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Abstract: The nested Dirichlet distribution (NDD) is an important distribution

defined on the closed n-dimensional simplex. It includes the classical Dirichlet dis-

tribution and is useful in incomplete categorical data (ICD) analysis. In this article,

we develop the distributional properties of NDD. New large-sample likelihood and

small-sample Bayesian approaches for analyzing ICD are proposed and compared

with existing likelihood/Bayesian strategies. We show that the new approaches have

at least three advantages over existing approaches based on the traditional Dirich-

let distribution in both frequentist and conjugate Bayesian inference for ICD. The

new methods possess closed-form expressions for both the maximum likelihood and

Bayes estimates when the likelihood function is in NDD form; produce computa-

tionally efficient EM and data augmentation algorithms when the likelihood is not

in NDD form; and provide exact sampling procedures for some special cases. The

methodologies are illustrated with simulated and real data.

Key words and phrases: Data augmentation, Dirichlet distribution, EM, incomplete

categorical data, matrix rate of convergence, mixing rate of a markov chain, nested

Dirichlet distribution.

1. Introduction

The Dirichlet distribution (DD) is usually employed as a conjugate prior

for the multinomial model in Bayesian analysis of complete contingency tables

(Agresti (2002)). Gupta and Richards (1987, 1991, 1992) extended the DD to

the Liouville distribution. Fang, Kotz and Ng (1990, Chap. 5) gave an extensive

exposition of the Liouville family and its ramifications. Rayens and Srinivasan

(1994) studied the generalized Liouville family and considered its application to

compositional data analysis (Aitchison (1986)).

For the analysis of incomplete categorical data (ICD), Schafer (1997) showed

how EM and data augmentation (DA) algorithms based on a multinomial model

with a Dirichlet prior could be applied under the missing at random (MAR)

mechanism (Rubin (1976)). Noting that Dirichlet priors do not always provide

sufficient flexibility, Dickey (1983) discussed a nested family of distributions that

generalize the DD and argued that they are more appropriate for ICD analysis.
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Recently, Ng, Tang, Tan and Tian (2008) extended the DD to a new family of

grouped Dirichlet distributions and studied its application to ICD analysis. In

this article, we discuss the nested Dirichlet distribution (NDD) on the closed n-

dimensional simplex, which also has important applications in ICD analysis. To

our knowledge, NDD was first introduced briefly in Tian, Ng and Geng (2003),

in which only one stochastic representation (SR) was provided.

The main goal of this article is to investigate the NDD family. Distribution

properties such as SR, mixed (or raw) moments and mode are discussed. We

examine large-sample likelihood inferences and small-sample Bayesian inferences

for ICD based on the NDD. Comparisons between our proposed methods and

existing likelihood/Bayesian strategies are presented. We show theoretically that

the proposed approaches have at least three advantages over the commonly used

approaches based on DD in both frequentist and conjugate Bayesian inference

for ICD: when the likelihood takes the NDD form, both the maximum likelihood

and Bayes estimates have closed-form expressions in the new approach; when the

likelihood is not in NDD form, the corresponding EM and DA algorithms based

on our new approaches converge much faster; an exact non-iterative sampling

procedure is available for some special cases. The proposed methodologies are

illustrated with a hypothetical example and a dental study consisting of ICD.

We conclude with a discussion. All technical details are left to the Appendix.

2. The Nested Dirichlet Distribution

2.1. Notations and density function

Let x = (x1, . . . , xn)⊤ denote an n-vector, ||x|| =
∑n

i=1 xi the ℓ1-norm of x,

and x−n = (x1, . . . , xn−1)
⊤. We adopt the following notations throughout this

paper.

=̂ definition
d
= having the same distribution on both sides

R
n
+ = {x : xi ≥ 0, i = 1, . . . , n}

Tn = {x : x ∈ R
n
+ and ||x|| = 1}, the closed simplex

Vn−1(d) = {x−n : x−n ∈ R
n−1
+ and ||x|| ≤ d}, the open simplex

Vn−1 = Vn−1(1)

Γ(a) =
∫∞

0 xa−1e−x dx, a > 0, gamma function

Bn(a1, . . . , an) =
∏n

i=1 Γ(ai)/Γ(
∑n

i=1 ai), multivariate beta function

B(a1, a2) = B2(a1, a2), beta function

Beta(x|a1, a2) = xa1−1(1 − x)a2−1/B(a1, a2), 0 ≤ x ≤ 1, beta density

Dn(x|a) = (
∏n

i=1 x
ai−1
i )/Bn(a), x ∈ Tn, Dirichlet density

Dn(a) Dirichlet distribution with density Dn(x|a).
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An n-vector x ∈ Tn is said to follow an NDD, if the density of x−n is

NDn,n−1(x−n|a,b) = c−1 ·(
∏n

i=1 x
ai−1
i )·

∏n−1
j=1 (

∑j
k=1 xk)

bj , x−n ∈ Vn−1, (2.1)

where a = (a1, . . . , an)⊤ is a positive parameter vector, b = (b1, . . . , bn−1)
⊤ is

a non-negative parameter vector, c =
∏n−1

j=1 B(dj, aj+1) is the normalizing con-

stant, and

dj =̂
∑j

k=1(ak + bk). (2.2)

We write x ∼ NDn,n−1(a,b) on Tn or x−n ∼ NDn,n−1(a,b) on Vn−1 accordingly.

It is noteworthy that when all bj = 0 the NDD in (2.1) reduces to Dirichlet

distribution Dn(a). One motivation of the NDD density (2.1) comes from the

factorization of the likelihood with a monotone pattern for ICD (Rubin (1974)

and Little and Rubin (2002, Chap. 13)).

2.2. Two motivating examples

In the first example, the likelihood can be expressed exactly in terms of

a NDD (up to a normalizing constant). In the second example, the likelihood

can be written as a product of two terms, namely a NDD (up to a normalizing

constant) and a product of powers of linear combination of the parameters of

interest. Efficient methods for analyzing these data sets are developed in subse-

quent sections.

Example 1. Sample surveys with nonresponse. Let N denote the total number

of questionnaires sent out, suppose m individuals respond, and the rest do not.

Of the m respondents, there are nr+i individuals whose answers are classified

into category i (denoted by X = i), i = 1, . . . , r. Denote the nonrespondents by

R = 0 and the respondents by R = 1. Let θi = Pr(X = i, R = 0) and θr+i =

Pr(X = i, R = 1) denote the cell probabilities, i = 1, . . . , r. The parameter

of interest is Pr(X = i) = θi + θr+i (Albert and Gupta (1985)). Let Yobs =

{(nr+1, . . . , n2r); N − m} denote the observed counts and θ = (θ1, . . . , θ2r)
⊤.

Under the MAR assumption, the likelihood function for the observed data Yobs

is given by

L(θ|Yobs) ∝ (
∏2r

i=r+1 θ
ni

i )·(θ1+· · ·+θr)
N−m, m =

∑2r
i=r+1 ni, θ ∈ T2r. (2.3)

Obviously, if we treat θ as a random vector, then θ ∼ ND2r,2r−1(a,b) where a is

a 2r × 1 vector with ai = 1 for i = 1, . . . , r and ai = ni + 1 for i = r + 1, . . . , 2r,

b is a (2r − 1) × 1 vector with bj = 0 for j 6= r and bj = N −m for j = r.

Example 2. Dental caries data. To determine the degree of sensitivity to

dental caries, dentists often consider three risk levels: low, medium and high,

labeled X = 1, X = 2 and X = 3, respectively. Each subject is assigned a risk
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level based on the spittle color obtained using a coloration technique. However,

some subjects may not be fully categorized due to the inability to distinguish

adjacent categories. Paulino and Pereira (1995) analyzed the following data set

using Bayesian methods. Of 97 subjects, only 51 were fully categorized, with

n1 = 14, n2 = 17, and n3 = 20 subjects being classified as low, medium and high,

respectively; total of n12 = 28 subjects were only classified as low or medium risk,

and n23 = 18 as medium or high risk. The primary objective is the estimation

of the cell probabilities. Let Yobs = {(n1, n2, n3); (n12, n23)} be the observed

frequencies and θ = (θ1, θ2, θ3)
⊤ the corresponding cell probability vector. Under

the assumption of MAR, the observed data likelihood function is

L(θ|Yobs) ∝
{

(
∏3

i=1 θ
ni

i )θ0
1(θ1 + θ2)

n12

}

· (θ2 + θ3)
n23 , θ ∈ T3. (2.4)

Again, we observe that the first term in (2.4) follows the ND3,2(a,b) with a =

(n1, n2, n3)
⊤ and b = (0, n12)

⊤, up to a normalizing constant, while the second

term is simply a power of a linear combination of θ = (θ1, θ2, θ3)
⊤.

2.3. Stochastic representation, moments and mode

The first proposition provides a SR of an NDD yielding a simple procedure

for generating independently and identically distributed (i.i.d.) samples, which in

turn play a crucial role in Bayesian analysis for ICD. The result indicates that the

NDD can be stochastically represented by a sequence of mutually independent

Beta variates. The proof of Proposition 1 is given in the Appendix. As an

immediate result of Proposition 1, the second proposition suggests another SR for

NDD, and plays an important role in the derivation of marginal and conditional

distributions of an NDD. Throughout this paper, {dj}
n−1
j=1 are defined in (2.2).

Proposition 1. An n-vector x ∼ NDn,n−1(a,b) on Tn if and only if







xi
d
= (1 − yi−1) ·

∏n−1
j=i yj, y0 ≡ 0, i = 1, . . . , n− 1,

xn
d
= 1 − yn−1,

(2.5)

where yj ∼ Beta(dj , aj+1), and the y1, . . . , yn−1 are mutually independent.

Proposition 2. An n-vector x ∼ NDn,n−1(a,b) on Tn if and only if







x1 + · · · + xi
d
=
∏n−1

j=i yj, i = 1, . . . , n− 1,

xn
d
= 1 − yn−1,

(2.6)

where {yj}
n−1
j=1 are defined in Proposition 1.
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Next, in Proposition 3 below, we present the first- and second-order moments
of x by using (2.5). Using (2.6), we give the higher order moments of

∑i
j=1 xj in

Proposition 4. The corresponding proofs are also given in the Appendix.

Proposition 3. Let x ∼ NDn,n−1(a,b) on Tn. Then

E(xi) =
ai

di−1 + ai

n−1
∏

j=i

dj

dj + aj+1
, i = 1, . . . , n,

E(x2
i ) =

ai(ai + 1)

(di−1 + ai)(di−1 + ai + 1)

n−1
∏

j=i

dj(dj + 1)

(dj + aj+1)(dj + aj+1 + 1)
, and

E(xixj) =
ai

di−1 + ai

j−2
∏

k=i

dk

dk + ak+1

·
ajdj−1

(dj−1 + aj)(dj−1 + aj + 1)

n−1
∏

k=j

dk(dk + 1)

(dk + ak+1)(dk + ak+1 + 1)
, i < j.

Proposition 4. Let x ∼ NDn,n−1(a,b) on Tn. For any r ≥ 0 we have

E(
∑i

j=1 xj)
r =

∏n−1
j=i [B(dj + r, aj+1)/B(dj , aj+1)], i = 1, . . . , n− 1.

Finally, Proposition 5 gives a closed-form expression for the mode of an

NDD density, implying that explicit MLEs of cell probabilities are available in
the frequentist analysis of ICD. The proof is given in the Appendix.

Proposition 5. The mode of the nested Dirichlet density (2.1) is given by



















x̂n =
an − 1

dn−1 + an − n
,

x̂i =
(ai − 1)(1 − x̂i+1 − x̂i+2 − · · · − x̂n)

di−1 + ai − i
, i = 2, . . . , n− 1,

x̂1 = 1 − x̂2 − · · · − x̂n.

(2.7)

3. Large-Sample Likelihood Inference

In this section, we consider ICD analyses with large sample sizes. For sim-
plicity, we assume that each subject is classified into one of n categories and

θ = (θ1, . . . , θn)⊤ ∈ Tn is the corresponding cell probability vector. Let Yobs

denote the observed frequencies that consist of two parts: the complete observa-
tions (e.g., n1, n2, n3 and n12 at (2.4)) and the partial observations (e.g., n23 at

(2.4)). Under the MAR mechanism, the likelihood function is usually expressed
as

L(θ|Yobs) = NDn,n−1(θ|a,b) · Lst(θ|Yobs), (3.1)
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where the first term is in the NDD form. For the second term, we consider that
Lst(θ|Yobs) is a constant, or Lst(θ|Yobs) is not constant, where the superscript

“st” represents the second term of (3.1).

3.1. Likelihood with NDD form

If Lst(θ|Yobs) is a constant, the likelihood function in (3.1) is proportional

to the nested Dirichlet distribution NDn,n−1(θ|a,b), that is,

L(θ|Yobs) ∝ (
∏n

i=1 θ
ai−1
i ) ·

∏n−1
k=1(

∑k
ℓ=1 θℓ)

bk . (3.2)

Recall that (2.3) belongs to this category. From Proposition 5, we immediately
obtain the MLE of θ in closed-form by treating the variates as parameters. The

asymptotic variance-covariance matrix of the MLE θ̂ is then given by I−1
obs(θ̂),

where Iobs(θ) = −∂2 logL(θ|Yobs)/∂θ∂θ
⊤ is the observed information matrix.

From (3.2), it is easy to show that

∂ logL(θ|Yobs)

∂θi

=
ai − 1

θi

−
an − 1

θn

+

n−1
∑

k=i

bk
∑k

ℓ=1 θℓ

, i = 1, . . . , n− 1,

−
∂2 logL(θ|Yobs)

∂θ2
i

=
ai − 1

θ2
i

+
an − 1

θ2
n

+

n−1
∑

k=i

ψk, i = 1, . . . , n− 1,

−
∂2 logL(θ|Yobs)

∂θi∂θj

=
an − 1

θ2
n

+

n−1
∑

k=max(i,j)

ψk, i 6= j,

where ψk =̂ bk/(
∑k

ℓ=1 θℓ)
2, k = 1, . . . , n − 1. Hence, the observed information

matrix can be expressed as

Iobs(θ) = diag

(

a1 − 1

θ2
1

, . . . ,
an−1 − 1

θ2
n−1

)

+
an − 1

θ2
n

· 11n−111
⊤
n−1 +An−1, (3.3)

where

An−1 =











1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1





















ψ1 0 · · · 0

ψ2 ψ2 · · · 0
...

...
. . .

...

ψn−1 ψn−1 · · · ψn−1











. (3.4)

3.2. Likelihood beyond NDD form

If Lst(θ|Yobs) is not constant, it can in general be written as a product of
powers of linear functions of θ. We assume Lst(θ|Yobs) =

∏q
j=1(

∑n
i=1 λijθi)

mj so

that

L(θ|Yobs) ∝ {(
∏n

i=1 θ
ai−1
i )

∏n−1
k=1(

∑k
ℓ=1 θℓ)

bk} ·
∏q

j=1(
∑n

i=1 λijθi)
mj , (3.5)
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where Λn×q = (λij) is a known matrix with λij = 0 or 1, and that there exists

at least one nonzero entry in each column of Λ. For instance, in (2.4), we have

n = 3, q = 1, m1 = n23, λ11 = 0 and λ21 = λ31 = 1. Generally speaking, the

MLE of θ based on (3.5) may not be available in closed-form. Here, we propose

a new EM algorithm based on NDD rather than the Dirichlet distribution for

obtaining the MLE.

For this purpose, we first augment the observed data Yobs with latent data

Y ND
mis = {zj}

q
j=1, where zj = (z1j , . . . , znj)

⊤ is used to split (λ1jθ1+· · ·+λnjθn)mj .

When λij = 0, we set zij = 0. The likelihood function for the new augmented-

data Y ND
aug = {Yobs, Y

ND
mis } (equivalently, the joint density of Y ND

aug ) can be readily

shown to be

L(θ|Y ND
aug ) = f(Y ND

aug |θ) = NDn,n−1(θ|a + Z11q,b), (3.6)

where Zn×q = (z1, . . . , zq). Hence, the augmented-data MLEs of θ (cf. (2.7)) are

given by










































θ̂n =
an + z⊤(n)11q − 1

∑n
ℓ=1(aℓ + z⊤(ℓ)11q − 1) +

∑n−1
ℓ=1 bℓ

,

θ̂i =
(ai + z⊤(i)11q − 1)(1 −

∑n
j=i+1 θ̂j)

∑i
ℓ=1(aℓ + z⊤(ℓ)11q − 1) +

∑i−1
ℓ=1 bℓ

, 2 ≤ i ≤ n− 1,

θ̂1 = 1 −
∑n

j=2 θ̂j,

(3.7)

where z⊤(i) denotes the i-th row of the matrix Z. Further, it is easy to show that

the conditional predictive distribution is given by

f(Y ND
mis |Yobs,θ) =

q
∏

j=1

f(zj |Yobs,θ), (3.8)

where

zj|(Yobs,θ) ∼ Multinomial
(

mj;
(λ1jθ1, . . . , λnjθn)⊤

∑n
ℓ=1 λℓjθℓ

)

, 1 ≤ j ≤ q.

Thus, the E-step of the new EM computes the following conditional expectations

E(zij |Yobs,θ) =
mjλijθi
∑n

ℓ=1 λℓjθℓ

, 1 ≤ i ≤ n, 1 ≤ j ≤ q, (3.9)

while the M-step updates (3.7) by replacing zij ’s by their conditional expecta-

tions. The asymptotic variance-covariance matrix of the MLE θ̂ can be obtained
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by the method of Louis (1982) or the direct computation of the observed infor-

mation matrix evaluated at θ = θ̂.

3.3. Comparison with existing likelihood strategies

When the likelihood (3.1) takes the NDD form in (3.2), the traditional strat-

egy would introduce latent variables to split
∏n−1

k=1(
∑k

ℓ=1 θℓ)
bk , so that the aug-

mented likelihood is in the form of a Dirichlet density and hence the EM algo-

rithm can be used to obtain the MLE of θ. In this regard, our non-iterative

method proposed in Sec. 3.1 is preferable to the EM as one has a closed-form

MLE solution of θ.

When the likelihood function is given by (3.5), the traditional strategy would

introduce (n−1)(n−2)/2 latent variables (denoted by {wk}
n−1
k=2), when compared

with our strategy, where wk = (w1k, . . . , wkk)
⊤ is used to split (

∑k
ℓ=1 θℓ)

bk . Thus,

the corresponding missing data are denoted by Y D
mis = Y ND

mis ∪ {wk}
n−1
k=2 , so that

the likelihood for the augmented data Y D
aug = {Yobs, Y

D
mis} (equivalently, the joint

pdf of Y D
aug) is given by

L(θ|Y D
aug) = f(Y D

aug|θ) = Dn(θ|s1, . . . , sn), (3.10)

si =̂ ai + z⊤(i)11q +
∑n−1

k=i wik, i = 1, . . . , n− 1, (3.11)

with w11 =̂ b1, and

sn =̂ an + z⊤(n)11q.

Thus, the augmented-data MLEs are

θ̂i =
si − 1
∑n

ℓ=1

(sℓ − 1), i = 1, . . . , n. (3.12)

On the other hand, the conditional predictive distributions are given by (3.8)

and

wk|(Yobs,θ) ∼ Multinomial
(

bk;
(θ1, . . . , θk)

⊤

∑k
ℓ=1 θℓ

)

, k = 2, . . . , n− 1. (3.13)

Therefore, the E-step of the traditional EM algorithm computes (3.9) and

E(wik|Yobs,θ) =
bkθi

∑k
ℓ=1 θℓ

, 2 ≤ k ≤ n− 1, 1 ≤ i ≤ k, (3.14)

and the M-step updates (3.12) by replacing the zijs and wiks with their condi-

tional expectations.

To compare the traditional EM algorithm with our proposed EM algorithm

in Sec. 3.2, we let sequences {θ(t)}∞t=0 be the output of any EM algorithm with
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augmented data Yaug = {Yobs, Ymis} and parameter vector θ ∈ Tn. Any EM

algorithm implicitly defines a mapping θ → M(θ) = (M1(θ), . . . ,Mn(θ))⊤ from

Tn to Tn such that θ
(t+1) = M(θ(t)). If θ

(t+1) converges to some fixed point

θ̂ ∈ Tn, then θ̂ = M(θ̂). After expanding M(θ(t)) at the neighborhood of

θ̂, we have θ
(t+1) − θ̂

.
= dM(θ̂)(θ(t) − θ̂). Following Meng (1994), we refer

to dM(θ̂), the derivative of M(θ) evaluated at θ = θ̂, as the matrix rate of

convergence of the sequence {θ(t)}. The largest eigenvalue of dM(θ̂), denoted

as ρ{dM(θ̂)}, is called the global rate of convergence of {θ(t)}. Furthermore,

S(θ̂) = In − dM(θ̂) is called the matrix speed of convergence of {θ(t)}, and

the smallest eigenvalue 1 − ρ{dM(θ̂)} of S(θ̂) is known as the global speed

of {θ(t)}. Under mild regularity conditions, Dempster, Laird and Rubin (1977)

showed that dM(θ̂) = In − I−1
aug(θ̂)Iobs(θ̂), where

Iaug(θ) = E

[

−
∂2 log f(Yaug|θ)

∂θ∂θ
⊤

∣

∣

∣

∣

Yobs,θ

]

(3.15)

and Iobs(θ) = −∂2 log f(Yobs|θ)/∂θ∂θ
⊤ are the expected complete-data informa-

tion matrix and the observed information matrix, respectively.

To compare two EM algorithms (EM1 and EM2 say) based on the same

Yobs, but different DA schemes, we need only compare their matrix speeds. Since

Iobs(θ̂) is independent of DA schemes, it is suffices to compare their Iaug(θ̂).

Meng and van Dyk (1997) showed that if IEM2
aug (θ̂) ≤ IEM1

aug (θ̂), then the global

speed of EM2 is greater than or equal to the global speed of EM1.

Let c{B} denote some criterion for measuring the size of the positive def-

inite matrix B. We say EM2 dominates EM1 in c-criterion if c{IEM2
aug (θ̂)} ≤

c{IEM1
aug (θ̂)}. Furthermore, we say EM2 uniformly dominates EM1 in c-criterion

if c{IEM2
aug (θ)} ≤ c{IEM1

aug (θ)} for any θ ∈ Tn. Besides the largest eigenvalue, the

two commonly used criteria for measuring the size of a positive definite matrix

are trace and determinant. We have the following result, with the proof given in

the Appendix.

Proposition 6. The EM algorithm given at (3.7) and (3.9) uniformly dominates

the EM algorithm given at (3.12), (3.9) and (3.14) under the trace criterion, i.e.,

tr{IND
aug(θ)} ≤ tr{ID

aug(θ)} for any θ ∈ Tn, and the strict inequality holds provided

that there is at least one k such that bk > 0. In addition, the new EM dominates

the traditional EM under the criterion of largest eigenvalue.

4. Small-sample Bayesian Inference

When the sample size is small, the asymptotic methods in Sec. 3 are not

appropriate and the Bayesian approach is a useful alternative. Furthermore, in
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situations where some parameters are unidentified (see Sec. 5.1) in frequentist

settings, the Bayesian approach may be feasible if an informative prior is assigned.

In addition, it is appealing to use a Bayesian approach to specify the whole

posterior curve for the parameter of interest.

4.1. Likelihood with NDD form

When Lst(θ|Yobs) is a constant, the likelihood function is given at (3.2). For

Bayesian analysis, the NDD is the natural conjugate prior distribution. Multi-

plying (3.2) by the prior distribution

θ ∼ NDn,n−1(a
∗, b∗) (4.1)

yields the nested Dirichlet posterior distribution

θ|Yobs ∼ NDn,n−1(a + a∗ − 11n, b + b∗). (4.2)

The exact first-order and second-order posterior moments of {θi} can be obtained

explicitly from Proposition 3. The posterior means are similar to the MLEs. In

addition, the posterior samples of θ in (4.2) can be generated by utilizing (2.5),

which only involves the simulation of independent beta variates.

4.2. Likelihood beyond NDD form

When the observed likelihood function is given by (3.5), we propose a new DA

algorithm (Tanner and Wong (1987)) based on NDD, rather than the traditional

Dirichlet distribution, to generate dependent posterior samples of θ. We take

the prior as at (4.1). From (3.6), the complete-data posterior is an NDD, i.e.,

f(θ|Yobs, Y
ND
mis ) = NDn,n−1(θ|a + Z11q + a∗ − 11n, b + b∗). (4.3)

Based on (3.8) and (4.3), the new DA algorithm can be implemented to obtain

dependent posterior samples for θ.

Furthermore, when q (cf. Eq.(3.5)) is small (e.g., q = 1 or 2), we can adopt

the exact sampling approach (Tian, Tan and Ng (2007)) to obtain i.i.d. samples

from the posterior distribution f(θ|Yobs). In fact, from (3.8), (4.3) and the

sampling-wise IBF (Tan, Tian and Ng (2003)), we have

f(Y ND
mis |Yobs) ∝

f(Y ND
mis |Yobs,θ0)

f(θ0|Yobs, Y
ND
mis )

, (4.4)

where θ0 is an arbitrary point in Tn. Since Y ND
mis is a discrete random vec-

tor assuming finite values on its domain, we can first generate i.i.d. samples

{Y
ND(ℓ)
mis }L

ℓ=1 of Y ND
mis from the discrete distribution (4.4), and then generate

θ
(ℓ) ∼ f(θ|Yobs, Y

ND(ℓ)
mis ). Thus, {θ(ℓ)}L

ℓ=1 are i.i.d. samples from the posterior

f(θ|Yobs).
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4.3. Comparison with the existing Bayesian strategy

When the likelihood (3.1) has the NDD form given by (3.2), the usual

Bayesian strategy introduces latent variables so that the augmented posterior

is a Dirichlet distribution, and hence the DA algorithm can be used to obtain

dependent posterior samples of θ. The proposed non-iterative sampling approach

in Sec. 4.1 can more easily obtain i.i.d. posterior samples of θ than the iterative

DA algorithm.

When the likelihood function is given by (3.5), the traditional Bayesian strat-

egy introduces (n − 1)(n − 2)/2 latent variables (denoted by W = {wk}
n−1
k=2) so

that the likelihood function is given by (3.10). If we consider the conjugate

Dirichlet distribution θ ∼ Dn(a∗) as the prior, then the augmented posterior

remains a Dirichlet distribution,

f(θ|Yobs, Y
ND
mis ,W ) = Dn(θ|s + a∗), s =̂ (s1, . . . , sn)⊤, (4.5)

where {si}
n
i=1 are defined in (3.11). Therefore, the P-step of the traditional DA

generates θ from (4.5), and the I-step independently inputs Y ND
mis from (3.8) and

inputs W from (3.13).

To compare the different DA schemes, we consider the criterion of lag-1

autocorrelation, a common measure for studying the mixing rate of a Markov

chain. If the chain from a DA algorithm has reached equilibrium, Liu (1994)

shows that for any non-constant scalar-valued function h,

Corr{h(θ(t)), h(θ(t+1))} =
Var {E[h(θ)|Yaug]|Yobs}

Var {h(θ)|Yobs}
.

Therefore, the maximum autocorrelation over linear combinations h(θ) = x⊤θ is

sup
x 6=0

Corr{x⊤θ
(t),x⊤θ

(t+1)} = sup
x 6=0

x⊤Var {E[θ|Yaug]|Yobs}x

x⊤Var (θ|Yobs)x
= ρ{B},

where ρ{B} denotes the spectral radius of B = I−{Var (θ|Yobs)}
−1E[Var (θ|Yaug)

|Yobs], the Bayesian fraction of missing information for θ under f(Yaug|θ). Thus,

to reduce the autocorrelation, we need to maximize E[Var (θ|Yaug)|Yobs] over all

DA schemes using the positive semi-definite ordering (van Dyk and Meng (2001)).

To compare two different DA algorithms, say DA1 and DA2, based on the same

observed data Yobs, we only need to compare their E[Var (θ|Yaug)|Yobs]. We say

the algorithm DA1 converges no slower than the DA2 if

E[Var (θ|Y DA1
aug )|Yobs] ≥ E[Var (θ|Y DA2

aug )|Yobs].

To compare the traditional DA algorithm defined by (4.5), (3.8), and (3.13)

with the proposed DA algorithm in Sec. 4.2, we must first choose the same prior
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distribution, which can be done by setting b∗ = 0 in (4.3) or (4.1). Then, the

observed posterior distributions corresponding to the two DA algorithms are iden-

tical. Since Y ND
aug = {Yobs, Y

ND
mis } ⊆ {Yobs, Y

ND
mis ,W} = Y D

aug, we immediately have

Var (θ|Y ND
aug ) ≥ Var (θ|Y D

aug), so that E[Var (θ|Y ND
aug )|Yobs] ≥ E[Var (θ|Y D

aug)|Yobs].

Proposition 7. The DA algorithm defined at (4.3) and (3.8) converges no slower

than the traditional DA algorithm defined at (4.5), (3.8) and (3.13).

Since Yobs does not vary in the sampling process, we can represent the two

DA schemes simply as

Scheme DAND : θ|Y ND
mis , Y ND

mis |θ.

Scheme DAD : θ|(Y ND
mis ,W ), (Y ND

mis ,W )|θ.

In Scheme DAND, the two components being iterated are θ and Y ND
mis with W

being integrated out, while in Scheme DAD, an extra random vector W is in-

troduced. Using Theorem 5.1 of Liu, Wong and Kong (1994), we immediately

obtain the following result.

Proposition 8. Let FND and FD denote the forward operators of the two DA

schemes, and ||FND|| and ||FD|| the corresponding norms. Then (i) ||FND|| ≤

||FD||; (ii) the spectral radius of Scheme DAND is less than or equal to that of

Scheme DAD.

The former notions of forward operator, norm and spectral radius can be

found in Liu, Wong and Kong (1994). Proposition 8 shows that the maximal cor-

relation between θ and Y ND
mis is always smaller than that between θ and (Y ND

mis ,W ).

Furthermore, when q is small, the exact sampling approach proposed in Sec. 4.2

can be used to generate i.i.d. samples from the posterior f(θ|Yobs), avoiding the

problems of convergence associated with the iterative DA algorithms.

5. Applications

5.1. Simulated data

For Example 1 in Sec. 2.2, let φ and 1 − φ denote the probabilities of re-

sponse and non-response, respectively. Hence, we have φ = Pr(R = 1) =
∑2r

i=r+1 θi and 1 − φ = Pr(R = 0) =
∑r

i=1 θi. Let N = 1, 000, r = 5, and

φ = 0.65. By independently drawing 100 m’s from Binomial(N,φ) and aver-

aging them, we obtained m = 652 (m denotes the number of individuals who

respond to the survey). We further assume that θ6 = 0.2, θ7 = 0.12, θ8 = 0.08,

θ9 = 0.15, and θ10 = 0.10. Independently drawing 100 (n6, . . . , n10)’s from

Multinomial(m; (θ6, . . . , θ10)
⊤/0.65) and averaging the samples for each compo-

nent, we obtained n6 = 199, n7 = 120, n8 = 81, n9 = 151, and n10 = 101.
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Table 1. MLEs, SE and Bayesian estimates of parameters for the simulated data.

True Frequentist method Bayesian method

Parameter value MLE std mean std 95% CI

θ1 - - - 0.1428 0.0660 [0.0280, 0.2741]

θ2 - - - 0.0727 0.0568 [0.0025, 0.2114]

θ3 - - - 0.0538 0.0451 [0.0019, 0.1680]
θ4 - - - 0.0447 0.0395 [0.0013, 0.1498]

θ5 - - - 0.0390 0.0348 [0.0011, 0.1311]

1 − φ 0.35 0.348 0.0151 0.3534 0.0150 [0.3246, 0.3832]

θ6 0.20 0.199 0.0126 0.1971 0.0124 [0.1732, 0.2223]

θ7 0.12 0.120 0.0102 0.1192 0.0100 [0.1002, 0.1397]
θ8 0.08 0.081 0.0086 0.0807 0.0084 [0.0647, 0.0983]

θ9 0.15 0.151 0.0113 0.1493 0.0113 [0.1277, 0.1719]

θ10 0.10 0.101 0.0095 0.1001 0.0093 [0.0825, 0.1191]

φ 0.65 0.652 0.0151 0.6466 0.0150 [0.6167, 0.6753]

Note: 1 − φ = Pr(R = 0) =
∑5

i=1 θi and φ = Pr(R = 1) =
∑10

i=6 θi.

Based on the simulated counts Yobs = {(nr+1, . . . , n2r);N −m} and the like-

lihood (2.3), it is easy to see that the MLE of θ is exactly the mode of the nested

Dirichlet distribution NDn,n−1(a,b) with n = 2r, a = (0, . . . , 0, nr+1, . . . , n2r)
⊤+

11n and b = (0⊤r−1, N −m,0⊤r−1)
⊤. In frequentist settings, we note that θ1, . . . , θr

are non-estimable but 1 − φ is estimable. From Proposition 5, we obtain θ̂6 =

0.199, θ̂7 = 0.12, θ̂8 = 0.081, θ̂9 = 0.151, θ̂10 = 0.101, and φ̂ = 0.652. The

corresponding standard errors are listed in the fourth column of Table 1.

On the other hand, in Bayesian settings, θ1, . . . , θr are estimable if an infor-

mative prior distribution can be assigned to θ. Here we use the informative prior

with a∗1 = · · · = a∗n = 2 and b∗1 = · · · = b∗n−1 = 1 in (4.1). We generated 10, 000

i.i.d. posterior samples of θ from (4.2). The Bayes means, standard errors and

95% Bayes confidence intervals for θ and φ are given in Table 1.

5.2. Dental caries data

For Example 2 in Sec. 2.2, we are unable to find closed-form MLEs. In this

case, we consider the EM algorithm developed in Sec. 3.2 and the exact IBF

sampling approach proposed in Sec. 4.2 to handle the likelihood of θ given at

(2.4).

As (2.4) is a special case of (3.5), with n = 3, q = 1, m1 = n23, λ11 = 0, and

λ21 = λ31 = 1, we only introduce one latent variable z to split (θ2 + θ3)
n23 , so

that (3.6) and (3.8) become L(θ|Yobs, z) = ND3,2(θ|(n1 + 1, n2 + 1 + z, n3 + 1 +

n23 − z)⊤, (0, n12)
⊤) and

f(z|Yobs,θ) = Binomial
(

z
∣

∣

∣n23, θ2/(θ2 + θ3)
)

, z = 0, 1, . . . , n23, (5.1)
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Table 2. The values of qz(θ0) with θ0 = (1/3, 1/3, 1/3)⊤ and pz = f(z|Yobs).

z qz(θ0) pz z qz(θ0) pz z qz(θ0) pz

0 2.713e+032 3.815e-006 7 8.633e+036 1.214e-001 14 8.300e+035 1.167e-002

1 4.883e+033 6.866e-005 8 1.187e+037 1.669e-001 15 2.213e+035 3.113e-003

2 4.150e+034 5.836e-004 9 1.319e+037 1.855e-001 16 4.150e+034 5.836e-004

3 2.213e+035 3.113e-003 10 1.187e+037 1.669e-001 17 4.883e+033 6.866e-005

4 8.300e+035 1.167e-002 11 8.633e+036 1.214e-001 18 2.713e+032 3.815e-006
5 2.324e+036 3.268e-002 12 5.036e+036 7.082e-002 -

6 5.036e+036 7.082e-002 13 2.324e+036 3.268e-002 -

respectively. For the dental caries data, using θ
(0) = (1/3, 1/3, 1/3)⊤ as the

initial value, the new EM algorithm based on (3.7) and (3.9) converged in seven
iterations, with 0.016 seconds CPU time. The resulting MLEs were given by θ̂1 =

0.2393, θ̂2 = 0.4880, and θ̂3 = 0.2727. The corresponding standard errors were

0.0547, 0.0674, and 0.0514, obtained by the direct computation of the observed

information matrix evaluated at θ = θ̂. However, using the same initial value,
the traditional EM based on Dirichlet augmentation (see, (3.12) and (3.14))

converged in 22 iterations, with 0.04 seconds CPU time, which is about 3 (or 2.5)

times slower than the new EM in terms of the iteration number (or the computing

time). This comparison would be even more impressive if the traditional EM
algorithm introduced more than one extra latent variable.

For Bayesian analysis, we adopt the uniform prior, i.e., setting a∗ = 113 and

b∗ = 0 in (4.1). Hence, the complete-data posterior (4.3) and the sampling-wise

IBF (4.4) become

f(θ|Yobs, z) = ND3,2

(

θ

∣

∣

∣(n1+1, n2+1+z, n3+1+n23−z)
⊤, (0, n12)

⊤
)

(5.2)

and

f(z|Yobs) ∝
f(z|Yobs,θ0)

f(θ0|Yobs, z)
=̂ qz(θ0), (5.3)

respectively. Let θ0 = (1/3, 1/3, 1/3)⊤ . From (5.3), we can calculate {qz(θ0)}
n23

z=0.

By defining pz = f(z|Yobs) for z = 0, . . . , n23, we have pz = qz(θ0)/
∑n23

k=0 qk(θ0),

which is independent of θ0. We list the results in Table 2.
The exact IBF sampling can be conducted as follows: draw L = 20, 000

independent samples {z(ℓ)}L
1 of z from the discrete distribution (5.3) with prob-

abilities pz; generate θ
(ℓ) ∼ f(θ|Yobs, z

(ℓ)) at (5.2) for ℓ = 1, . . . , L, and {θ(ℓ)}L
1

are i.i.d. samples from the observed posterior distribution f(θ|Yobs). For the
dental caries data, the Bayes means of θ1, θ2, θ3 were given by 0.2457, 0.4784 and

0.2759, with the corresponding Bayes standard errors being 0.0532, 0.0654 and

0.0501. The 95% Bayes interval estimates were [0.1487, 0.3571], [0.3498, 0.6061]

and [0.1832, 0.3785], respectively. The computing time was 36.82 seconds. Figure

1 shows the posterior curves of θ1, θ2 and θ3.
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Figure 1. Comparisons of three posterior densities in each plot, obtained
by using the exact IBF sampling (solid curve, L = 20, 000 i.i.d. samples),
the DAND algorithm (dotted curve, a total of 40, 000 and retaining the last
20, 000 samples) and the DAD algorithm (dashed curve, a total of 45, 000
and retaining the last 20, 000 samples). (a) θ1; (b) θ2; (c) θ3.

To compare the new DAND algorithm defined by (5.1) and (5.2) with the

traditional DAD algorithm defined by (5.1),

f(w|Yobs,θ) = Binomial
(

w
∣

∣

∣
n12,

θ1
θ1 + θ2

)

, w = 0, . . . , n12,

f(θ|Yobs, z, w) = D3

(

θ

∣

∣

∣
n1 + 1 + w,n2 + 1 + n12 − w + z, n3 + 1 + n23 − z

)

,

we treat the whole posterior curve of {θi} obtained from the exact IBF sampling
as a benchmark to assess the convergence of the two Markov chains. We ran a
single chain of the DAND (DAD) algorithm to produce 40, 000 (45, 000) samples,
and retained the last 20, 000 samples. The corresponding computing times were
83.562 and 168.922 seconds. Figure 1 shows that the three curves are almost

identical, indicating final convergences for the two DA algorithms.

6. Discussion

We extended the Dirichlet distribution to a new family of nested Dirichlet

distribution (NDD), which allows more flexible parameters and can be readily
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adopted as the prior distribution in Bayesian ICD analysis. New EM/DA al-

gorithms based on the NDD were proposed and compared theoretically with

existing EM/DA algorithms based on the Dirichlet distribution.

The asymmetry of x1, . . . , xn in (2.1) may affect computational efficiency

when constructing EM/DA algorithms. For example, for the likelihood (2.4), in

Sec. 5.2 we introduced a latent variable z to split (θ2 + θ3)
n23 . Let the induced

EM and DA be denoted by EMND1 and DAND1, respectively. Alternatively, since

(2.4) can be rewritten as {θn2

2 θn3

3 θn1

1 · θ0
2(θ2 + θ3)

n23} · (θ1 + θ2)
n12 , we can intro-

duce a latent variable z′ to split (θ1 + θ2)
n12 , resulting in another DA scheme.

The corresponding algorithms are denoted by EMND2 and DAND2. Naturally,

we are asked which EM/DA is better? For this simple example, we prefer the

first DA scheme if n23 < n12. For the more general case, it is worthwhile to

theoretically compare different DA schemes. In addition, comparing the pro-

posed methods with multiple imputation and importance sampling methods is

of research interest.

Throughout this article, we have assumed that the data are missing at

random (MAR). If this does not hold, our proposed methods are inapplicable.

Furthermore, under the assumption of a non-ignorable missing mechanism, the

likelihood-based approach is in general not feasible since it leads to large numbers

of cells with inestimable probabilities. For a non-ignorable missing mechanism,

Tian, Tan and Ng (2007, p.196-197) demonstrated that the grouped Dirichlet

distribution (Tang, Ng, Tian and Tan (2007) and Ng et al. (2008)) can be used

to analyze ICD only in the Bayesian framework. Finally, the numerical results

of Tables 8 and 9 in Tian et al. (2003) show that the cell-probability estimates

are quite sensitive to model misspecification. In this connection, it is worthwhile

to design a data-driven statistical approach for testing MAR against NMAR.

In practice, high-dimensional (or sparse) categorical data are often analyzed

with constrained log-linear models rather than the saturated multinomial model.

In Bayesian log-linear model analysis of categorical data, it is convenient to

adopt a prior distribution that has the same functional form as the Dirichlet,

but which requires the parameters to satisfy the constraints imposed by a log-

linear model (Schafer (1997, Chap. 8)). How to incorporate existing models (e.g.,

logistic and log-linear) with NDD is a challenging topic. This paper may provide

a flexible tool for this purpose because the NDD family includes the Dirichlet

distribution as a special case. We are now investigating the applications of NDD

in modeling. We note that the marginal and conditional distributions of the NDD

are rather complicated and this may affect its range of applications. Finally, as

in the generalization of the Dirichlet distribution to the Liouville distribution,

the extension from NDD to generalized NDD is worthwhile. We provide several

S-plus functions as an on-line supplement.
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Appendix

Proof of Proposition 1. If x ∼ NDn,n−1(a,b) on Tn, then the density of

x−n is given by (2.1). We consider two transformations: yj =
∑j

i=1 xi/
∑j+1

i=1 xi,

j = 1, . . . , n− 2, yn−1 =
∑n−1

i=1 xi, and

uj =

j
∑

i=1

xi, j = 1, . . . , n− 1. (A.1)

It is easy to obtain

uj = yjyj+1 · · · yn−1, j = 1, . . . , n − 1. (A.2)

From (A.1) and (A.2), the Jacobian J(u−n → x−n) =̂ |(∂u−n)/(∂x−n)| = 1 and

J(u−n → y−n) =
∏n−1

j=1 y
j−1
j . Hence, J(x−n→y−n) = J(x−n→u−n) · J(u−n→

y−n) =
∏n−1

j=1 y
j−1
j , and the joint density of y−n is given by

f(y−n) = c−1 ·
n−1
∏

j=1

y
dj−1
j (1 − yj)

aj+1−1, (A.3)

where c =
∏n−1

j=1 B(dj , aj+1) and {dj} are defined in (2.2). Note that (A.3) has

been factored into independent beta distributions. Combining (A.1) and (A.2),

we obtain (2.5). Conversely, if (2.5) holds, then the joint density of y−n is given

by (A.3). It is easy to show that the density of x−n is given by (2.1), i.e.,

x ∼ NDn,n−1(a,b) on Tn.

Proof of Propositions 3 and 4. To derive the 1st- and 2nd-order moments of

x ∼ NDn,n−1(a,b), we first consider their mixed (or raw) moments. From (2.5),

we observe that the independence among {yj}
n−1
j=1 implies

E

(

n
∏

i=1

xri

i

)

=

n
∏

i=1

[

E(1 − yi−1)
ri ·
∏n−1

j=i E(y
rj

j )

]

,



268 KAI WANG NG, MAN-LAI TANG, GUO-LIANG TIAN AND MING TAN

where r1, . . . , rn ≥ 0. Utilizing the moments of the beta distribution, the mixed

moments of x are given by

E

(

n
∏

i=1

xri

i

)

=
n
∏

i=1

[

B(di−1, ai + ri)

B(di−1, ai)
·

n−1
∏

j=i

B(dj + ri, aj+1)

B(dj, aj+1)

]

,

where the dj are defined by (2.2). With ri = 1 and rj = 0 (j 6= i), we immediately

obtain E(xi). Similarly, we can obtain E(x2
i ) and E(xixj). To complete the proof

of Proposition 3. Using (2.6), for any r ≥ 0, we have E(
∑i

j=1 xj)
r =

∏n−1
j=i E(yr

j ),

and Proposition 4 follows from the moments of independent beta distributions.

Proof of Proposition 5. The mode of an NDD density is readily obtained. If

L is the log-kernel of the density (2.1), we have

L =

n−1
∑

i=1

(ai − 1) log(xi) + (an − 1) log(1 −
∑n−1

i=1 xi) +

n−1
∑

j=1

bj log(x1 + · · · + xj).

The derivative of L with respect to xi set to zero yields

ai − 1

xi

−
an − 1

xn

+
n−1
∑

j=i

bj
x1 + · · · + xj

= 0, i = 1, . . . , n − 1.

It is easy to verify that (2.7) is true when n = 3. By induction, we obtain (2.7).

Proof of Proposition 6. We first show that tr{IND
aug(θ)} ≤ tr{ID

aug(θ)} for any

θ ∈ Tn. From (3.10), it is easy to obtain

−
∂2 log f(Y D

aug|θ)

∂θ2
i

=
si − 1

θ2
i

+
sn − 1

θ2
n

, i = 1, . . . , n − 1.

−
∂2 log f(Y D

aug|θ)

∂θi∂θj

=
sn − 1

θ2
n

, i 6= j.

Thus, we have

ID
aug(θ) = E

[

−
∂2 log f(Y D

aug|θ)

∂θ∂θ
⊤

∣

∣

∣

∣

Yobs,θ

]

= diag

(

s∗1 − 1

θ2
1

, . . . ,
s∗n−1 − 1

θ2
n−1

)

+
s∗n − 1

θ2
n

· 11n−111
⊤
n−1

where, for i = 1, . . . , n− 1,

s∗i = E(si|Yobs,θ) = ai + E(z⊤(i)11q|Yobs,θ) +
∑n−1

k=i [bkθi/
∑k

ℓ=1 θℓ],

s∗n = E(sn|Yobs,θ) = an + E(z⊤(n)11q|Yobs,θ).
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On the other hand, from (3.6),

L(θ|Y ND
aug ) = f(Y ND

aug |θ) = NDn,n−1(θ|ã,b),

where ã = (ã1, . . . , ãn)⊤ with ãi = ai + z⊤(i)11q. Similar to (3.3), we obtain

IND
aug(θ) = E

[

−
∂2 log f(Y ND

aug |θ)

∂θ∂θ
⊤

∣

∣

∣

∣

Yobs,θ

]

= diag

(

ã∗1 − 1

θ2
1

, . . . ,
ã∗n−1 − 1

θ2
n−1

)

+
ã∗n − 1

θ2
n

· 11n−111
⊤
n−1 +An−1,

where An−1 is given by (3.4), and

ã∗i = E(ãi|Yobs,θ) = ai + E(z⊤(i)11q|Yobs,θ), i = 1, . . . , n.

Let hk = bk/
∑k

ℓ=1 θℓ for k = 1, . . . , n− 1. Then

ID
aug(θ) − IND

aug(θ) = diag
(

θ−1
1

∑n−1
k=1 hk, θ

−1
2

∑n−1
k=2 hk, . . . , θ

−1
n−1hn−1

)

−An−1.

For the trace criterion, we have

tr{ID
aug(θ)} − tr{IND

aug(θ)} =

n−1
∑

i=1

n−1
∑

k=i

hk

[

1

θi

−
1

∑k
ℓ=1 θℓ

]

≥ 0, ∀ θ ∈ Tn,

and strict inequality holds provided there is at least one k such that bk > 0. The

first part of Proposition 6 is thus proved.

To prove the second part, we noted that Geng, Wan and Tao (2000) devel-

oped a partial imputation EM (PIEM) algorithm that imputes partial missing

data, and they proved that the convergence speed of the PIEM is faster than the

traditional EM algorithm. Since the proposed EM algorithm defined by (3.7) and

(3.9) can be viewed as a special PIEM, Theorem 4 of Geng et al. (2000) gives us

the second conclusion of Proposition 6.
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