

ht

∂ht (θ0)

∂φ
= 1

n

n

∑
t=1

yt−1(|εt |−1)

ht

∂ht (θ0)

∂μ
+ 2

n

n

∑
t=1

(|εt |−1)

ht
R∗

t

= 1

n

n

∑
t=1

yt−1(|εt |−1)

ht

∂ht

∂μ
+op(1) (A.4)

because

E

[
1

n

n

∑
t=1

(|εt |−1)

ht
R∗

t

]2

= κ

n2

n

∑
t=1

E

(
R∗

t
ht

)2
= o(1).

Similarly, by Theorem 3.1 in Ling and Li (1998), we can show that

1

n2

n

∑
t=1

1

h2
t

(
∂ht (θ0)

∂φ

)2
= 1

n2

n

∑
t=1

y2
t−1

h2
t

(
∂ht

∂μ

)2
+op(1)

= E

[
1

ht

∂ht

∂μ

]2 1

n2

n

∑
t=1

y2
t−1 +op(1) (A.5)

and

1

n
√

n

n

∑
t=1

1

h2
t

∂ht (θ0)

∂φ

∂ht

∂δ
= 1

n
√

n

n

∑
t=1

yt−1

h2
t

∂ht

∂μ

∂ht

∂δ
+op(1)

= E

[
1

h2
t

∂ht

∂μ

∂ht

∂δ

]
1

n
√

n

n

∑
t=1

yt−1 +op(1); (A.6)

see also the proofs of Lemmas 4.4 and 4.6 in Ling and Li (2003).
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For the item s(2)
n (v), we can show that

s(2)
n (v) =− v1

n

n

∑
t=1

sgn(et )√
ht

yt−1 − v ′
2

n

n

∑
t=1

sgn(et )
zt−1√

ht

+ f (0)E

[
1

ht

]
v2

1
n2

n

∑
t=1

y2
t−1 +2 f (0)v ′

2E

[
zt−1

ht

]
v1

n
√

n

n

∑
t=1

yt−1

+ f (0)v ′
2E

[
zt−1z′

t−1
ht

]
v2 +op(1). (A.7)

Note that s(2)
n (v) is not a smooth function with respect to v . We will finish the proof of this

theorem first and then the proof of equation (A.7) because it is complicated.
By (A.3)–(A.7) and Lemma A.2, we have shown that

Ln(θ)− Ln(θ0) −→d s(v) := −v1

∫ 1

0
B1(τ ) dB(1)

2 (τ )− v ′
2 B2(1)− v ′

3 B3(1)+ v ′�v,

where � is defined in Theorem 2.1. Note that the random function s(v) has a unique mini-
mizer. Following Lemma 2.2 and Remark 1 of Davis, Knight, and Liu (1992), we complete
the proof of Theorem 2.1. n

Proof of Equation (A.7). It holds that, for x, y ∈ R and x �= 0,

|x − y|− |x | = −y sgn(x)+2
∫ y

0
I (x ≤ s)− I (x ≤ 0)ds,

where sgn(x) is equal to 1 for x > 0 and −1 for x < 0; see Knight (1998). Hence, we can

rewrite the item s(2)
n (v) as follows:

s(2)
n (v) =

n

∑
t=1

1√
ht (θ)

[∣∣∣∣et − v1

n
yt−1 − v ′

2√
n

zt−1

∣∣∣∣−|et |
]

=
n

∑
t=1

sgn(et )√
ht (θ)

[
− v1

n
yt−1 − v ′

2√
n

zt−1

]

+2
n

∑
t=1

1√
ht (θ)

∫ v1 yt−1/n+v ′
2zt−1/

√
n

0
I (et ≤ s)− I (et ≤ 0)ds, (A.8)

where zt = (1,�yt , . . . ,�yt−k+2)′. By the inequalities given at the end of this Appendix,
we know that

n

∑
t=1

sgn(et )√
ht (θ)

[
− v1

n
yt−1 − v ′

2√
n

zt−1

]
= − v1

n

n

∑
t=1

yt−1
sgn(et )√

ht
− v ′

2√
n

n

∑
t=1

sgn(et )
zt−1√

ht
+op(1).

For the second summation in (A.8), let

ζt (v) = 2√
h(θ)

∫ v1 yt−1/n+v ′
2zt−1/

√
n

0
I (et ≤ s)− I (et ≤ 0)ds.
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Note that E(ζt (v)|Ft−1) = 2h−1/2(θ)
∫ v1 yt−1/n+v ′

2zt−1/
√

n
0 F

(
sh−1/2

t
)− F(0)ds, where

F(·) is the distribution function of εt . Denote

Rt = E(ζt (v)|Ft−1)− f (0)√
ht (θ)ht

[
v1

n
yt−1 + v ′

2√
n

zt−1

]2

= 2√
ht (θ)

∫ v1 yt−1/n+v ′
2zt−1/

√
n

0
F
(
sh−1/2

t
)− F(0)− s f (0)h−1/2

t ds. (A.9)

By Assumption 2.1, there exists a constant, say, π , such that the density function f (x) is
continuous on the set {x, |x | ≤ π}. For π1 ∈ (0,π), it holds that

|Rt | ≤ 1√
ω

|2
∫ v1 yt−1/n+v ′

2zt−1/
√

n

0
F
(
sh−1/2

t
)− F(0)− s f (0)h−1/2

t ds|

≤ 1√
ω

sup
|x |≤π1

| f (x)− f (0)| ·
∫ |v1 yt−1/n+v ′

2zt−1/
√

n|
0

2h−1/2
t sds

≤ 2

n
√

ω
sup

|x |≤π1

| f (x)− f (0)| · v2
1ξ2

n +|v ′
2zt−1|2√

ht

as |v1 yt−1/n + v ′
2zt−1/

√
n| ≤ π1 and

|Rt | ≤ 1√
ω

|2
∫ v1 yt−1/n

0
F
(
sh−1/2

t
)− F(0)ds − v2

1 f (0)y2
t−1

n2√
ht

|

≤ 1√
ω

(
2

π2
1

+ f (0)

π1

)
1

ht

[ |v1 yt−1|
n

+ |v ′
2zt−1|√

n

]3

≤ 4

n
√

ω

(
2

π2
1

+ f (0)

π1

)[
v3

1ξ3
n√

nht
+ |v ′

2zt−1|2
ht

· max
1≤t≤n

n−1/2|v ′
2zt |

]

as |v1 yt−1/n +v ′
2zt−1/

√
n| > π1, where ω = infω∈	 ω > 0. Note that the item max1≤t≤n

n−1/2|v ′
2zt | = op(1) and sup|x |≤π1

| f (x) − f (0)| tends to zero as π1 → 0. Hence, by
letting n → ∞ and then π1 → 0, we can show that

n

∑
t=1

Rt = op(1). (A.10)

Similarly, it can be shown that nEζ 2
t (v) = o(1), and then

E

[
n

∑
t=1

ζt (v)−
n

∑
t=1

E(ζt (v)|Ft−1)

]2

≤ nEζ 2
t (v) = o(1),

which implies that

n

∑
t=1

ζt (v) =
n

∑
t=1

E(ζt (v)|Ft−1)+op(1). (A.11)
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By (A.9)–(A.11), Theorem 3.1 in Ling and Li (1998), and the inequalities at the end of this
Appendix, we can show that

n

∑
t=1

ζt (v) =
n

∑
t=1

f (0)

ht

[
v1

n
yt−1 + v ′

2√
n

zt−1

]2

+op(1)

= f (0)E

[
1

ht

]
v2

1
n2

n

∑
t=1

y2
t−1 +2 f (0)v ′

2E

[
zt−1

ht

]
v1

n
√

n

n

∑
t=1

yt−1

+ f (0)v ′
2E

[
zt−1z′

t−1
ht

]
v2 +op(1).

Hence, equation (A.7) holds. n

Some important inequalities. The Taylor expansion in (A.3) is readily obtained if
higher order moments of et are assumed. However, only the second-order moments of
et and εt are assumed in this paper, and hence the following inequalities are necessary for
the proof of (A.3).

Denote ξn = n−1/2 max1≤i≤n |yi |. By Doob’s inequality (Hall and Heyde, 1980, p. 15),
we know that Eξ2

n < ∞ and ξn = Op(1). Let Gn = (1/n,1/
√

n, . . . ,1/
√

n)′ be a (k +
p +q + 2)-dimensional vector, and denote, 	n = {θ : ‖G′

n(θ − θ0)‖ ≤ M}, where M is a
positive constant. Note that, for i = 1, . . . ,q and j ≥ 0, the inequality ht (θ) > βi ht−i (θ) >
βi u′

q B j uq ht−i− j (θ) is satisfied for all θ ∈ 	n , and then it is not difficult to show that

sup
θ∈	n

∣∣∣∣ 1√
ht (θ)

∂ht (θ)

∂φ

∣∣∣∣ ≤ C
√

nξn, E

{
sup

θ∈	n

∥∥∥∥ 1√
ht (θ)

∂ht (θ)

∂δ

∥∥∥∥
}2

≤ ∞,

sup
θ∈	n

∣∣∣∣∣ 1√
ht (θ)

∂2ht (θ)

∂φ2

∣∣∣∣∣ ≤ Cnξ2
n , sup

θ∈	n

∥∥∥∥∥ 1√
ht (θ)

∂2ht (θ)

∂φ∂δ

∥∥∥∥∥ ≤ C
√

nξn,

E

{
sup

θ∈	n

∥∥∥∥∥ 1√
ht (θ)

∂2ht (θ)

∂δ∂δ′

∥∥∥∥∥
}2

≤ ∞

and

sup
θ∈	n

∣∣∣∣∣ 1√
ht (θ)

∂3ht (θ)

∂φ2∂δ

∣∣∣∣∣ ≤ Cnξ2
n , sup

θ∈	n

∥∥∥∥∥ 1√
ht (θ)

∂3ht (θ)

∂φ∂δ∂δ′

∥∥∥∥∥ ≤ C
√

nξn,

E

{
sup

θ∈	n

∥∥∥∥∥ 1√
ht (θ)

∂3ht (θ)

∂δ∂δ′∂δ

∥∥∥∥∥
}2

≤ ∞,

where C is a constant. n


