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Disorder effect of resonant spin Hall effect in a tilted magnetic field
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We study the disorder effect of resonant spin Hall effect in a two-dimensional electron system with Rashba
coupling in the presence of a tilted magnetic field. The competition between the Rashba coupling and the
Zeeman coupling leads to the energy crossing of the Landau levels, which gives rise to the resonant spin Hall
effect. Utilizing the Streda’s formula within the self-consistent Born approximation, we find that the impurity
scattering broadens the energy levels and the resonant spin Hall conductance exhibits a double peak around the
resonant point, which is recovered in an applied tilted magnetic field.
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I. INTRODUCTION

Spin-orbit couplings open a route to control quantum
electron spin by electric means. One of the efficient methods
to inject or generate electron spin in nonmagnetic semicon-
ductors is the spin Hall effect, in which an electric current or
an electric field may induce a transverse spin current in the
systems with strong spin-orbit couplings. Early theories1,2

proposed that the spin current is caused by asymmetric scat-
tering of electrons with spin up and down in impurity poten-
tials, named as extrinsic spin Hall effect. In recent years it
was demonstrated that the spin-orbit coupling in the electron
bands can also lead to an intrinsic spin Hall effect in either
p-doped or n-doped semiconductors.3,4 Both extrinsic and
intrinsic spin Hall effects were confirmed experimentally in
various systems.5–8

A two-dimensional electron gas �2DEG� with a Rashba
coupling was proposed to exhibit an intrinsic spin Hall
effect.4,9 The spin-orbit coupling in 2DEG modifies the elec-
tron band structure and may lead to interesting magne-
totransport properties, such as the beating phenomenon in the
Shubnikov-de Haas oscillation.10,11 When the system is sub-
jected to an external magnetic field, the Zeeman splitting will
also change the spin-dependent electron bands. The interplay
of the spin-orbit coupling and the Zeeman coupling produces
the crossing of electron energy levels. Based on this prop-
erty, it was proposed that a tiny electric field may remove the
additional degeneracy of energy levels and produces a finite
spin current if the Fermi surface sweeps across the crossing
point of energy levels. As a result, there exhibits a divergent
spin Hall conductance.12–15 This resonant spin Hall effect
was also discussed in p-doped systems in a magnetic
field.16,17

However, impurities in the system make the issue more
subtle.18,19 The vertex correction in the self-energy turns out
to cancel the spin Hall conductance even in a weak disorder
limit in 2DEG with linear Rashba coupling while the spin
Hall conductance survives in p-doped Luttinger model and
the systems with cubic spin-orbit couplings.20–25 The disor-
der effect strongly depends on the symmetry of the spin-orbit
coupling and the dispersion. Now whether the resonant spin
Hall effect can survive in a finite density of impurities be-
comes an issue to be answered. This is the motivation of the
present work.

Here we present a full investigation on the disorder effect
of resonant spin Hall effect in 2DEG with the Rashba cou-
pling in a tilted magnetic field. The impurity effect is con-
sidered by the self-consistent Born approximation �SCBA�
and the vertex correction in the ladder approximation. We
found the impurity effect will suppress the resonant spin Hall
conductance at the resonant point and produce a double-peak
structure of the spin Hall conductance around the point. A
tilted magnetic field is applied to enhance the effective Zee-
man splitting26–30 and to recover the effect when the energy-
level splitting is larger than the energy broadening by impu-
rities

II. GENERAL FORMALISM

A. 2DEG in a tilted field

We consider a 2DEG in the x-y plane with the Rashba
spin-orbit interaction in a tilted magnetic field. The perpen-
dicular component of the tilted field is B� and the in-plane
component is chosen to be along the x direction B� tan �,
where � is the angle between the field and the z direction. We
take the Landau gauge for the vector potential of the field
B� = �B� tan � ,0 ,−B��. The total Hamiltonian including the
Zeeman energy is given by

H0 =
1

2m
��px + eB�y�2 + py

2� +
�

�
��px + eB�y��y − py�x�

−
1

2
gs�BB��z +

1

2
gs�BB� tan ��x, �1�

where p=−i��, m ,−e ,gs are the electron’s effective mass,
charge, and Lande g factor, respectively. �B is the Bohr mag-
neton, � is the strength of Rashba spin-orbit coupling, and �i
are the Pauli matrices. We take a periodic boundary condi-
tion along the x direction, hence the momentum px=�k is a
good quantum number.

An analytical solution can be obtained in the case of �
=0.12,31,32 There were some studies on spin transport based
on the solution.13,33,34 Inclusion of the tilted field makes the
problem much more complicated and an analytical solution
is not available at present. In the following approach, we
choose the energy eigenstates for the system without the
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spin-orbit coupling ��=0� and �=0 as a set of basis,

�nk�� =
1

�Lx

eikx�n�y + klb
2���� , �2�

where the magnetic length lb=�� /eB�, the spin index �
= ↑ ,↓, Lx�y� is the length of the 2DEG, �n�y� is the eigenstate
of the nth energy level of a linear oscillator with the fre-
quency �=eB� /m,35 and ��� is the eigenstate of spin �z.

When the tilt angle �=0, the system can be solved
exactly.12,31 The eigenvalues of H0 are given by

	ns = ���n +
s

2
��1 − g�2 + 8n
2	 , �3�

where 
=�mlb /�2 and g=gsm /2me with me the mass of a
free electron, s=1 for n=0, and s= �1 for n�1. The states
nks have a degeneracy N�=LxLyeB /h, corresponding to N�

values of k. The eigenstate has the form

nks = cos �ns�n,k,↑� + i sin �ns�n − 1,k,↓� , �4�

where �01=0, and for n�1, �ns=arctan�−un+s�1+un
2� with

un= �1−g� /�8n
. One of the features of the solution is the
crossing of the energy levels as functions of the magnetic
field, which is caused by the competition between the spin-
orbit coupling and Zeeman energy splitting. For the two lev-
els 	n1 and 	n+1,−1, the condition for the crossing is deter-
mined by12

��1 − g�2 + 8n
2 + ��1 − g�2 + 8�n + 1�
2 = 2. �5�

This point is called the resonant point for resonant spin Hall
effect.

This additional degeneracy due to the competition be-
tween the spin-orbit coupling and the Zeeman energy of the
perpendicular field can be removed by a tilted field. In the
case of ��0, the energy levels can be calculated numeri-
cally. Using the expression in Eq. �4�, we may make a trun-
cation approximation by keeping the Landau levels with n
�N such that the dimensionality of matrix is reduced to
2N�2N. Numerical diagonalization of the matrix can give
us the energy eigenvalues.

Alternatively, the gap can also be calculated approxi-
mately by the degenerate perturbation theory. We take the
partial Hamiltonian H�=gs�BB� tan ��x /2 as a perturbation,
and express it in the subspace spanned by the two states
n,k,1 and n+1,k,−1 near the resonant point,

H�˜ = 
 0 i�/2
− i�/2 0

� , �6�

where the gap � is

� = gs�BB� tan � cos �n1 sin �n+1,−1. �7�

In Fig. 1, we present the energy levels of �=0 as a function
of B�. The parameters used are �=9�10−12 eV m, gs=4,
and m=0.05me.

11 The arrow denotes a level crossing at
B0�2.4 T. The inset shows the energy gap as a function of
the tilt angle � with B� =B0. We notice that the numerical
and analytical results are in good agreements.

B. Self-consistent Born approximation

In this section, we briefly review the general formalism of
linear-response theory of SCBA for electron transport. We
shall use this technique to investigate the transport properties
of 2DEG with a Rashba coupling in a tilted magnetic field,
especially near the resonant point. The effect of impurities
will be taken into account in this formalism.

We consider a random configuration of impurities with
short-range potentials V�r�= j=1

Ni V��r−Rj�, where R j is the
position of the jth impurity. The density of the impurities is
ni=Ni / �LxLy�. Generally speaking, the Green’s functions for
a specific configuration of random potential can be written as
G��E�= �E−H0−V�r�� i0+�−1, where + and − correspond to
the retarded and advanced Green’s function, respectively. All
transport quantities can be expressed in terms of the Green’s
function after averaging all possible configurations of the
impurities. Using the conventional perturbation expansion
with respect to V�r�, we can obtain the Dyson equation for
the averaged Green’s function G�. The impurity effect is
absorbed by a self-energy function �� as follows:

G��E� � �G��E��c = �E − H0 − ���E�� , �8�

where �¯ �c means the average over all the impurity con-
figurations. In the SCBA, the self-energy operator can be
expressed by ��= �VG��E�V�c.

36–39 In the representation of
the Landau levels, G, �, and V are expressed as matrices. For
such a spin-independent impurity potential, previous
works36,40 proved that the self-energy is independent of n and
k for a spin-independent Landau system. We find that the
self-energies for a spin-orbit coupling system are indepen-
dent of n and k,

�nk�,n�k���
� = �nn��kk�niV

2 N�

LxLy

n1

Gn1�,n1��
� . �9�

Here we dropped the index k in G� because the averaged
Green’s functions are k independent.

FIG. 1. �Color online� Energy levels as functions of the mag-
netic field when the tilt angle �=0, the arrow denotes a level-
crossing point, which develops into a gap when the tilt angle in-
creases. The inset shows the gap as a function of the tilt angle,
reflects the accordance of the numerical calculation and the analytic
expression Eq. �7�. The energy has been scaled by ��=�eB /m.
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C. Streda’s formula for spin Hall conductivity

With the averaged Green’s function in mind, we can use
the Kubo formula to calculate the linear response of any

physical quantity Ô to an external electric field Eext in the �
direction,

��
O = lim

Eext→0
�Ô�c/Eext. �10�

As the single-particle version of the Kubo formula, the Stre-
da’s formula is a conventional and powerful tool to study the
transport property of 2DEG system under a magnetic field.41

At the zero temperature, the formula is given by

��
O�Ef� = ie���

−�

Ef

dE Tr
Ô
dG+�E�

dE
v�A�E�

− ÔA�E�v�

dG−�E�
dE

�� , �11�

where A��G−−G+� / �2�i� is the spectral function and v�

� 1
i� �r� ,H� is the velocity operator. The vertex correction has

to be included because there are products of two Green’s
functions in the impurity average �¯ �c. For a specific den-
sity of charge carriers, the Fermi energy as a function of the
magnetic field is determined by

ne =��
−�

Ef

dE Tr�A��
c

.

Usually the Streda’s formula is applied to calculate the

electric conductance by replacing Ô by an electric current
operator, J�=−ev�. In the present work, we intend to explore
the spin transport in the system. The spin current is defined
as j�

� = �� /4��v� ,���, which is a tensor determined by both
the motion direction of an electron and its polarization. In the
framework of linear-response theory, the spin Hall conduc-
tivity ���

� , the ratio of the spin Hall current to an external

field, can be calculated by substituting Ô= j�
������ in Eq.

�11�. The spin Hall conductivity comes from the contribution
of all the electrons below the Fermi level. Opposite to those
for the conductivity and Hall conductivity, it cannot be re-
duced to a Fermi edge quantity36 because the spin current is
not a commutator of any operator and the Hamiltonian.42 For
the purpose of our numerical calculation, we transform the
Streda’s formula into the following form:

���
� �Ef� =

e�

2�
�

−�

Ef

dE Tr�j�
��K�

+− − K�
++ − K�

−−�� , �12�

where

K�
+− �

d�G+v�G−�c

dE
, �13�

K�
++ �� dG+

dE
v�G+�

c
, K�

−− = �K�
++�+. �14�

K�
��� are determined in a set of Bethe-Salpeter-type equa-

tions,

K�
+− =

dG+

dE
�G+�−1F�

+− + F�
+−�G−�−1dG−

dE
+ G+�VK�

+−V�cG
−,

�15�

K�
++ =

dG+

dE
�G+�−1F�

++ + G+�VK�
++V�cG

+. �16�

where F�
���= �G�v�G���c �� ,��� �+,−�� is the vertex opera-

tor, which satisfy the Bethe-Salpeter equation in the ladder
approximation,

F�
��� = G��v� + �VF�

���V�c�G��. �17�

These equations can be solved self-consistently and Eqs. �15�
and �17� have multisolutions. From the continuity equation
for charge current in equilibrium, we can derive an auxiliary
equation,

Tr�F�
+−��− − �+�� = 0. �18�

Differentiating Eq. �18� with respect to E leads to another
auxiliary equation,

Tr�K�
+−��− − �+�� = − Tr
F�

+−d��− − �+�
dE

� . �19�

dG� /dE is determined by an another self-consistent equa-
tion,

dG�

dE
= − G�G� + G��V

dG�

dE
V�

c
G�. �20�

Since the density of states for each Landau level in SCBA
has a semielliptic form,43–45 it approaches zero and dG� /dE
becomes infinity at the edge of each level. We find the inte-
grand in Eq. �12� is always convergent in numerical calcula-
tion because the concurrence of dG� /dE and G� in Eqs. �13�
and �14�.

III. NUMERICAL RESULTS

Now we are ready to calculate the spin Hall conductivities
numerically. In this paper, the electron density is fixed at
ne=2.9�1015 m−2. This value of ne promises that the Fermi
level is located near the resonant point with the filling factor
�=ne / �N� /LxLy�=5 while the magnetic field sweeps over the
point, i.e., B�=B0 as indicated in Fig. 1. The other param-
eters are as the same as those used in Fig. 1. The density of
impurities ni and the strength of the impurity potential V are
combined in one-parameter “scattering strength” �
�niV

2m / �2��2�. We assign � various values to investigate
the impurity effect.

A. Disorder effect of resonant spin Hall effect

We first discuss the disorder effect of spin Hall conduc-
tance, especially near the crossing point. We apply the for-
mula in Eq. �12� to calculate the spin Hall conductivity �xy

z

around the resonant point B0=2.4 T numerically for various
strengths of disorder. Numerical results are plotted in Fig. 2.
The dashed curve for �=0 is from the solution in Ref. 12.
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The key feature of the disorder effect is the suppression of
the spin Hall conductivity at the resonant point. The large
spin Hall conductance exhibits when the field deviates from
the resonant point and forms a double-peak structure. The
weight of the spin Hall conductivity increases as the impurity
strength decreases, which reflects the intrinsic properties of
the resonance.

To understand the suppression of resonant spin Hall con-
ductance, we plotted in Fig. 3 the distribution of the spin
Hall conductivity on the electron’s energy, d�xy

z /dE, around
the crossing point. The total spin Hall conductivity �xy

z �Ef�
=�−�

Ef �d�xy
z /dE�dE are contributed by all the electron states

under the Fermi level. It was observed that the energy levels
are broadened due to the impurity scattering and the distri-
bution of the spin Hall conductivity is inhomogeneous. So
the magnitude and even the sign of the spin Hall conductiv-
ity can be varied by the Fermi level or the electron density.
In the clean limit, a tiny external electric field can open a gap
between the crossing levels, which leads to spin Hall con-
ductance divergent. However, after the impurity scattering is
taken into account, a tiny external field cannot open an en-
ergy gap any more because of the level broadening. As a

result, the spin Hall conductance in a weak-field limit will be
suppressed. However, once the external field becomes stron-
ger than the level broadening, a large spin Hall conductance
will appear. This can be seen from the case that the magnetic
field deviates from the crossing point, i.e., the additional de-
generacy of the two levels will be lifted and a strong spin
Hall conductance recovers. This is the physical origin of the
double-peak structure of the resonant spin Hall conductance.
It is worth stressing that this suppression of resonant spin
Hall conductance is different from the case in the absence of
the Zeeman term. The Zeeman splitting may produce a non-
zero spin Hall conductance in the Rashba system.14

B. Effect of a tilted field

To further illustrate the formation of the resonant spin
Hall effect, we investigate the effect of the tilted magnetic
field. Figure 4 shows the dependence of the spin Hall con-
ductivity on the tilt angle near the resonant point. For the
purpose of numerical calculation, we take the scattering
strength �=1 /16 �eV. As the tilted angle increases, the spin
Hall conductivity at the resonant point will increase very
quickly and the two peaks finally integrate into one. After
that point, the spin Hall conductivity begins to decrease.
These behaviors can be understood as the competition be-
tween the disorder broadening of the energy levels and the
degeneracy lifting by the tilted field.

In the clean limit, the tilted field will remove the degen-
eracy of the energy crossing levels as shown in Fig. 1. We
can estimate the peak height of the spin Hall conductivity as
a function of the the tilt angle by a perturbation calculation
adopted in Sec. II A. Diagonalizing the truncated two-level
Hamiltonian in Eq. �6�, we get the modified eigenstates
��= �nk1� in+1,k,−1� /�2, and the energy correction E�

= �� /2 with Eq. �7�. If the Fermi level just lies between the
energy levels, the spin Hall conductivity is mainly attributed
to �−, which can be calculated by the Kubo formula,12,13
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FIG. 2. �Color online� The spin Hall conductivity as a function
of the magnetic field around the level-crossing point when �=0, for
various scattering strength �.
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FIG. 3. �Color online� The distribution of the spin Hall conduc-
tivity on the electron’s energy, d�xy

z /dE, as a function of the energy
E and the magnetic field B� when the tilt angle �=0, with the
impurity strength �=1 /32 �eV. The energy E has been scaled by
��.
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FIG. 4. �Color online� Spin Hall conductivity as a function of
the perpendicular component of the magnetic field for various tilt
angles �. The inset compares the peak height of the spin Hall con-
ductivity as function of � from the numerical calculation �diamond�
and from the analytical formula Eq. �21� �solid line�. The scattering
strength �=1 /16 �eV.
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�xy
z�1��B0� = 

k
� ��+�ey��−���−�jx

z��+�
E− − E+

+ c.c	
=

�e2B0

4�m�
��n + 1�cos2 �n1 cos2 �n+1,−1

− n sin2 �n1 sin2 �n+1,−1� , �21�

where y= �mvx ��=0−�k� /eB.
The impurity scattering will cause the level broadening. If

the level broadening is larger than the gap caused by the
tilted field, the impurity effect is dominant. Otherwise the
tilted field effect will be dominant. The level broadening is
characterized by the half width of the semielliptic density of
states of the Landau levels, which can be estimated approxi-
mately by45 �=2�niV

2N /LxLy. When ��2�, the effect of
the tilted field turns out to be dominant. The inset of Fig. 4
presents the data of the peak height of the spin Hall conduc-
tivity as a function of � from the numerical calculation �dia-
mond� and from the analytic formula �solid line� in Eq. �21�,
They are in a good agreement when ��10°, which is very
close to the estimated value ��8° from ��.

IV. SUMMARY

In summary, we applied the Streda’s formula to study the
disorder effect of the resonant spin Hall effect in the 2DEG

system with the Rashba interaction in a tilted magnetic field.
Considering the vertex corrections in the self-energy, we find
that the main effect of the impurity scattering is to broaden
the Landau levels. In the framework of linear response, the
electric field is taken to approach zero, and the energy split-
ting caused by the electric field is always less than the broad-
ening of the Landau levels. Thus a tiny external field cannot
remove the additional degeneracy of the energy levels at the
resonant point. As a result, the spin Hall conductance will be
suppressed at the point. When the magnetic field slightly
deviates the resonant point or a tilted field is applied, the
degeneracy will be removed, a large spin Hall conductance
will be recovered. The spin Hall conductance exhibits a
double peak around the resonant point. From the effect of a
tilted field, we believe that a finite electric field, if it is strong
enough to overcome the energy-level broadening, will re-
cover the spin Hall effect even at the resonant point. This is
quite different from the disorder effect of spin Hall effect in
the Rashba system in the absence of magnetic field.18
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