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ON ROTH’S THEOREM CONCERNING A CUBE AND
THREE CUBES OF PRIMES

by X1UMIN REN ' AND KAI-MAN TSANG ?

(Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong)

Abstract

In this paper, we prove that with at most O(N1271/1296+5)

exceptions, all positive integers
up to N are the sum of a cube and three cubes of primes. This improves an earlier result

O(N169/170) of the first author and the classical result O(NL™4) of Roth.

1. INTRODUCTION

It is conjectured that all sufficiently large integers n satisfying some necessary congruence

conditions are the sum of four cubes of primes, i.e.

n = pi +p3 +p3 +pi.
Such a strong conjecture is out of reach at present; but it is reasonable, in view of the following
results of Davenport and Hua respectively. Davenport’s theorem in [1] asserts that almost
all positive integers are the sum of four positive cubes, while a theorem of Hua [5, 6] states

that almost all positive integers n with n #Z 0, £2(mod9) are the sum of five cubes of primes.

In 1949, Roth [12] proved that almost all positive integers n can be written as
n=m?>+p3 +p3 + pi, (1.1)

where m is a positive integer and p; are primes. To be more precise, we let E(N) denote
the number of all the integers n not exceeding N which cannot be written as (1.1). Then
Roth’s theorem actually states that E(N) < Nlog™ N, where A > 0 is arbitrary. This
result can be viewed as an approximation to the above conjecture, and the quality of this
approximation is indicated in the upper bound of E(N). Roth’s theorem has been improved
by the first author [11] to E(N) < N9170 The exponent 169/170 was obtained via an
approach in which the possible existence of Siegel zero does not have special influence, and
hence the Deuring-Heilbronn phenomenon can be avoided.

In this paper we inject new ideas into the afore-mentioned approach, and make the following
further improvement.

Theorem 1.1. For E(N) defined as above, we have

E(N) < N1271/1296+8.

The new ideas used in this paper include the iterative method and the hybrid mean-value
estimate for Dirichlet polynomials of Liu [8], which will be displayed in full details at relevant
places in the following sections. An outline of the proof of Theorem 1.1 will be given in §2. At
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this stage, we only point out that our Theorem 1.1 does not depend on the Deuring-Heilbronn
phenomenon, and the method of this paper can be successfully applied to a number of additive

problems.

Notation. As usual, p(n) and A(n) stand for the function of Euler and von Mangoldt
respectively, and d(n) is the divisor function. We use y mod ¢ and x° mod ¢ to denote a
Dirichlet character and the principal character modulo ¢; and L(s,x) is the Dirichlet L-
function. In our statement, N is a large positive integer, and L = log N. The symbol r ~ R
means R < r < 2R. The letters € and A denote positive constants, which are arbitrarily small

and arbitrarily large respectively. We use c¢; to represent absolute positive constants.

2. OUTLINE OF THE METHOD
For large positive integer N and 6 = 25/216 — ¢, we set
P=N? and Q=NPL (2.1)

For coprime integers a, ¢ with 1 < a < ¢ < P, we denote by 9(q,a) the interval [a/q —
1/qQ,a/q + 1/qQ]. These major arcs all lie in [1/Q, 1+ 1/Q] and, since 2P < @, they are
mutually disjoint. Write 9t for the union of all M (g, @) and define the minor arcs m as the
complement of M in [1/Q, 1+ 1/Q).

Let

U=(N/9Y? and V=US. (2.2)
We define

and, for W =U or V,
S(a, W) = > A(m)e(m’a).

m~W
Define
r(n) = > A(m1)A(ma)A(ms).
n:m%+...+m2
m1,my~Umg,m3z~V
Then

14+1/Q
= 0] 2 0] a)el—noa)ac = . .
r(n) = /w S(er, U)8%(a, V)T(@)e(—na)d /m+ /m (2.3)

To handle the integral on the major arcs, we need the following.
Lemma 2.1. For all integers n with N/2 <n < N, we have

/ S(a, U)S% (o, V)T (a)e(=na)da = &(n)J(n) + O(V2U L), (2.4)
m

Here &(n) is the singular series which is defined by (4.1) and it satisfies

(loglogn) ™ <« &(n) < logn; (2.5)
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and J(n) is as defined in (4.3) and it satisfies
ViUt < J(n) < VUL (2.6)

In the Waring-Goldbach problem, the quality of arithmetical results obtained usually de-
pends on the size of the major arcs. Our major arcs 9 in this paper are much larger than
those in [11], and we need new ideas to control their contribution. The first new idea is a
hybrid estimate for Dirichlet polynomials; see Lemma 5.1 below. The second is the iterative
procedure in treating I, ..., I5 in §4, as illustrated in the proof of Lemma 4.2.

The minor arcs estimate is taken care of by Theorem 3 in [11]. That it is valid for minor
arcs as defined above can be checked easily. Here we record it in the following lemma.

Lemma 2.2. Let m be as defined above. Then we have

/ 1S(a, U)?|S(c, V)M T ()P dex < Uyip-1/6+e
m

Equipped with Lemmas 2.1 and 2.2, we can now give the proof of Theorem 1.1 immediately.

Proof of Theorem 1.1. We start from (2.3). The contribution of the major arcs is taken
care of by Lemma 2.1. To treat the integral on the minor arcs we apply Bessel’s inequality
and Lemma 2.2 to get

A

N/2<n<N
By a standard argument, we deduce from (2.7) that for all N/2 < n < N but at most
O(U? P~1/6+3¢) exceptions,
/.

Therefore by Lemma 2.1, for these un-exceptional n, we have

r(n) = &(n)J(n) + OV2UIL™),

2

<</ 1S (c, U)2|S (v, V)Y T ()| Pdee < UVAP~1/6F¢, (2.7)
m

< VUu-tpe.

and these n can be written as (1.1). Let F(IN) be the number of the exceptional n above.
Then we have
F(N) < UBp~1/6+3e  N1271/1296+¢

The assertion of Theorem 1.1 now follows from E(N) = 3.~ F(N/27). O

Now it remains to prove Lemma 2.1, which will be carried out in the following sections.

3. AN EXPLICIT EXPRESSION

The purpose of this section is to establish in Lemma 3.1 an explicit expression for the
left-hand side of (2.4).
For x mod ¢, we define

Clxa) = Z: Xme (). (31)

m=1
3



and write C(q,a) = C(x°, a). We also define
I am?
S*(q,a) = Z e () . (3.2)
m=1 q

For o = a/q+ X € M(q,a), we have

I ah?3

S, W)= Y e <> Y A(m)e(Am®) + O(L?).
— q i
(h},bq)lzl m=h( mv‘o/d q)

By introducing Dirichlet characters to the above sum over m, we can rewrite S («, W) as

C(g,a) e(\m3 C(x.a) m)v(m) — 5 e(Am3 2
S 2 eOm 30 S 3 (Amxm) = de(im’) + 0. (39

x mod ¢

Here and throughout, d, is 1 or 0 according as x is principal or not. By Lemma 4.8 in [13]
one finds that, for W = U or V,

2w

> e(dm?) = / e(\u?)du + O(1).
m~W w

Thus, if we denote by ®(\, W) the above integral and by ¥(x, A, W) the last sum over m in

(3.3), then we have
Clg,a)

S(a, W) = =0 AW+ Y

C(x,a)
©(q)

= Si\W) + So(\, W) 4+ O(L?), (3.4)

T(x,\, W)+ O(L?)

x mod ¢

say. For T'(a) we apply Theorem 4.1 in Vaughan [14], to get

T(a) = m@(x, U) 4 0(¢"?+%) = Ty (A) + O(¢*/?+9), (3.5)

q
say. So if we write
AN = {S1(\U) + Sa(\ U HS1(A V) + So (A V)P T (N),

then (3.4) and (3.5) together with the trivial bounds |S(a, W)| < W and |T(a)| < U show
that

1S(a, U)S?(a, V)T () — AN)| < UV2¢/* 1 UV L2,

Consequently

/S(a,U)SQ(a,V)T(a)e(—na)da
M

a an 1/4Q
=> > e<—q>/ AN e(—=nA)dA\ + OUV2P3/2eQ=1 L U2V PQ'L?).

g<P a=1 —1/4Q
- (a,9)=1

The above O-term is O(V2U~'L™4), on recalling (2.1) and (2.2).

Now we write

Ag(N) = S2(\ V), A(N) =281 (N, V)Sa (N, V), As(N) = S2(\, V);
4



and for ¢ = 0, 1, 2, define

a an 1/aQ
JZ:;P ; e<—q> /_l/qul()\,U)Tl(A)Ai(A)e(—n)\)d/\, (3.6)
- (a,9)=1
a an 1/4Q
13+i:; z_; e<—q) /_ I/QQSg()\,U)Tl()\)Ai(A)e(—n)\)dA. (3.7)

Then we have proved

Lemma 3.1. For I; defined as above, we have

/ S(a,U)S*(a, V)T(a)e(—na)da =Y I; + O(VULL™4).
M

o,
o

In the following sections we prove that Iy produces the main term, while the others con-
tribute to the error term.

4. ESTIMATION OF [; FOR j =0,1,...,5.

We need some more notations. Let i, x2 and x3 be characters mod ¢, C(x,a) and
S*(q,a) be as defined in (3.1) and (3.2). We define

q
an *
B(n7q7X17X2)X3) = Z € <_q> C(Xl,a)C(XQ,(Z)C(Xg,CL)S ((La))
a=1
(a,q)=1

and write

B(n,q) = B(n,q,x% x° x°),

B(n,q) N Al
SIPTE 6(n)—;A( q). (4.1)

A(?’L, q) =

This &(n) is the singular series appearing in Lemma 2.1. By Lemma 18 and 22 in [12] and
Lemma 4.4 in [11], we see that the singular series is absolutely convergent and satisfies the
first inequality in (2.5). The second inequality in (2.5) can be established by making use of
Lemmas 15 and 16 in [12] as follows:

S 1AMl < [0 +ep ) I +cop )

pln ptn
n \?
—1
< 1|_[(1 +eop ) K (cp(n)) < logn. (4.2)
pln

Lemma 4.1. Let Iy be as defined in (3.6). Then for all N/2 < n < N, we have
Iy = &(n)J(n) + O(V2U~1L™4),

where &(n) and J(n) are defined in (4.1) and (4.3).
5



Proof. By definition we have

1/4@Q
g<p ¥ (@)a J-1/90

Define
J(n) = / P2\, U)D%(\, V)e(—nN)dA. (4.3)
Then by Lemma 5.2 in [11], J(n) is well defined and satisfies (2.6). Using the elementary

estimate

, 1
we get
/ |22\, U)®*(\, V)| dA < VU~ / = A ¢ viup)t
IA>1/4Q 1/Q A
and therefore,
Io=J(n) Y Aln,q) + o{v?wP)l S glA, q>r}. (45)

q<P q<P

By Lemma 18 in [12],

> Aln,q) = &(n) + O(P71/4F9),
q<P

so the main term on the right hand-side of (4.5) becomes
J(n)S(n) + O(V2U~tp~1/4te),
To estimate the O-term in (4.5), we use the bound (see [12, pp. 277])
|A(n,q)| < ¢~ (n, q)"/2,
to get
Z gl A(n, q)| < Z g Ve, V2 < st Z g2 « plrte
q<P q<P dn  q<P/d
and consequently the O-term in (4.5) is O(V2U~'P~1/2%¢). This proves Lemma 4.1. [
Lemma 4.2. Let I;, j =1,2,...,5 be as defined in (3.6) and (3.7). Then we have

I < VUt

To prove Lemma 4.2, we need the following Lemmas 4.3-4.5.
Lemma 4.3. If x;, j = 1, 2, 3, are primitive characters modrj, and ro = [r1,r2,r3] is the

least common multiple of r1, 2, r3, then for x° mod q we have

3 1B(n, @, x1x% x2x% x3X%)|  s/64e
. < g%,
o v’ (q)q

role



/6% o the right-hand side will play a key role in our argument, and the

The saving of r
quality of the exceptional set will depend on the magnitude of the exponent 5/6. In the next
section, we will apply the iterative method of [8] to make use of the full strength of this 5/6,
and the reader is referred to the proof of Lemma 4.2.

Proof of Lemma 4.3. This is a slight modification of Lemma 4.5 in [11]. In fact, by

(4.7)-(4.10) in [11], we see that

|B(n, a, x1x% x2x% x3x%)|  s/64e
<r
2 ) o Z > |

q<P ¥ 1=0 ¢<P/3irg
rola (a,r0)=1

From this the desired assertion follows by applying (4.2) to the last sum. O

Lemma 4.4. Let g be a positive integer. Then we have

, 1/2
* —5/6+¢ 1/rQ N A 2d)\ —5/6+¢ 71/2L63
>, 2. Ing L TCR] < g /ey L,

r<P x modr

In particular, for g = 1, the above bound can be improved to U-Y2L=4. Here S°* indicates
that the summation is over all primitive characters mod r.
Lemma 4.5. (1) For integer g > 1, we have

SN gl YO max [(x A V)| < g YOV,

AIL1
r<Px modr =1/r@

(2) In particular, for g =1 the above bound can be improved to VL4,

The proofs of Lemmas 4.4 and 4.5 will be postponed to the next section. With these
lemmas ready, we can now give the proof of Lemma 4.2.
Proof of Lemma 4.2. We first consider I5. By definition,

nq><1,><z,><3)
S Y Y oy y Heeua

q<P x1 mod q x2 mod q x3 mod ¢q

1/4@Q

></ B (1, A V)W (s A V)T (s, A U)B, U)e( —nA)dA.
—1/qQ

Reducing the characters into primitive characters and observing that, for primitive character

x mod r with r|q,

“I’(XXOa A, W) - \Ij(Xa A, W)}

Y Am) (" (m) = x(m))e(Am®) = (83,0 =) Y e(Am?)

Z Z logp < L,

plg, ptr pI~W

IN



we have

DD 3 * T B(n,q,xwoémxo,x;;xo)

r <P r3<P x1 mod ry x3 mod r3 q<P qa¥ ((])
[r1,m2,73]la

1/4Q
x/ Bx®, A V)T (X, A V)T (sx®, A, DB, T)e(—nA)dA

—1/49Q
* *
LYY T e ¥ Tl
ri1<P r3<P x1 mod 71 x3 mod 73

by Lemma 4.3. Here
1/[r1,r2,r3]@
jr- / T (1, A, V)T (s A, V)T (x5, A, ) [ B, )] dA,
—1/[r1,m2,m3]Q
with
U*(x, A, W) = |¥(x, A\, W)| + L.
By Cauchy’s inequality,

I < T (1, AV T (x, A,V
5 VO A V) max e A V)

1/r3Q ) 12 7 19 1/2
x / (0" (x3, A, U))? dA / BOLU)2AN)
—-1/r3Q -1/Q

Here an application of (4.4) easily gives

1/Q
/ D\, U)PdN < UL
-1/Q

On the other hand, by Lemma 4.4 and (4.7),

1/7‘3Q 1/2
Z Z Tl? 2, 7"3 —5/6+e / (\IJ*(X?H >\7 U))2 dA

r3<P x3 mod 73 —1/r3@Q

< [Tl,Tz]_5/6+€U_1/2L63 + L Z Z *[7’1,T2,T3]_5/6+6(7“3Q)_1/2

r3<P x3 mod r3
< [T‘l, TQ]_5/6+EU_1/2LC3.

Collecting these estimates, we get from (4.6) that

I, < U-lpestt i T*(y1, \, V
’ 22 WA Y)
r1<P x1 mod ry

—5/6+¢

X E E rl,rg max U*(x2, A\, V
> [A<1/r2Q (x )
ro<P x2 mod 2

By Lemma 4.5 and (4.7), the last double sum is

<r VLT LYY ST T YO < YOV LY

ro <P x2 mod g
8
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Therefore,

I; <« U71VL03+182 Z *r1_5/6+8 max U (x1, A, V)

A<1
r1<P x1 mod ry M<1/m@

< VUL,
by applying (4.7) and (2) in Lemma 4.5. This proves the lemma for j = 5.

We remark that, in the iterative argument above, we have used the saving 7, BI6FE {0 its
full strength, as pointed out right after Lemma 4.3. One sees that the iterative argument is

crucial for our improvement, since previously in [11] we used the inequality

—5/6 —5/18 —5/18 —5/18
rg /+6§T1 / +ET2 / +5T3 / +5’

which is responsible for the weaker bound E(N) < N9/170 there. We would also like to
add that the key ingredient to fulfil the iterative argument is the hybrid estimate in Lemmas
5.1 and 5.2 below.

To finish the proof of Lemma 4.2, we need to sketch how to estimate I; for j = 1,...,4.
As an example, we consider I3. By definition and by reducing the characters into primitive

ones, we get by Lemma 4.3 and (4.7) that

* 1/TQ
Ih < LY, > r5/6+€/ T*(x, A, U) [@(N\, U)| |22\, V)] dA
r<P x modr —1/rQ

. 1/rQ 1/2 1/Q 1/2

< VEILY Y e ( / (\IJ*(X,)\,U))QdA> ( / <I>(>\7U)|2d)\>
r<Px mod r —1/rQ -1/Q

< VUi,

by (4.8) and Lemma 4.4 for g = 1. This finishes the proof of Lemma 4.2. [J

5. PROOF OF LEMMAS 4.4 AND 4.5.

We need to do some preparations to establish Lemmas 4.4 and 4.5. Let M be a large
positive integer and let M;, j = 1,...,10, be positive integers satisfying
27OM < My--- My < (2M)  and  2Ms,...,2Mo < (2M)'/°. (5.1)
For any positive integer m, let

logm, if j=1,
aj(m) =< 1, if j=2,..,5, (5.2)
u(m), if j=6,...,10.

We define the following functions of a complex variable s:

fls0 = Y0 GO ) = s o) 5.
mn~M;

Then we have the following hybrid type estimate for F(1/2 + it, x), which is Lemma 2.1 in
Liu [8].



Lemma 5.1. ForanyT >0,d>1and 1 < R< M?, we have

+ it dt < R—2T+ R AU p12p3/10 4 ap1/2 e
X d dl/2 .

>

TNR x mod r

We also need zero-density estimates in forms stated in the following lemma.
Lemma 5.2. Let T >1,Q>1and 1 <d < Q. Then

QQ A(o)(1—0o) o
Z Z N(o,T,x) < 0 LY,

4<Q x mod q
dlq

where for 1/2 <o <3/4, A(c) =3/(2—0); and for 3/4 <o <1, A(c) =12/5+¢.
Proof. We observe that under the restriction d|q, Theorem 12.2 in Montgomery [9] can
be restated as follows: For 1/2 <o <4/5

Z Z N.T, (QQ ) —0)/(2—0) o
X) < ] L°,

7<Q x mod ¢
dlq

and for 4/5 <o <1

Q2 )/014
ZZNTX<< - LY,

9<Q x mod q
dlq

This proves the lemma for 1/2 < ¢ < 3/4 and 5/6 < o < 1. For 3/4 < o < 5/6, the desired
assertion is included in (1.1) of Huxley [7]. O
Proof of Lemma 4.4. Note that for primitive character x mod r, ,, = 1 if »r = 1, and

0y = 0 otherwise. Hence

., 1/2
* —5/6+¢ /rQ 2
> Y g [T (x, N, U)|dA
-1/rQ

1<r<P x mod r

9 1/2

_ ,—5/6+¢ / A d\

g m?)

ol ™
1/2
* —5/6+¢ Y/rQ 3 ’
+ Y >, [ng > Alm)x(m)e(Am?)| dx
1<r<P x modr —1/rQ m~U

=Ji+ Jo, (5.4)

10



say. By Gallagher’s lemma (see [3, Lemma 1]),

1/Q 3 2 1 2 0o 2
(A(m d\ — A -1l d
/1/@% ) < <Q> /oo U<m§+Q( (m) 1)) dv
1 2 8U3 2
= — A —1)| dv,
<Q> /[13—Q Yo<m§X0( (m) ) !

where
Yy = max(v'/3,U), Xo = min((v + Q)Y/3,20).
By the trivial bound
> (Am) - 1) < (Xo - Vo)L < UT?QL,
Yo<m<Xp
one derives

Jl < 9_5/6+6U_1/2L.

We now turn to Jo. Applying Gallagher’s lemma as before, the integral in Js is

1\2 [8U° > 2
< <> / A(m)x(m)| dv. (5.5)
TQ US_TQ v<m3§v+rQ
m~U
Let

Y =Y (v) = max(v'/3,U), X =X(v)=min((v+rQ)"3,20). (5.6)

Then the sum in (5.5) can be rewritten as
> Alm)x(m). (5.7

Y<m<X

Now we recall Heath-Brown’s identity (see [4, Lemma 1]) for k = 5, which states that for
m < 2M,

5
A(m) = Z <5> (—1)7~1 Z (log mi)p(mjqr) - - - p(may).

=1

my-mgi=m

MGy m2j§(2M)1/5

Putting this in (5.7), the sum is written into a linear combination of O(L!Y) terms, each of
which is of the form

S Y ar(ma)x(ma) - - azo(mao)x(mao),

my~M; myo~Mig
Y<mi--mio<X

where a;(m) are given by (5.2), and M; are positive integers satisfying (5.1) with M = U.
Here M denotes the vector (M, M, ..., Mig). Therefore we get from (5.4) and (5.5) that

B 3N Tl g {/8U3 (Z\zx M)| ) dv}l/2. (5.8)

3_
1<r<P x modr U?=rQ
11



Applying Perron’s summation formula (see for example [13, Lemma 3.12]) and then shifting

the contour to the left, we have

1 1+1/L+T XS _Ys X2
S(X:M) = — Fs,y )02 ds+0
210 Jipa/L—ir s T

1 1/2—iT 1/244iT 1+1/L+:T XS _Ys X2
= - / +/ +/ F(s,x)ds+0( >,
2me | Jivyp—ir J1j2—ir 1/2+4iT s T

where F'(s, x) is as defined in (5.3), and 7" is a parameter satisfying 2 < 7T < X. The integral

on the two horizontal segments above is bounded by

m X UL
F(o+t11 - v
1/2§U§1}:-1/L| (o £ T, x| T <7

in view of the trivial estimate

10 10
|F(o+4T,x)| = [[Ifi(c £iT, )| < LT[ M} 7 < U7 L.
j=1 j=1

Thus,

1 T 1 X 1/2+it _ y1/2+it UL2
J(X5M) = — Fl=-+: — .
(X M) QW/_T (2+”’X> 1/2+ it dt+0< T )

Moreover, one sees from the estimate

X1/2+it _ Y1/2+it
12 + it

X
:/ w2t gy X2 Y2 o 7520,
y

and the trivial bound

X1/2+it _y1/2+it /2
2+t S

that

x1/2+it _ y1/2+it rQ Ul/2 L r o1
in| ——,—— | <U"?min( —,— ).
21 o = U7 min (P’ |t|>

Thus, by taking 7' = U, we obtain

1/2
oMy <« Y /
tI<P/r

1

+U1/2/ F<1+it,x> @+O(L2).
P/r<|t|<U 2 It]
12




Note that the right hand side is independent of v. Thus by inserting this in (5.8), we obtain
Jo < U*(QP)” Z Z [, ] 5““2/ ( —i—ztx)‘dt

1<r<P x mod r
< +it ) dt
w, X
[¢]

2O Z Z Ur, g] 5/6+62/

1<r<P x mod r

HUPQTILE 3 3 gl

1<r<P x mod r

= Jo1 + Jog + Joz,

[t|<P/r

P/r<|t|<U

say. Clearly

J23 < U3/2Q71L12gf5/6+6 Z Z *Tfl <<975/6+5U73/2P2L12 <<975/6+5U71/2_
1<r<P x mod r

To estimate Jo1, one notes that [r, g] = rg(r,g)~t. Thus

Jn < Ul S plome 3 Z —5/6+5/
[t|<P/r

1

M djg 1<7<me0dr
< g—5/6+aU—1LZZd5/6—a max R—5/6+£
d<R<P
M djg -

>

TNR x mod r

( + 1t, X)’dt.

It|<P/R

By Lemma 5.1, the last double sum is

< p o > [0

TNR x mod r

(pon)f

< LC4+1{PR/d + (PR/d)Y? U3/ 4 Ul/Q},

and hence
Joy < 975/6+5U71LC4+12(P7/6+5 4 pl/2gs/io U1/2) < g’5/6+5U’1/2LC4+12

on noting that P < U?/5.

Now it remains to estimate Jos. We have

o < gTUEUTIPLY Y YO max ROVVOTE
M d|g -

(; +it, X) TZ (5.9)

DI
T(f;lemodr

P/2R<|t|<U
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The last double sum can be estimated via Lemma 5.1 again, which gives

< LP/2III%13¥<UTZ Z / ( + 1, X)'dt

~R x mod r
< Ll {R%z—l + R¥2(dp)~12Us/0 4 RP‘lUl/Q}.

Inserting this in (5.9), we get
JQQ < 975/6+EU71PL(C4+12)(P1/6+€ + P71/2U3/10 + P*lUl/Z)
< 975/6+EU71/2LC4+12'

The first assertion of Lemma 4.4 now follows by letting c3 = ¢4 + 12.

Now we consider the special case of g = 1. We write
. 1/rQ 1/2
S e ([ e opa) = m
1<r<P x mod r -1/rQ

where Hy, Ho denote contributions from those with » < L? and LP < r < P, respectively
with B = 10A. To estimate Ho, we follow the argument in estimating Jo but let ¢ = 1 and
add the restriction r > LZ. We will get

Hy < U204,

To estimate Hi, we apply Gallager’s lemma as before to get

t 1/2
8U3 2
mey Y e (Am)x(m) =8| dv | .
r<LB x modr Us—rQ Y<m<X
where X, Y are as defined by (5.6).
Now we apply the explicit formula (see [2, §17, (9)-(10); §19, (4)-(9)])
P log qzT)?
3 Amxtm) = b= 3 L 40 (<g;>) , (5.10)

m=z VST

where 2 < T < z is a parameter and p = o + 7y is a typical nontrivial zero of the Dirichlet
L-function L(s,x). Let T = PL?*B. Then

ST Am)xim) -6 < Y xXe-ve, o(UP'L2B+2)

Y<m<X ly|<PL2B |p’
< (UQ) > UT'+O0UPTLTER),
|<PL2B

Hence

H<U2Y Y 7N vrtyuttALA

r<LB xmodr |y|<PL?B
14



By Satz VIIL.6.2 of Prachar [10] and Siegel’s theorem (see [2, §21]), there exists a positive

constant ¢z such that for r < LB, ] L(s, x) is zero-free in the region

x mod 7
o >1—¢s5/max{logr, log"®z}, t] < x.
Let n(N) = ¢ 10g74/5 N. Then by integrating by parts and Lemma 5.2 with d = 1, we have

Hl < U71/2L15 max (L4BP)(12/5+€)(170')U0'71 + U71/2L7A < U71/2L7A
1/2<o<1-n(N) ’

since P < U%/127¢. O
Proof of Lemma 4.5. (1) By integrating by parts and noticing |A|V? < 1, we have

2V
T, \V) = / eMP)d > | m) — &)

v V<m<u

< max V;m:@ (A(m)x(m) —d,)]|. (5.11)

By applying (5.10) with T'=z/2 =V to (5.11), we get

*1", —5/6+te max | AV
> Y Il e 062 V)

r<P x mod r

< Z Z *[T’g]—5/6+s Z (1+|,Y|)_1Vﬁ+g—5/6+sP2L2
r<P x mod r || <V
—5/6+¢ 2 5/6—e —5/6+¢
<y VL Z d dISnI%?PR

d<p
dlg

x max (1+7T)~ Z Z Z VBl 4 g o brey A

O<T<V
TN‘R x mod r |y|~T
T

=K +g /% vL A,

say. By making use of Lemma 5.2, we have

r~R xy mod r |y|~T
d|r

)A(O‘ 1 O')

1
< LM (R21/d) PRy 12y s / (R*T/d Voldo,

1/2
where for 1/2 < o < 3/4, A(c) = 3/(2 — 0); while for 3/4 <o <1, A(c) = 12/5+ €. Since
A(o)(1 —0) <1for 1/2 <o <1, we see that the total power of T in K is negative. Thus

—5/6+4e7, 717 5/6—c —5/6+¢ ( D2 (0)(1=0) ;o1
K < g VL | e 1Zd e R (R?/d)" Vel (5.12)
d\g
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Let 09 = (8 + 12¢)/(13 + 6¢), which is the solution of A(c)(1 — o) =5/6 — . Then

K < 975/6+25VL17 max P2A(U)(l*0’)*5/6+svo’71
1/2<0<o09

+gf5/6+2EVL17 max PA(U)(lfo') yeo-1
op<o<1

The first maximum is O(L~4) if P < V'/"~¢ where h = maxi /5<,<q,124(a) =5/6(1—0)} =
7/3. Similarly the second maximum is O(1) if P < V" where M/ = maxg,<o<1 A(a) =
12/5 + e. This proves (1).

(2) We write

SN e max WAV =2+ 2,

ALl
r<Px modr N<1/r@

where Z; and Z5 denote contributions from those with » < L? and L? < r < P, respectively.
By similar arguments as those leading to (5.12) but with g = 1, d = 1 and the restriction
that R > LP, we get

Zy < VLY max max R2A@)(1-0)=5/6+ey 01
1/2<0<1 LB<R<ZP

< VL17 max PQA(U)(I—O’)—5/6+Evo’—1
1/2<c<o09

+V L7 max pAl=a)yo=1 4 vy -B/2+17
00<0o<17/18

< VL™,

since P < V3/12=¢ This finishes the estimate for Zs.
Now we turn to Z;. By (5.11), we have

a<d > m,

r<LB x mod r

Y (A(m)x(m) = 6y)|-

<m<u

Now the desired estimate follows by applying Siegel-Walfisz theorem in the form of the bound:

For a primitive character x mod r, r < log? X

Z (A(m)x(m) — d0y) < X exp (—C(B)\/log X) :

m<X

This proves the lemma. [
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