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[1] On re-examining the problem of mass transport due to partially standing waves in a
domain that can be closed or open ended, it is pointed out that several aspects of the
existing theories need to be clarified. Particular attention is paid to the free surface setup,
whose expression is shown to be different when described by the Eulerian and Lagrangian
approaches. In the Lagrangian system, it is the horizontal gradient of the setup, rather
than the mean pressure gradient alone, that is implied by the condition of no net flux in a
closed domain. In connection with this, one may determine for an unbounded domain the
streamline value along the free surface, which cannot be fixed in the stream function
formulation alone, by requiring the setup due to the unidirectional part of the mass
transport to be zero. Three components of the free surface setup, which are of different
orders of magnitude and arise owing to various mechanisms, are obtained in the process
of deriving the solutions for the mass transport velocity in the boundary layers and the
fluid core. INDEX TERMS: 4560 Oceanography: Physical: Surface waves and tides (1255); 4546

Oceanography: Physical: Nearshore processes; 4203 Oceanography: General: Analytical modeling;

KEYWORDS: mass transport, gravity surface waves, free surface setup
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1. Introduction

[2] This paper is to revisit the classical problem of mass
transport in gravity waves, with a view of re-examining
some of the aspects that have not been fully made clear
in the literature. Since the celebrated work of Longuet-
Higgins [1953], who gave a detailed exposition of the
basic theory, the problem has been extensively studied
featuring all sorts of sophistication. Some notable works
may include, just to mention a few, mass transport in a two-
layer system [Dore, 1970], in water overlying a layer of
non-Newtonian mud [Sakakiyama and Bijker, 1989] or
above a bed with a hump [Iskandarani and Liu, 1991], in
waves with viscous spatial or temporal attenuation [e.g., Liu
and Davis, 1977; Wen and Liu, 1995; Piedra-Cueva, 1995],
and so on. No matter what the specific problem is, the basic
mechanisms that induce mass transport, also known as
Lagrangian mean drift, under periodic waves are essentially
the same.
[3] We shall focus here on the so-called ‘‘conduction

solution’’ of Longuet-Higgins [1953], for which the prob-
lem is linear and closed-form analytical solutions are
available. It corresponds to the case when the ratio a/s is
very small, where a is the wave amplitude and s is the
thickness of the wave boundary layer, thereby resulting in
the viscous diffusion of O(a2) vorticity from the boundary
layers into the entire fluid core. Such a creeping flow
condition will limit the solution to rather small waves if
the fluid, like water, has a small viscosity. Nevertheless, the
conduction solution can still be of great pertinence in

practical situations when, for example, one is concerned
with pollutant transport in very viscous fluid mud under
waves. Some hyperconcentrated muds can be several orders
of magnitude more viscous than water, and the corres-
ponding Stokes boundary layer thickness can be much
larger than the wave amplitude. Moreover, some studies
[e.g., Liu and Davis, 1977] have found that the conduction
solution turns out to have a wider range of validity than is
assumed, especially in the case of progressive waves.
[4] Our specific problem is to consider partially standing

waves propagating in a domain that is either closed or open
at the far field. This is a combination of cases investigated
separately in the past. Our emphasis is, however, not on the
solution itself, but on the following aspects that deserve
clarification in the course of deriving the solution. First, we
shall show that a free surface setup, which is the mean level
of the free surface, will have different expressions when
described by the Eulerian and Lagrangian approaches.
Apparently not aware of this subtle difference, Piedra-
Cueva [1995], in his equation (6.24), has expressed an
Eulerian equation for a Lagrangian setup. This is in fact
inconsistent. Second, we shall make clear that in the
Lagrangian system it is the horizontal gradient of a free
surface setup, rather than a mean pressure gradient alone
[Ünlüata and Mei, 1970], that is responsible for a return
current in the case of a closed system. Although the order of
magnitude of this setup is very small, its existence is
necessary in order to balance the flow in either direction.
Third, we shall point out that the stream function along the
free surface is not a constant whose value is entirely at one’s
disposal to choose, as stated by Iskandarani and Liu [1991].
Since Longuet-Higgins [1953], a Lagrangian stream func-
tion is commonly used as the variable in the formulation of

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, C04012, doi:10.1029/2003JC002121, 2004

Copyright 2004 by the American Geophysical Union.
0148-0227/04/2003JC002121

C04012 1 of 13



a two-dimensional mass transport problem. The stream
function cannot be uniquely determined unless its value
along the free surface is specified. Conventionally, this
value is for convenience taken to be zero (or the same
value as on the bed), physically equivalent to a zero net flux
that may occur in a closed system. For an open-ended
system, the stream function formulation alone falls short
in establishing the free surface streamline value. We argue
that this value is not completely arbitrary, but can be fixed
using the fact that in the absence of a return current, the free
surface setup due to the unidirectional part of the mass
transport in the core should be zero. To find the setup,
however, requires one to solve the momentum equations
in terms of the primitive variables. In addition, we also
show that for a flat bottom and over a distance comparable
to a wavelength so that wave refraction and decay are
negligible, the free surface setup due to the inviscid motion
induced by a standing wave dominates over the other setup
components.
[5] Our analysis is based on the Lagrangian approach that

was first used by Ünlüata and Mei [1970] for mass transport
in water waves, and was later extended by Piedra-Cueva
[1995] to a two-layer system. Both studies considered only
mass transport in purely progressive waves. In order to be
self-contained, we present in the following sections the
entire process of our deduction starting from the basics.
Those parts of the analysis and solutions that are already
known in the literature will not be described in great detail.
Emphasis will be placed on those parts that are related to the
above-mentioned aspects.
[6] Before concluding, we shall also illustrate with some

numerical results the effects of the reflection coefficient
on the distribution of mass transport velocity and vorticity
in the core field subject to either bounding condition of
the domain. These kinds of comparison do not seem to
have been reported in the past. Iskandarani and Liu
[1991] have presented similar results, but only for a closed
system.

2. Formulation of the Problem

[7] We consider a single layer of homogeneous viscous
fluid of depth h lying on a horizontal rigid bottom. By
Lagrangian description, the instantaneous horizontal/verti-
cal positions of a fluid particle (x, z) are functions of the
initial or undisturbed coordinates (a, d) and time t. Fluid
motion is essentially due to a prescribed displacement of the
free surface d = 0 in the form of a superposition of forward-
and backward-going waves,

hða; tÞ ¼ < a eiðka�stÞ þ ReiðkaþstÞ
h in o

; ð1Þ

where a is the amplitude of the forward-going wave, 0 �
R � 1 is the reflection coefficient or the ratio of the wave
amplitudes, k is the wave number, and s is the angular
frequency. While a, R, and s are supposed to be real known
constants, k is a complex quantity to be determined by the
dispersion relation. In general, the wave is a partial standing
wave with 0 < R < 1. In the two limits, it becomes purely
progressive when R = 0, and purely standing when R = 1. In
this work, the terms ‘‘closed system’’ and ‘‘open system’’
are used to distinguish between the cases where a return

current is generated to counterbalance the flux due to the
unidirectional component of the mass transport or not.
Practically, a closed system may correspond to a finite tank
or channel with a far-end boundary that may perfectly or
partially reflect the incident wave. For a partial standing
wave in an open system, we shall mean that our point of
interest is in the middle of a very long but bounded domain
so that the reflected wave has reached the point but the
return current is not felt yet. This is possible because the
propagation speed of the wave itself is 2 orders of
magnitude faster than the induced return current. As shown
by Ünlüata and Mei [1970], the second-order mean motions
can be established well before the arrival of the return
current in a natural setting.
[8] It is assumed that the wavelength is comparable in

magnitude with the fluid depth, i.e., kh = O(1), and is much
larger than the wave amplitude. The small wave steepness

� � ka 	 1 ð2Þ

will be used as the ordering parameter in the following
analysis. The equations of motion and boundary conditions
in Lagrangian form are obtainable from Pierson [1962] and
Piedra-Cueva [1995], and are recalled as follows. Using the
standard notation for a Jacobian, the mass conservation
equation is

@ðx; zÞ
@ða; dÞ ¼ 1; ð3Þ

and the x- and z-momentum equations are

�x ¼ � 1

r
@ðp; zÞ
@ða; dÞ þ

1

r
@ðtxx; zÞ
@ða; dÞ þ @ðx; txzÞ

@ða; dÞ

� �
ð4Þ

�z ¼ � 1

r
@ðx; pÞ
@ða; dÞ � g þ 1

r
@ðtzx; zÞ
@ða; dÞ þ @ðx; tzzÞ

@ða; dÞ

� �
; ð5Þ

and the stress components are

txx ¼ 2m
@ð_x; zÞ
@ða; dÞ ; ð6Þ

tzz ¼ 2m
@ðx; _zÞ
@ða; dÞ ; ð7Þ

txz ¼ tzx ¼ m
@ðx; _xÞ
@ða; dÞ þ

@ð_z; zÞ
@ða; dÞ

� �
: ð8Þ

In the equations above, an overdot is used to denote time
derivative, g is the acceleration due to gravity, p is the
pressure, r is the fluid density, and m is the dynamic
viscosity. As we do not consider effects of surface tension,
both shear and normal stress components are zero along the
free surface,

tzz � txxð Þ @x
@a

@z

@a
þ txz

@x

@a

� �2

� @z

@a

� �2
" #

¼ 0 d ¼ 0 ð9Þ
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�p
@x

@a

� �2

þ @z

@a

� �2
" #

þ txx
@z

@a

� �2

þ tzz
@x

@a

� �2

� 2txz
@x

@a
@z

@a
¼ 0 d ¼ 0: ð10Þ

On the bottom, the particles are not displaced and the
velocity components vanish,

_x ¼ _z ¼ 0 d ¼ �h: ð11Þ

On the basis of small-amplitude displacements, the
variables may be expanded as follows [Pierson, 1962]:

ðx; z; pÞ ¼ ða; d;�rgdÞ þ � xð1Þ; zð1Þ; pð1Þ
� �

þ �2 xð2Þ; zð2Þ; pð2Þ
� �

þ 
 
 
 : ð12Þ

Perturbation equations are obtainable for the O(�) and O(�2)
variables on substituting equation (12) into the Lagrangian
equations above and collecting terms of equal powers of �.
From here on, we shall use the subscripts a, d to denote the
derivatives with respect to the corresponding spatial
variables.

3. First-Order Problem

[9] At O(�), the equations of motion (3)–(5) yield

xð1Þa þ z
ð1Þ
d ¼ 0; ð13Þ

�xð1Þ þ gzð1Þa þ 1

r
pð1Þa � n _xð1Þaa þ _x

ð1Þ
dd

� �
¼ 0; ð14Þ

�zð1Þ þ gz
ð1Þ
d þ 1

r
p
ð1Þ
d � n _zð1Þaa þ _z

ð1Þ
dd

� �
¼ 0; ð15Þ

where n = m/r is the kinematic viscosity of the fluid. On the
free surface, the kinematic boundary condition requires
z(1)(a, d = 0, t) to be equal to h(a, t) given by (1). Also, the
dynamic free surface boundary conditions (9) and (10) give

_x
ð1Þ
d þ _zð1Þa ¼ 0 d ¼ 0 ð16Þ

�pð1Þ þ 2m_zð1Þd ¼ 0 d ¼ 0: ð17Þ

At the bottom the boundary conditions are simply _x(1) =
_z(1) = 0 on d = �h.
[10] Solutions to this leading-order problem can readily

be found on separating the variables into forward and
backward propagating modes,

xð1Þ; zð1Þ; pð1Þ
� �

¼ < ~x;~z; ~pð Þeiðka�stÞ
h

þR �~x*;~z*; ~p*ð ÞeiðkaþstÞ
i
;

ð18Þ

where an asterisk is used to denote complex conjugate,
and ~x, ~z, and ~p are complex functions of d. Dalrymple and

Liu [1978] have solved a similar first-order problem for a
two-layer viscous system, and their steps can be followed
here to arrive at an analytical solution,

~xðdÞ ¼ iA
h
cosh kðdþ hÞ � kl�1 sinh kðdþ hÞ:�e�lðdþhÞ

i
þ ilk�1Celd ð19Þ

~zðdÞ ¼ A
h
sinh kðdþ hÞ � kl�1 cosh kðdþ hÞ:þ kl�1e�lðdþhÞ

i
þ Celd; ð20Þ

where A, C, and l are complex constants given by

A ¼ a
l2 þ k2

l2 � k2

� �
sinh kh� kl�1 cosh kh

 ��1

; ð21Þ

C ¼ � 2k2a

l2 � k2
; ð22Þ

l ¼ 1� i

s
; ð23Þ

in which s is the Stokes boundary layer thickness given by

s ¼
ffiffiffiffiffiffiffiffiffiffi
2n=s

p
: ð24Þ

The Stokes boundary layer thickness is typically much
smaller than the fluid depth and the wavelength. Hence

jk=lj ¼ OðksÞ 	 1; and jljh ¼ Oðh=sÞ � 1: ð25Þ

Therefore in equations (19) and (20), the terms multiplied
by eld are appreciable only in the free surface boundary
layer (d 
 0), while the terms with e�l(d+h) are significant
only in the bottom boundary layer (d 
 �h). The other
terms that contain hyperbolic functions of k(d + h)
correspond to the inviscid flow solutions.
[11] In addition, we may determine the wave number k as

an eigen-value from the normal stress free surface boundary
condition (17),

�is nk�1l2A cosh kh� kl�1 sinh kh

 �

þ 2nlC
� �

þ ga ¼ 0: ð26Þ

Expanding k = k1 + k2 + 
 
 
, where k2/k1 = O(ks), we get at
the leading order a real wave number satisfying the familiar
dispersion relation

s2 ¼ gk1 tanh k1h; ð27Þ

and at the next order a complex wave number

k2 ¼ ð1þ iÞ k21 s

sinh 2k1hþ 2k1h
; ð28Þ

the imaginary part of which corresponds to the wave
attenuation rate. Since the present focus is on a horizontal
length-scale comparable to the wavelength, we may ignore
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any effects due to k2 that are significant only over a much
longer distance. From here on, we shall not distinguish k1
from k, which is simply taken as a real number.

4. Second-Order Problem

[12] The O(�2) governing equations are as follows:

_xð2Þa þ _z
ð2Þ
d ¼ � xð1Þa z

ð1Þ
d

� �
t
þ x

ð1Þ
d zð1Þa

� �
t
; ð29Þ

�xð2Þ þ gzð2Þa þ 1

r
pð2Þa � n _xð2Þaa þ _x

ð2Þ
dd

� �
¼ X ð2Þ; ð30Þ

�zð2Þ þ gz
ð2Þ
d þ 1

r
p
ð2Þ
d � n _zð2Þaa þ _z

ð2Þ
dd

� �
¼ Zð2Þ; ð31Þ

where the forcing terms

X ð2Þ ¼ � �xð1Þxð1Þa � �zð1Þzð1Þa þ n xð1Þa �_xð1Þaa þ 3 _x
ð1Þ
dd

� �h
þ zð1Þa _zð1Þaa þ _z

ð1Þ
dd

� �
� 2_x

ð1Þ
ad zð1Þa þ x

ð1Þ
d

� �
� _xð1Þa xð1Þaa þ x

ð1Þ
dd

� �
� _x

ð1Þ
d zð1Þaa þ z

ð1Þ
dd

� �i
ð32Þ

Zð2Þ ¼ � �xð1Þx
ð1Þ
d � �zð1Þz

ð1Þ
d þ n x

ð1Þ
d _xð1Þaa þ _x

ð1Þ
dd

� �h
þ z

ð1Þ
d 3_zð1Þaa � _z

ð1Þ
dd

� �
� 2_z

ð1Þ
ad zð1Þa þ x

ð1Þ
d

� �
� _zð1Þa xð1Þaa þ x

ð1Þ
dd

� �
� _z

ð1Þ
d zð1Þaa þ z

ð1Þ
dd

� �i
ð33Þ

consist of products of the first-order variables.
[13] The steady component of the O(�2) Lagrangian

drift is called the mass transport velocity, and we may
define

uL; wLð Þ � �_xð2Þ; �_zð2Þ
� �

; ð34Þ

where the overbar denotes time average over a period. Now,
suppose a steady second-order field of Lagrangian stream-
ing has been established in the entire depth. Then, the mass
transport velocity components are governed by the time-
averaged equations (29)–(31), which read as follows:

uLð Þaþ wLð Þd¼ 0; ð35Þ

1

r
�pð2Þa þ g�zð2Þa � n ðuLÞaa þ ðuLÞdd

� �
¼ �X ð2Þ; ð36Þ

1

r
�p
ð2Þ
d þ g�z

ð2Þ
d � n ðwLÞaa þ ðwLÞdd

� �
¼ �Zð2Þ: ð37Þ

Note that the time average of the right side of equation (29)
is zero because the steady terms in the brackets have been

differentiated to zero. The time-averaged forcing terms,
after some manipulation, can be written as

�X ð2Þ ¼ Rs2k j~xj2 � j~zj2
� �

sin 2kaþ nsk 1� R2

 � 1

2
k2j~zj2

��

� 2< ~x*~x00ð Þ � k= ~z*~x0ð Þ � 3

2
j~x0j2

�
þ 4R sin 2ka k< ~z*~x0ð Þ½

þ = ~x*~x00ð Þ�
�

ð38Þ

�Zð2Þ ¼ 1

2
1þ R2

 �

s2 < ~x*~x0ð Þ � k= ~x*~zð Þ½ �

� Rs2 cos 2ka < ~x*~x0ð Þ þ k= ~x*~zð Þ½ �

þ ns
1

2
1þ R2

 �

= ~x*0~x00ð Þ � k< ~z~x*00ð Þ½
�

þ 3k2= ~x*~x0ð Þ

� k3< ~x*~zð Þ� � R cos 2ka = ~x*0~x00ð Þ � k< ~z~x*00ð Þ½

þ 3k2= ~x*~x0ð Þ þ 7k3< ~x*~z

 ���

: ð39Þ

Taking the time average of the O(�2) boundary conditions
gives

ðuLÞd þ ðwLÞa ¼ 3 _x
ð1Þ
a z

ð1Þ
a � 2 _x

ð1Þ
d x

ð1Þ
a þ _x

ð1Þ
a x

ð1Þ
d d ¼ 0 ð40Þ

for zero shear stress on the free surface, and

��p 2ð Þ þ 2m wLð Þd¼ 0 d ¼ 0 ð41Þ

for zero normal stress on the free surface. On the bottom,
the particles are not in motion, and hence uL = wL = 0 at
d = �h.
[14] To solve the two-dimensional flow, as in most

previous studies, a stream function could be introduced at
this point, thereby immediately eliminating �p(2) and �z(2)

from equations (36) and (37). We, however, choose not to
do so at this stage, and show how these terms will lead to
results that have been ignored in the past.

4.1. Inviscid Solution

[15] Let us first obtain the inviscid part of the solution to
the problem above. On setting n = 0 (which implies s = 0,
and so on), equations (36) and (37) reduce to

1

r
�pð2Þa þ g�zð2Þa ¼ �X

ð2Þ
I ð42Þ

1

r
�p
ð2Þ
d þ g�z

ð2Þ
d ¼ �Z

ð2Þ
I ; ð43Þ

where

�X
ð2Þ
I ¼ R

s2ka2

sinh2 kh
sin 2ka ð44Þ

�Z
ð2Þ
I ¼ 1þ R2


 � s2ka2

sinh2 kh
� sinh k dþ hð Þ cosh k dþ hð Þ: ð45Þ
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Now, integrating equation (43) with respect to d gives

1

r
�pð2Þ þ g�zð2Þ ¼ g�hð2ÞI þ

Z d

0

�Z
ð2Þ
I dd; ð46Þ

where the free surface boundary condition �p(2)(d = 0) = 0
has been used, and

�hð2ÞI � �zð2Þðd ¼ 0Þ ð47Þ

is the free surface setup due to the inviscid wave motion.
Substituting equation (46) into equation (42), noting that
�ZI

(2) is independent of a, we get an equation for the wave
setup g(�hI

(2))a = �X I
(2), which can readily be integrated to

give

�hð2ÞI ¼ �R
ka2

sinh 2kh
cos 2kaþ constant; ð48Þ

which accords with the well-known fact that the surface
setup exists only for a standing wave if the bottom is
horizontal. One may however question if equation (48) is
correct since it looks different from the classical expression
derived by Longuet-Higgins and Stewart [1964],

�z ¼ ka2 coth 2kh cos 2kx; ð49Þ

for a pure standing wave. We remark that this apparent
difference can be reconciled on noting that the Lagrangian
description of the displacement of a material surface
essentially differs from the Eulerian description. A general
relation can be deduced as follows between these two
quantities when the displacement of the material surface is
small in amplitude, as in the present case.
[16] Referring to Figure 1, we suppose there exists a

material surface which lies on d = dI when undisturbed. We
let (x, z) be the horizontal/vertical displacements of a surface
particle that is originally at a horizontal position a along the
undisturbed surface. Also, we let z(xe, t) = ze be the Eulerian
description of the surface displacement, where (xe, ze) are
the Eulerian Cartesian coordinates. Then, obviously,

z ¼ zðaþ x; tÞ ¼ zðaÞ þ x
@z
@a

þ 
 
 
 ; ð50Þ

where in the second step, small-amplitude displacements are
assumed. The smallness being O(�), we may expand

x; z; zð Þ ¼ � xð1Þ; zð1Þ; zð1Þ
� �

þ �2 xð2Þ; zð2Þ; zð2Þ
� �

þ 
 
 
 ; ð51Þ

which are then substituted into equation (50) to give

zð1Þ ¼ zð1Þ ð52Þ

zð2Þ ¼ zð2Þ þ xð1Þ
@zð1Þ

@a
: ð53Þ

By now, it is clear that while to the first order either
description will give the same displacement, there is a
difference in the second-order displacement as described by
the two approaches. Taking the time average of equation
(53) gives us a desired general relation between the
Lagrangian and the Eulerian descriptions of the setup of a
material surface,

�hð2Þ ¼ �zð2Þ þ xð1Þ
@zð1Þ

@a

� �
dI

; ð54Þ

where we have denoted z(d = dI) by h(a, t).
[17] Let us now go back and check if equation (54) holds

for the present problem. After some algebra, one can
evaluate on the free surface the second term on the right-
hand side of equation (54) to be, for R = 1,

xð1Þ
@zð1Þ

@a

� �
d¼0

¼ ka2 coth khð1� cos 2kaÞ: ð55Þ

Adding this to equation (49) gives

�zþ xð1Þ
@zð1Þ

@a

� �
d¼0

¼ � ka2

sinh 2kh
cos 2kaþ ka2 coth kh; ð56Þ

which obviously matches �hI
(2)

given in equation (48)
provided that the wave is purely standing (R = 1) and the
constant is equal to ka2coth kh. Therefore, by this exercise
the integration constant is also fixed, and �hI

(2) may now
be written as

�hð2ÞI ¼ Rka2 � cos 2ka
sinh 2kh

þ coth kh

� �
: ð57Þ

It is interesting to further note that the horizontal spatial
mean of the Lagrangian setup �h I

(2) is not equal to zero, even
though its Eulerian counterpart �z has a zero spatial mean.
This subtle difference seems to have been ignored in
previous studies [e.g., Piedra-Cueva, 1995].

4.2. Boundary Layers

[18] Having found the inviscid part of the solution, we
may now subtract the non-viscous forcings �X I

(2) and �ZI
(2)

from �X (2) and �Z(2), respectively. Let us proceed to consider
flow in the surface and bottom Stokes boundary layers, in
which ks 	 1 is the small parameter. Invoking the standard

Figure 1. Lagrangian and Eulerian descriptions of a
material surface, where d = dI is the undisturbed position
of the material surface, a is the original horizontal position
of a surface particle, (x, z) are the displacements of the
surface particle, and (xe, ze) are the Eulerian Cartesian
coordinates.
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boundary layer approximation, the momentum equations
can be simplified to

1

r
�pð2Þa þ g�zð2Þa � nðuLÞdd ¼ �X

ð2Þ
bl þ OðksÞ2 ð58Þ

1

r
�p
ð2Þ
d þ g�z

ð2Þ
d ¼ �Z

ð2Þ
bl þ OðksÞ; ð59Þ

where �Xbl
(2) and �Zbl

(2) contain only the dominant terms in the
boundary layers, and will be given below specifically for
each boundary layer. To eliminate �p(2) and �z (2) from the two
equations above, we may integrate equation (59) from d = 0
to a general d, which is then differentiated with respect to a
before substitution into equation (58). We remark that it is
not inconsistent to have ignored the O(ks) terms in equation
(59) since by the processes of integration with respect to d =
O(s) and differentiation with respect to a = O(k�1), the
order of such omitted terms will be raised to O(ks)2, the
same as in equation (58). Without writing the error term
O(ks)2, we may express the equation for the mass transport
velocity in a boundary layer as follows:

n
@2uL

@d2
¼ g

@�hð2Þsbl

@a
þ @

@a

Z d

0

�Z
ð2Þ
bl dd� �X

ð2Þ
bl ; ð60Þ

where �p(2)(d = 0) = O(ks)2 has been dropped, and

�hð2Þsbl ¼ �zð2Þðd ¼ 0Þ ð61Þ

is a higher order free surface setup that is of dominance only
in the surface boundary layer; see section 4.2.2 below. After
some lengthy algebra involving identification of orders of
magnitude of individual terms, we keep only those leading
terms, which are O(1) in the bottom boundary layer and
O(ks) in the surface boundary layer, for the right-hand side
of equation (60), for near the bottom (d 
 �h) and near the
free surface (d 
 0).
4.2.1. Bottom Boundary Layer
[19] Near the bottom, equation (60) reads

n
@2uL

@d2
¼ R

s2ka2

sinh2 kh
sin 2ka 3e�2ðdþhÞ=s

h
� 4e�ðdþhÞ=s cosðdþ hÞ=s

i

þ 1� R2

 � s2ka2

sinh2 kh

�
3

2
e�2ðdþhÞ=s�2eðdþhÞ=s sinðdþhÞ=s

�
:

ð62Þ

Integrating this equation with respect to d twice, and making
use of the boundary conditions @uL/@d ! 0 as (d + h)/s� 1
and uL = 0 at d = �h, we get the mass transport velocity
profile in the bottom boundary layer,

uLða; dÞ ¼ R
ska2

sinh2 kh
sin 2ka

3

2
e�2ðdþhÞ=s

�
� 3

2

þ 4e�ðdþhÞ=s sinðdþ hÞ=s
�

þ 1� R2

 � ska2

sinh2 kh

3

4
e�2ðdþhÞ=s

�
þ 5

4

� 2e�ðdþhÞ=s cosðdþ hÞ=s
�
: ð63Þ

At the outer edge of the bottom boundary layer,

uLjdþh�s¼ � 3

2
R

ska2

sinh2 kh
sin 2kaþ 5

4
1� R2

 � ska2

sinh2 kh
: ð64Þ

These results are well known in the literature [e.g., Mei,
1989].
4.2.2. Surface Boundary Layer
[20] Near the free surface, equation (60) reads

n
@2uL

@d2
¼ g

@�hð2Þsbl

@a
� 2R

s2k2a2s
tanh kh

sin 2ka

� 2ed=s cos d=sþ sin d=sð Þ�1
h i

� 2 1�R2

 � s2k2a2s

tanh kh
ed=s

� cos d=s� sin d=sð Þ: ð65Þ

The setup term and the constant term inside the square
brackets will become secular on approaching the outer edge
of the boundary layer (d/s ! �1), and therefore they must
balance each other. Hence we get

g
@�hð2Þsbl

@a
¼ �2R

s2k2a2s
tanh kh

sin 2ka: ð66Þ

Clearly this setup term is sub-dominant in the bottom
boundary layer. Also, �hsbl

(2) is O(k2a2s), i.e., an order of
magnitude smaller than �hI

(2), which is of the order ka2.
Nevertheless, this setup term did not show up in the work
by Ünlüata and Mei [1970], who considered only a pure
progressive wave.
[21] With the velocity gradient at the free surface @uL/

@d(d = 0) = O(ks)2, thereby negligible, we now integrate
equation (65) to get

@uL
@d

¼ � 8R
sk2a2

tanh kh
sin 2ka ed=s sin d=s

� �
þ 4 1� R2


 � sk2a2

tanh kh
1� ed=s cos d=s

� �
; ð67Þ

which tends to the following limit at a distance far below the
boundary layer:

@uL
@d

¼ 4 1� R2

 � sk2a2

tanh kh
� d � s: ð68Þ

4.3. Core Region

[22] We have come to a point where a Lagrangian stream
function y(a, d) should be introduced such that the conti-
nuity equation (35) is satisfied identically by

uL ¼ � @y
@d

wL ¼ @y
@a

:

ð69Þ

Then equations (36) and (37) can be combined to give

n yaaaa þ 2yaadd þ yddddð Þ ¼ �X
ð2Þ
d � �Zð2Þ

a : ð70Þ

The full expressions for �X (2) and �Z(2) in equations (38) and
(39) must be used; fortunately, only the inviscid parts of ~x
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and ~z contribute to the leading-order terms in these
expressions for outside the boundary layers. One can easily
show that to the leading order, �Za

(2) = 0, and

�X
ð2Þ
d ¼ � 1� R2


 � 4nsk4a2
sinh2 kh

sinh 2kðdþ hÞ: ð71Þ

The stream function y is fixed to be zero along the bottom
d = �h, and is also subject to, following from equations (64)
and (68),

�yd ¼ � 3

2
R

ska2

sinh2 kh
sin 2ka;þ 5

4
1� R2

 � ska2

sinh2 kh
d ¼ �h;

ð72Þ

�ydd ¼ 4 1� R2

 � sk2a2

tanh kh
d ¼ 0: ð73Þ

[23] A far field bounding condition needs to be specified
at this point. If the domain is closed, a return current will be
established so that the net discharge due to the mass
transport across the entire depth is zero. This is equivalent
to further specifying y = 0 on d = 0. Solution to this zero-
flux problem, which was first obtained by Longuet-Higgins
[1953], can be written as

y ¼ sa2

4 sinh2 kh
1� R2

 �

ZðpÞðdÞ
hn

� sinh 2kðdþ hÞ
i

þ 2RZðsÞðdÞ sin 2ka
o
; ð74Þ

where

ZðpÞ ¼ sinh 2kh� 3kd� k2h2 d3=h3 þ 2d2=h2 þ d=h

 �

sinh 2kh

� 1

2
d3=h3 � 3d=h

 �

sinh 2khþ 3khð Þ ð75Þ

ZðsÞ ¼ � 3 2kh cosh 2kh sinh 2kdð �2kd cosh 2kd sinh 2khÞ
� ðsinh 4kh� 4khÞ: ð76Þ

[24] One may note that the mass transport due to a
standing wave forms a recirculation cell over a quarter of
the wavelength [Longuet-Higgins, 1953], and the associated
net flux is zero irrespective of the domain being bounded or
not. The bounding condition, however, becomes a matter of
importance when the wave is partially standing, in which
the mass transport is composed of unidirectional and
recirculating parts. It is only the unidirectional part of the
mass transport that is to be counterbalanced by a return
current if the domain is completely bounded. Therefore, if
the domain is open ended (in the sense discussed earlier), a
return current is either not established or not felt yet at the
point of interest. It is, however, not possible to judge from
equation (74) alone which terms are contributed by the
return current and should be removed to recover that for an
opened-ended domain. In this regard, we may resort to the
work of Ünlüata and Mei [1970], who have solved the one-
dimensional mass transport due to a pure progressive wave,

and found that in the absence of the return current the
unidirectional mass transport velocity in the core is

uL ¼ ska2

4 sinh2 kh
3þ 2 cosh 2kðdþ hÞ½ þ 4kðdþ hÞ sinh 2kh�:

ð77Þ

[25] Therefore, taking into account all the results given
above, we may obtain a general expression, encompassing
both bounding conditions, for the horizontal mass transport
velocity in the core,

uLða; dÞ ¼
ska2

4 sinh2 kh

�
1� R2

 ��

3þ 2 cosh 2kðdþ hÞ

þ 4kðdþ hÞ sinh 2khþ 3Y
d2

h2
� 1

� �
3

2
þ kh sinh 2kh

�

þ sinh 2kh

2kh

��
þ 12R sin 2ka
sinh 4kh� 4kh

�
�
cosh 2kd

2kh cosh 2kh� sinh 2khð Þ�2kd sinh 2kd sinh 2kh
��

;

ð78Þ

where Y is an integer parameter switching on or off the
closed-system condition,

Y ¼ 0 if domain is open ended

1 if domain is bounded:

�
ð79Þ

The vertical mass transport velocity is simply given by

wLða; dÞ ¼ R
ska2

sinh2 kh
cos 2kaZðsÞðdÞ; ð80Þ

where Z(s) is given in equation (76). While Longuet-Higgins
[1953] provided the parts of the solution corresponding to
Y = 1, Ünlüata and Mei [1970] gave those for R = 0. We
present here a combined solution, for which the stream
function is thus written as

yða; dÞ ¼ sa2

4 sinh2 kh

n
1� R2

 �

�3kðdþ hÞ½ � sinh 2kðdþ hÞ

� 2k2h2 d=hþ 1ð Þ2 sinh 2kh
� Ykh d3=h3 � 3d=h� 2


 �
3=2ð þ kh sinh 2kh

þ sinh 2kh=2khÞ� þ 2RZðsÞðdÞ sin 2ka
o
: ð81Þ

The vorticity may also be readily found to be

wða; dÞ ¼ @wL

@a
� @uL

@d

¼ � sk2a2

sinh2 kh

n
1� R2

 �h

sinh 2kðdþ hÞ:þ sinh 2kh

þ Y
3d
2kh2

� �
3

2
þ kh sinh 2kh

�
þ sinh 2kh

2kh

��

þ 6R sin 2ka
sinh 4kh� 4kh

� sinh 2kd 2kh cosh 2kh� sinh 2khð Þ½

� sinh 2kd sinh 2kh� 2kd cosh 2kd sinh 2kh�

þ 2RZðsÞðdÞ sin 2ka
o
: ð82Þ
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[26] A remark on the production of the return flow is now
in order.When solving for one-dimensional mass transport in
progressive waves, Ünlüata and Mei [1970] made several
assumptions including (1) �za

(2) = 0, and (2) �pa
(2) is a constant,

which turns out to be responsible for setting up a return
current in the case of a closed system.We comment that these
two conditions are not exactly true when a return current is
generated. Indeed, it is contradictory to have a finite hori-
zontal pressure gradient on the one hand, and to have a zero
horizontal gradient of the mean vertical displacement on the
other hand. As rightly pointed out by Piedra-Cueva [1995], a
non-zero free surface setup must be in existence when a
horizontal pressure gradient is established to balance the
radiation stress of the progressive wave and thus to produce
the return flow. To understand this better, one may readily
obtain the following relationship from the time-averaged
O(�2) vertical momentum equation, if the wave is purely
progressive and wave attenuation is neglected,

1

r
�pð2Þa þ g�zð2Þa ¼ g�hð2Þa ; ð83Þ

where �h(2) = �z(2)(d = 0) is the free surface setup. Therefore, it
is the combined action of the horizontal gradients of the
mean pressure and the mean vertical displacement of
particles, resulting in a free surface setup, that is responsible
for the return current. Since �za

(2) varies with depth, �pa
(2)

cannot be a constant, as supposed by Ünlüata and Mei
[1970]. Nevertheless, the analysis and results presented by
Ünlüata and Mei [1970] are perfectly all right as long as the
pressure gradient term in their deduction is replaced by the
gradient of the free surface setup.
[27] Returning our focus back to the present study, we

may as well determine the free surface setup �hrc
(2) that is

associated with the return current under a progressive wave
in a closed system, and with the recirculating cells under a
standing wave. The method involves substituting the mass
transport velocity components (78) and (80) back into the
governing equations (36) and (37), followed by steps
similar to those shown earlier in getting equation (60).
Without providing the tedious details, we present here the
final expression for this component of free surface setup,

g
@�hð2Þrc

@a
¼ s2k3a2s2

2 sinh2 kh
Y 1� R2

 � 3

2k2h2

�
� 3

2
þ kh sinh 2kh

�

þ sinh 2kh

2kh
Þ � R sin 2ka

48kh cosh 2kh

sinh 4kh� 4kh

�
; ð84Þ

which confirms that if the system is unclosed (Y = 0), the
free surface setup due to the unidirectional part of the mass
transport will vanish. Conversely, one may use this
condition to determine the constant value of the stream
function along the free surface when the domain is
unbounded.
[28] Thus far in the course of our deduction, three

components of the free surface setup have been obtained
arising from the inviscid standing wave motion, the surface
boundary layer, and the return current. These components
are of different orders of magnitude,

�hð2Þ ¼ �hð2ÞI þ �hð2Þsbl þ �hð2Þrc ; ð85Þ

where �hI
(2) = O(ka2), �hsbl

(2) /�hI
(2) = O(ks), and �hrc

(2)/�hI
(2) = O(ks)2.

That is, the setup due to the inviscid wave motion is the
dominant one among the three. Since wave decay is ignored
and the bottom is horizontal, a progressive wave will not
contribute to the free surface setup unless a return current is
generated.

5. Numerical Results

[29] Let us briefly examine the effects of the bounding
condition on the mass transport under various values of R.
Numerical results shown below are in terms of the follow-
ing normalized variables (distinguished by a hat):

â ¼ ka;

d̂ ¼ d=h;

ðûL; ŵLÞ ¼ ðuL;wLÞ=ska2;

ŷ ¼ y=sa2;

ŵ ¼ w=sk2a2:

ð86Þ

We show in Figures 2 and 3 the Lagrangian streamlines
together with velocity vectors for a range of the reflection
coefficient when the system is, respectively, closed and
unclosed. When the wave is purely standing (R = 1), the
classical cellular structure shown by Longuet-Higgins
[1953] is reproduced, which is independent of the far end
bounding condition. The left and right cells rotate in the
clockwise and counterclockwise sense, respectively, result-
ing in vertical jets shooting, respectively, upward and
downward under the antinodes (â = np, n = 0, 1, 
 
 
) and
the nodes (â = (2n + 1)p/2) of the free surface. The
recirculation structure persists as R decreases when the
system is closed (Figures 2b–2d). The return current tends
to lift up the clockwise cell, and to press down the
counterclockwise cell. Meanwhile, the flow in the clock-
wise cell is much more weakened than the counterclockwise
cell by the return current. Eventually, as the progressive
wave limit is approached, a reversed current forms in the
middle of the fluid layer, which balances the forward
streams at the top and the bottom of the layer. Flow stops to
reverse on the bottom when the reflection coefficient drops
to 0.5. Recirculation, however, continues to exist even when
the reflection coefficient is as low as 0.1. It is remarkable
that for all values of R the flow patterns exhibit symmetry
about the vertical lines midway between the nodes and
antinodes (â = np/4, n = 1, 3, 5, 
 
 
); the centers of the cells
remain to lie on these lines. Such symmetry will disappear
when the ratio a/s becomes very large (i.e., when the Stuart
boundary layer forms outside the Stokes boundary layer), as
presented by Iskandarani and Liu [1991]. Their results
show that the centers of the recirculating cells will shift
horizontally as the reflection coefficient varies.
[30] In sharp contrast, when the system is unclosed, the

recirculation regions will be extensively wiped out as
soon as the reflection coefficient drops below unity
(Figures 3b–3d). Although not shown in this figure, it
is found that the counterclockwise recirculation will
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disappear completely when R drops just by 5% from
unity. The clockwise cell, which is then much diminished
and pressed down to be confined near the bottom, may
persist only until R � 0.7. The flow appears to be almost
unidirectional when R gets down to 0.5.
[31] The corresponding vorticity contours (Figures 4

and 5) provide a further comparison between the two
cases. In the case of a closed system, lowering the
reflection coefficient has an effect of enhancing the
vorticity of the flow in the counterclockwise cell that
eventually intrudes itself into the region originally occu-
pied by the clockwise cell. At the pure progressive wave
limit, the vorticity is zero at some mid-depth, and is the

strongest (with opposite sense) at the free surface and the
bottom.
[32] For an unclosed system, lowering the reflection

coefficient will increase the vorticity in the region above
the counterclockwise cell, making it locally into a nearly
uniform distribution across the depth. Meanwhile, the
vorticity structure associated with the counterclockwise
cell, though diminished, remains to survive and retains its
identity even when the recirculation itself has already
disappeared. This suggests that the vorticity is not as
sensitive as the mass transport velocity to a small
departure from a perfect standing wave. Finally, as the
wave becomes purely progressive, the vorticity increases

Figure 2. Mass transport streamlines and velocity vectors in partially standing waves in a closed system
(Y = 1) for kh = 1.0, and (a) R = 1.0, (b) R = 0.7, (c) R = 0.5, and (d) R = 0.1.
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Figure 3. Mass transport streamlines and velocity vectors in partially standing waves in an unclosed
system (Y = 0) for kh = 1.0, and (a) R = 1.0, (b) R = 0.9, (c) R = 0.7, and (d) R = 0.5.
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Figure 4. Vorticity contours in partially standing waves in a closed system (Y = 1) for kh = 1.0, and
(a) R = 1.0, (b) R = 0.7, (c) R = 0.5, and (d) R = 0.1.
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mildly from the bottom to a maximum at the free surface
without change in sign. This implies a much more uniform
vertical distribution of vorticity than when the system is
closed.

6. Concluding Remarks

[33] An effort has been made in this work to patch up
several unnoticed holes in the existing theories for mass
transport in gravity waves. To demonstrate our points
without excessive complication, only the conduction solu-
tion under a simple configuration has been considered.
Nevertheless, we have shown a way by which the mass
transport due to partially standing waves in an unbounded
domain can be derived in general. It is our intention to

extend the present work to more complex situations, say, in
a two-layer system, and/or when the fluid is non-New-
tonian. The results will be presented shortly.
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