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ON CERTAIN NEW GRONWALL-OU-IANG TYPE
INTEGRAL INEQUALITIES IN TWO VARIABLES
AND THEIR APPLICATIONS

WING-SUM CHEUNG AND QING-HUA MA

Received 15 September 2003 and in revised form 22 December 2004

Some new Gronwall-Ou-Iang type integral inequalities in two independent variables are
established. These integral inequalities can be applied as tools to the study of certain class
of integral and differential equations. Some applications to a terminal value problem are
also indicated.

1. Introduction

In his study of boundedness of solutions to linear second order differential equations,
Ou-Iang [12] established and applied the following useful nonlinear integral inequality.

Theorem 1.1. Let u and h be real-valued, nonnegative and continuous functions defined on
R+ = [0,∞) and let c ≥ 0 be a real constant. Then the nonlinear integral inequality

u2(x)≤ c2 + 2
∫ x

0
h(s)u(s)ds, x ∈R+, (1.1)

implies

u(x)≤ c+
∫ x

0
h(s)ds, x ∈R+. (1.2)

As indicated by Pachpatte [15], this result has been frequently used by authors to ob-
tain global existence, uniqueness and stability of solutions of various nonlinear integral
and differential equations. On the other hand, Theorem 1.1 has also been extended and
generalized by many authors; see, for example, the reference [2, 3, 6, 7, 8, 9, 13, 14, 15,
17, 18]. Like Gronwall type inequalities, (1.1) is also used to obtain a priori bounds to
the unknown function. Therefore, integral inequalities of this type are usually known as
Gronwall-Ou-Iang type inequalities.

In recent years, Pachpatte [16] discovered some new integral inequalities involving
functions in two independent variables. These inequalities are applied to study the
boundedness and uniqueness of the solutions of the following terminal value problem
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for the hyperbolic partial differential equation (1.3) with conditions (1.4)

D1D2u(x, y)= h
(
x, y,u(x, y)

)
+ r(x, y), (1.3)

u(x,∞)= σ∞(x), u(∞, y)= τ∞(y), u(∞,∞)= k. (1.4)

Recently, Cheung [2] and Dragomir-Kim [4, 5] established additional new Gronwall-
Ou-Iang type integral inequalities involving functions of two independent variables, and
Meng and Li [10] generalized the results of Pachpatte to certain new inequalities. Our
main aim here, motivated by the works of Cheung, Dragomir-Kim and Meng-Li, is to
establish some new and more general Gronwall-Ou-Iang type integral inequalities with
two independent variables which are useful in the analysis of certain classes of partial
differential equations.

2. Main results

In what follows, we define R = (−∞,∞), R1 = [1,∞), R+ = [0,∞), and for any k ∈ N,
Rk

+ = (R+)k. Denote by Ci(M,S) the class of all i-times continuously differentiable func-
tions defined on set M with range in set S (i = 1,2, . . .) and C0(M,S) = C(M,S). The
first-order partial derivatives of a function z(x, y) for x, y ∈ R with respect to x and y
are denoted as usual by D1z(x, y) and D2z(x, y), respectively. We also assume that all im-
proper integrals appeared in the sequel are always convergent.

We need the following lemmas in the discussion of our main results.

Lemma 2.1 [11]. Let u(t), k(t) be nonnegative continuous functions and a(t), b(t) be Rie-
mann integrable functions on J = [α,β] with a(t), b(t) and k(t) being nonnegative on J .

(i) If

u(t)≤ a(t) + b(t)
∫ t

α
k(s)u(s)ds (2.1)

for all t ∈ J , then

u(t)≤ a(t) + b(t)
∫ t

α
a(s)k(s)exp

(∫ t

s
b(m)k(m)dm

)
ds, t ∈ J. (2.2)

(ii) If

u(t)≤ a(t) + b(t)
∫ β

t
k(s)u(s)ds (2.3)

for all t ∈ J , then

u(t)≤ a(t) + b(t)
∫ β

t
a(s)k(s)exp

(∫ β

t
b(m)k(m)dm

)
ds, t ∈ J. (2.4)

Lemma 2.2. Let u(x, y), a(x, y), c(x, y) and d(x, y) be nonnegative continuous functions
defined for x, y ∈ R+ and w(u) be a nonnegative, nondecreasing continuous function for
u∈R+ with w(u) > 0 for u > 0.
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(i) Assume that a(x, y) and c(x, y) are nondecreasing in x and nonincreasing in y for
x, y ∈R+. If

u(x, y)≤ a(x, y) + c(x, y)
∫ x

0

∫∞
y
d(s, t)w

(
u(s, t)

)
dtds (2.5)

for all x, y ∈R+, then

u(x, y)≤G−1
[
G
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds

]
(2.6)

for all 0≤ x ≤ x1, y1 ≤ y <∞, where

G(r) :=
∫ r

r0

dr

w(r)
, r ≥ r0 > 0, (2.7)

G−1 is the inverse function of G, and x1, y1 ∈R+ are chosen so that

G
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds∈Dom

(
G−1). (2.8)

(ii) Assume that a(x, y) and c(x, y) are nonincreasing in each variable x, y ∈R+. If

u(x, y)≤ a(x, y) + c(x, y)
∫∞
x

∫∞
y
d(s, t)w

(
u(s, t)

)
dtds (2.9)

for all x, y ∈R+, then

u(x, y)≤G−1
[
G
(
a(x, y)

)
+ c(x, y)

∫∞
x

∫∞
y
d(s, t)dtds

]
(2.10)

for all 0 ≤ x ≤ x2, y2 ≤ y <∞, where G and G−1 are defined as in (i), and x2, y2 ∈ R+ are
chosen so that

G
(
a(x, y)

)
+ c(x, y)

∫∞
x

∫∞
y
d(s, t)dtds∈Dom

(
G−1). (2.11)

Proof. (i) Fixing any numbers x1 and y1 with 0 < x1 ≤ x1 and y1 ≤ y1 <∞, from (2.5) we
have

u(x, y)≤ a
(
x1, y1

)
+ c
(
x1, y1

)∫ x

0

∫∞
y
d(s, t)w

(
u(s, t)

)
dtds (2.12)

for 0≤ x ≤ x1, y1 ≤ y <∞.
Defining r1(x, y) as the right-hand side of the last inequality, then r1(0, y)= r1(x,∞)=

a(x1, y1),

u(x, y)≤ r1(x, y), (2.13)
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r1(x, y) is non-increasing in y ∈ [y1,∞), and

D1r1(x, y)= c
(
x1, y1

)∫∞
y
d(x, t)w

(
u(x, t)

)
dt ≤ c

(
x1, y1

)∫∞
y
d(x, t)w

(
r1(x, t)

)
dt

≤ c
(
x1, y1

)
w
(
r1(x, y)

)∫∞
y
d(x, t)dt.

(2.14)

Dividing both sides of (2.14) by w
(
r(x, y)

)
, we obtain

D1r1(x, y)
w
(
r1(x, y)

) ≤ c
(
x1, y1

)∫∞
y
d(x, t)dt. (2.15)

From (2.7) and (2.15) we have

D1G
(
r1(x, y)

)≤ c
(
x1, y1

)∫∞
y
d(x, t)dt. (2.16)

Now setting x = s in (2.16) and then integrating with respect to s from 0 to x, we obtain

G
(
r1(x, y)

)≤G
(
r1(0, y)

)
+ c
(
x1, y1

)∫ x

0

∫∞
y
d(s, t)dtds. (2.17)

Noting G(r1(0, y))=G(a(x1, y1)), we have

G
(
r1(x, y)

)≤G
(
a
(
x1, y1

))
+ c
(
x1, y1

)∫ x

0

∫∞
y
d(s, t)dtds. (2.18)

Taking x = x1, y = y1 in (2.13) and the last inequality, we obtain

u
(
x1, y1

)≤ r1
(
x1, y1

)
,

G
(
r1
(
x1, y1

))≤G
(
a
(
x1, y1

))
+ c
(
x1, y1

)∫ x1

0

∫∞
y1

d(s, t)dtds.
(2.19)

Since 0 < x1 ≤ x1, y1 ≤ y1 <∞ are arbitrary, from (2.19) we have

u(x, y)≤ r1(x, y), (2.20)

G
(
r1(x, y)

)≤G
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds, (2.21)

or

r1(x, y)≤G−1
[
G
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds

]
(2.22)

for all 0 < x ≤ x1, y1 ≤ y <∞. Hence by (2.20) and (2.22) we have

u(x, y)≤G−1
[
G
(
a(x, y)

)
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds

]
(2.23)

for all 0 < x ≤ x1, y1 ≤ y <∞. By (2.5), (2.23) holds also when x = 0.
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(ii) The proof of (ii) is similar to the argument in the proof of Lemma 2.2(i) with
suitable modification. We omit the details here. �

Theorem 2.3. Let a(x, y), c(x, y), and w(u) be defined as in Lemma 2.2(i), and e(x, y)∈
C(R2

+,R+). Let ϕ(u) ∈ C1(R+,R+) with ϕ′(u) > 0 for u > 0, here ϕ′ denotes the derivative
of ϕ. If

ϕ
(
u(x, y)

)≤ a(x, y) + c(x, y)
∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
d(s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds (2.24)

for all x, y ∈R+, then

u(x, y)≤G−1
{
G
[
ϕ−1(a(x, y)

)
+E(x, y)

]
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds

}
(2.25)

for all 0≤ x ≤ x3, y3 ≤ y <∞, where

E(x, y) := c(x, y)
∫ x

0

∫∞
y
e(s, t)dtds, (2.26)

G and G−1 are defined as in Lemma 2.2, ϕ−1 is the inverse function of ϕ, and x3, y3 ∈R+ are
chosen so that

G
[
ϕ−1(a(x, y)

)
+E(x, y)

]
+ c(x, y)

∫ x

0

∫∞
y
d(s, t)dtds∈Dom

(
G−1). (2.27)

Proof. If a(x, y) > 0, fixing any numbers x3 and y3 (0 < x3 ≤ x3, y3 ≤ y3 <∞), from (2.24)
we have

ϕ
(
u(x, y)

)≤ a
(
x3, y3

)
+ c
(
x3, y3

)∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
d(s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds

(2.28)

for all 0≤ x ≤ x3, y3 ≤ y <∞. Defining r2(x, y) as the right-hand side of the last inequal-
ity, then

r2(0, y)= r2(x,∞)= a
(
x3, y3

)
, (2.29)

u(x, y)≤ ϕ−1(r2(x, y)
)

(2.30)

for all 0≤ x ≤ x3, y3 ≤ y <∞. Since r2(x, y) is non-increasing in y, by (2.30), we have

D1r2(x, y)= c
(
x3, y3

)∫∞
y
ϕ′
(
u(x, t)

)[
d(x, t)w

(
u(x, t)

)
+ e(x, t)

]
dt

≤ c
(
x3, y3

)∫∞
y
ϕ′
(
ϕ−1(r2(x, t)

))[
d(x, t)w

(
ϕ−1(r2(x, t)

))
+ e(x, t)

]
dt

≤ c
(
x3, y3

)
ϕ′
(
ϕ−1(r2(x, y)

))∫∞
y

[
d(x, t)w

(
ϕ−1(r2(x, t)

))
+ e(x, t)

]
dt.

(2.31)
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Dividing both sides of (2.31) by ϕ′(ϕ−1(r2(x, y))), we have

D1r2(x, y)
ϕ′
(
ϕ−1

(
r2(x, y)

)) ≤ c
(
x3, y3

)∫∞
y

[
d(x, t)w

(
ϕ−1(r2(x, t)

))
+ e(x, t)

]
dt. (2.32)

Observe that for any continuously differentiable and invertible function Φ(ξ), by the
change of variable η =Φ−1(ξ), we have

∫
dξ

Φ′(Φ−1(ξ)
) =

∫
Φ′(η)
Φ′(η)

dη = η+ c =Φ−1(ξ) + c. (2.33)

Keeping y fixed in (2.32), setting x = s and integrating with respect to s from 0 to x, and
applying (2.33) to the left-hand side we obtain

ϕ−1(r2(x, y)
)≤ ϕ−1(r2(0, y)

)
+ c
(
x3, y3

)∫ x

0

∫∞
y

[
d(s, t)w

(
ϕ−1(r2(s, t)

))
+ e(s, t)

]
dtds

= ϕ−1(a(x3, y3

))
+ c
(
x3, y3

)∫ x

0

∫∞
y

[
d(s, t)w

(
ϕ−1(r2(s, t)

))
+ e(s, t)

]
dtds.

(2.34)

Applying Lemma 2.2(i) to the last inequality, we get

ϕ−1(r2(x, y)
)≤G−1

{
G
[
ϕ−1(a(x3, y3

))
+ c
(
x3, y3

)∫ x

0

∫∞
y
e(s, t)dtds

]

+ c
(
x3, y3

)∫ x

0

∫∞
y
d(s, t)dtds

} (2.35)

for all 0 ≤ x ≤ x3, y3 ≤ y <∞. By (2.30), (2.35) and using similar procedures as from
(2.19) to (2.23) in the proof of Lemma 2.2(i), we can get the desired bound of u(x, y) in
(2.25). By continuity, (2.25) also holds for the case a(x, y)≥ 0. �

Theorem 2.4. Let a(x, y), c(x, y), w(u) be defined as in Lemma 2.2(ii) and ϕ(u), e(x, y)
defined as in Theorem 2.3. If

ϕ
(
u(x, y)

)≤ a(x, y) + c(x, y)
∫∞
x

∫∞
y
ϕ′
(
u(s, t)

)[
d(s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds (2.36)

for all x, y ∈R+, then

u(x, y)≤G−1
{
G
[
ϕ−1(a(x, y)

)
+E(x, y)

]
+ c(x, y)

∫∞
x

∫∞
y
d(s, t)dtds

}
(2.37)

for all x4 ≤ x <∞, y4 ≤ y <∞, where

E(x, y) := c(x, y)
∫∞
x

∫∞
y
e(s, t)dtds, (2.38)
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G and G−1 are defined as in Lemma 2.2, ϕ and ϕ−1 are defined as in Theorem 2.3, and
x4, y4 ∈R+ are chosen so that

G
[
ϕ−1(a(x, y)

)
+E(x, y)

]
+ c(x, y)

∫∞
x

∫∞
y
d(s, t)dtds∈Dom

(
G−1). (2.39)

The proof of Theorem 2.4 follows by an argument similar to that in the proof of
Theorem 2.3 with suitable modification. We omit the details here.

Theorem 2.5. Let a(x, y), c(x, y), e(x, y), w(u), ϕ(u), and ϕ′(u) be defined as in Theorem
2.3. Let b(x, y), d(x, y), and f (x, y)∈ C(R2

+,R+) and b(x, y), d(x, y) be nondecreasing in x
and non-increasing in y. If

ϕ
(
u(x, y)

)≤ a(x, y) + b(x, y)
∫ x

α
c(s, y)ϕ

(
u(s, y)

)
ds

+d(x, y)
∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds

(2.40)

for all x, y,α∈R+ with α≤ x, then

u(x, y)≤G−1
{
G
[
ϕ−1(p(x, y)a(x, y)

)
+p(x, y)E1(x, y)

]
+ p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds
}

(2.41)

for all 0≤ x ≤ x5, y5 ≤ y <∞, where

p(x, y) := 1 + b(x, y)
∫ x

α
c(s, y)exp

(∫ x

s
b(m, y)c(m, y)dm

)
ds, (2.42)

E1(x, y) := d(x, y)
∫ x

0

∫∞
y
e(s, t)dtds, (2.43)

G and G−1 are defined as in Lemma 2.2, ϕ and ϕ−1 are defined as in Theorem 2.3, and
x5, y5 ∈R+ are chosen so that

G
[
ϕ−1(p(x, y)a(x, y)

)
+ p(x, y)E1(x, y)

]
+ p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds∈Dom
(
G−1).
(2.44)

Proof. Define a function z(x, y) by

z(x, y)= a(x, y) +d(x, y)
∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds. (2.45)

Then (2.40) can be restated as

ϕ
(
u(x, y)

)≤ z(x, y) + b(x, y)
∫ x

α
c(s, y)ϕ

(
u(s, y)

)
ds. (2.46)
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Obviously, z(x, y) is nonnegative and continuous in x ∈R+. Fixing y ∈R+ in (2.46) and
using Lemma 2.1(i) we get

ϕ
(
u(x, y)

)≤ z(x, y) + b(x, y)
∫ x

α
z(s, y)c(s, y)exp

(∫ x

s
b(m, y)c(m, y)dm

)
ds. (2.47)

Since z(x, y) is nondecreasing in x ∈R+, we obtain from the last inequality that

ϕ
(
u(x, y)

)≤ z(x, y)p(x, y), (2.48)

where p(x, y) is defined by (2.42). From (2.48), we have

ϕ
(
u(x, y)

)≤ p(x, y)
(
a(x, y) +d(x, y)

∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds

)
.

(2.49)

Observe that p(x, y), a(x, y), and d(x, y) are continuous, nondecreasing in x and non-
increasing in y for x, y ∈ R+, so also are p(x, y)a(x, y) and p(x, y)d(x, y). Now apply-
ing Theorem 2.3 to (2.49), we get the desired bound for u(x, y) appeared in (2.41) di-
rectly. �

Theorem 2.6. Let u(x, y), f (x, y), e(x, y), ϕ(u), and w(u) be defined as in Theorem 2.5.
Let a(x, y), b(x, y), c(x, y), and d(x, y) be nonnegative continuous and nonincreasing in each
variable x, y ∈R+. If

ϕ
(
u(x, y)

)≤ a(x, y) + b(x, y)
∫ β

x
c(s, y)ϕ

(
u(s, y)

)
ds

+d(x, y)
∫∞
x

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds

(2.50)

for all x, y,β ∈R+ with x ≤ β, then

u(x, y)≤G−1
{
G
[
ϕ−1(p(x, y)a(x, y)

)
+p(x, y)E1(x, y)

]
+p(x, y)d(x, y)

∫∞
x

∫∞
y

f (s, t)dtds
}

(2.51)

for all x6 ≤ x <∞, y6 ≤ y <∞, where

p(x, y) := 1 + b(x, y)
∫ β

x
c(s, y)exp

(∫ s

x
b(m, y)c(m, y)dm

)
ds, (2.52)

E1(x, y) := d(x, y)
∫∞
x

∫∞
y
e(s, t)dtds, (2.53)

G, G−1, ϕ and ϕ−1 are defined as in Theorem 2.5, and x6, y6 ∈R+ are chosen so that

G
[
ϕ−1(p(x, y)a(x, y)

)
+ p(x, y)E1(x, y)

]
+ p(x, y)d(x, y)

∫∞
x

∫∞
y

f (s, t)dtds∈Dom
(
G−1).
(2.54)
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The proof of Theorem 2.6 follows by an argument similar to that in the proof of
Theorem 2.5 with suitable modification. We omit the details here.

Remark 1. By choosing suitable functions for ϕ, some interesting new Gronwall-Ou-Iang
type inequalities of two variables can be obtained from Theorems 2.5 and 2.6. For exam-
ple, the following interesting inequalities are easily obtained.

Corollary 2.7. Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), f (x, y), and w(u) be
as defined in Theorem 2.5. Let k ≥ 1 be a real number. If

uk(x, y)≤ a(x, y) + b(x, y)
∫ x

α
c(s, y)uk(s, y)ds

+d(x, y)
∫ x

0

∫∞
y
uk−1(s, t)

[
f (s, t)w

(
u(s, t)

)
+ e(s, t)

]
dtds

(2.55)

for all x, y,α∈R+ with α≤ x, then

u(x, y)≤G−1
{
G
[
p1/k(x, y)a1/k(x, y) +

1
k
p(x, y)E1(x, y)

]

+
1
k
p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds
} (2.56)

for all 0 ≤ x ≤ x7, y7 ≤ y < ∞, where G, G−1, p(x, y) and E1(x, y) are as defined in
Theorem 2.5, and x7, y7 ∈R+ are chosen so that

G
[
p1/k(x, y)a1/k(x, y) + p(x, y)E1(x, y)

]
+ p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds∈Dom
(
G−1).
(2.57)

Proof. This follows immediately from Theorem 2.5 by setting ϕ(u)= uk. �

Corollary 2.8. Let b(x, y), c(x, y), d(x, y), e(x, y), f (x, y), and w(u) be as defined in
Theorem 2.5. Let u(x, y),a(x, y)∈ C(R+,R1) and k > 0 be a real number. If

uk(x, y)≤ a(x, y) + b(x, y)
∫ x

α
c(s, y)uk(s, y)ds

+d(x, y)
∫ x

0

∫∞
y
uk(s, t)

[
f (s, t)w

(
logu(s, t)

)
+ e(s, t)

]
dtds

(2.58)

for all x, y,α∈R+ with α≤ x, then

u(x, y)≤ exp
{
G−1

[
G
(

1
k

log
(
p(x, y)a(x, y)

)
+

1
k
p(x, y)E1(x, y)

)

+
1
k
p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds
]} (2.59)
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for all 0 ≤ x ≤ x8, y8 ≤ y < ∞, where G, G−1, p(x, y) and E1(x, y) are as defined in
Theorem 2.5, and x8, y8 ∈R+ are chosen so that

G
(

1
k

log
(
p(x, y)a(x, y)

)
+

1
k
p(x, y)E1(x, y)

)

+
1
k
p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)dtds∈Dom
(
G−1).

(2.60)

Proof. Using the change of variable v(x, y)= logu(x, y), inequality (2.58) reduces to

ekv(x,y) ≤ a(x, y) + b(x, y)
∫ x

α
c(s, y)ekv(s,y)ds

+d(x, y)
∫ x

0

∫∞
y
ekv(s,t)[ f (s, t)w

(
v(s, t)

)
+ e(s, t)

]
dtds,

(2.61)

which is a special case of inequality (2.40) when ϕ(v) = exp(kv). By Theorem 2.5, the
desired inequality (2.59) follows. �

Theorem 2.9. Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), f (x, y), and ϕ(u) be as
defined in Theorem 2.5, and L,M ∈ C(R3

+,R+) satisfy

0≤ L(x, y,v)−L(x, y,w)≤M(x, y,w)(v−w) (2.62)

for all x, y,v,w ∈R+ with v ≤w. If

ϕ
(
u(x, y)

)≤ a(x, y) + b(x, y)
∫ x

α
c(s, y)ϕ

(
u(s, y)

)
ds

+d(x, y)
∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)L

(
s, t,u(s, t)

)
+ e(s, t)

]
dtds

(2.63)

for all x, y,α∈R+ with α≤ x, then

u(x, y)≤�1(x, y) + p(x, y)d(x, y)�1(x, y)exp
(
�1(x, y)

)
(2.64)

for all x, y ∈R+, where

�1(x, y) := ϕ−1(p(x, y)a(x, y)
)

+ p(x, y)E1(x, y),

�1(x, y) :=
∫ x

0

∫∞
y

f (s, t)L
[
s, t,�1(s, t)

]
dtds,

�1(x, y) :=
∫ x

0

∫∞
y

f (s, t)p(s, t)d(s, t)M
[
s, t,�1(s, t)

]
dtds,

(2.65)

and p(x, y), E1(x, y) are defined in (2.42), (2.43), respectively.
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Proof. By similar arguments as those used in the proof of Theorem 2.5, applying
Lemma 2.1(i) to (2.63) we get

ϕ
(
u(x, y)

)≤ p(x, y)a(x, y)

+ p(x, y)d(x, y)
∫ x

0

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)L

(
s, t,u(s, t)

)
+ e(s, t)

]
dtds

(2.66)

for all x, y ∈R+.
Defining a nonnegative continuous function z(x, y) as the right-hand side of (2.66),

then using similar procedures as in the proof of Theorem 2.3, we can derive from (2.66)
that

u(x, y)≤ ϕ−1(z(x, y)
)
,

ϕ−1(z(x, y)
)≤�1(x, y) + p(x, y)d(x, y)

∫ x

0

∫∞
y

f (s, t)L
[
s, t,ϕ−1(z(s, t)

)]
dtds

(2.67)

for all x, y ∈R+, where �1(x, y) is defined in (2.65).
Setting

ξ(x, y)=
∫ x

0

∫∞
y

f (s, t)L
[
s, t,ϕ−1(z(s, t)

)]
dtds, (2.68)

then from the last inequality we have

ϕ−1(z(x, y)
)≤�1(x, y) + p(x, y)d(x, y)ξ(x, y) (2.69)

for all x, y ∈R+. Since L(x, y,v) is nondecreasing with respect to v for fixed x, y, by (2.68)
and (2.69) with condition (2.62), we obtain

ξ(x, y)≤
∫ x

0

∫∞
y

f (s, t)L
[
s, t,�1(s, t) + p(s, t)d(s, t)ξ(s, t)

]
dtds

≤
∫ x

0

∫∞
y

f (s, t)L
[
s, t,�1(s, t)

]
dtds

+
∫ x

0

∫∞
y

f (s, t)p(s, t)d(s, t)M
[
s, t,�1(s, t)

]
ξ(s, t)dtds.

(2.70)

Applying Lemma 2.2(i) (the case when w(u) = u, c(x, y) ≡ 1) to the last inequality we
obtain

ξ(x, y)≤
(∫ x

0

∫∞
y

f (s, t)L
[
s, t,�1(s, t)

]
dtds

)
·

exp
(∫ x

0

∫∞
y

f (s, t)p(s, t)d(s, t)M
[
s, t,�1(s, t)

]
dtds

)

=�1(x, y)exp
(
�1(x, y)

)
,

(2.71)

where �1(x, y) and �1(x, y) are defined in (2.65). The required inequality (2.64) now
follows from (2.67), (2.69) and the last inequality. �
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Theorem 2.10. Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y), f (x, y), and ϕ(u) be as defined
in Theorem 2.6, and L(x, y,v) and M(x, y,v) as defined in Theorem 2.9. If

ϕ
(
u(x, y)

)≤ a(x, y) + b(x, y)
∫ β

x
c(s, y)ϕ

(
u(s, y)

)
ds

+d(x, y)
∫∞
x

∫∞
y
ϕ′
(
u(s, t)

)[
f (s, t)L

(
s, t,u(s, t)

)
+ e(s, t)

]
dtds

(2.72)

for all β,x, y ∈R+ with x ≤ β, then

u(x, y)≤�1(x, y) + p(x, y)d(x, y)�1(x, y)exp
(
�1(x, y)

)
(2.73)

for all x, y ∈R+, where

�1(x, y) := ϕ−1(p(x, y)a(x, y)
)

+ p(x, y)E1(x, y),

�1(x, y) :=
∫∞
x

∫∞
y

f (s, t)L
[
s, t,�1(s, t)

]
dtds,

�1(x, y) :=
∫∞
x

∫∞
y

f (s, t)p(s, t)d(s, t)M
[
s, t,�1(s, t)

]
dtds,

(2.74)

and p(x, y), E1(x, y) are defined in (2.52), (2.53), respectively.

The proof of Theorem 2.10 follows by an argument similar to that in the proof of
Theorem 2.9 with suitable modification. We omit the details here.

Remark 2. As in Corollaries 2.7 and 2.8, other new Gronwall-Ou-Iang type integral in-
equalities of two variables can be obtained from Theorems 2.9 and 2.10 by choosing suit-
able functions for ϕ. Details are omitted here.

3. Applications

(a) Consider the partial differential equation

D1D2u
�(x, y)= h1

(
x, y,u(x, y)

)
+ r(x, y), (3.1)

u�(x,∞)= σ∞(x), u�(0, y)= τ(y), u�(0,∞)= k, (3.2)

where h1 ∈ C(R2
+×R,R), r ∈ C(R2

+,R), σ∞, τ ∈ C(R+,R+), � ≥ 1 and k are real constants.
Assume that

∣∣h1(x, y,u)
∣∣≤ |u|�−1(d(x, y)w

(|u|)+ e(x, y)
)
,∣∣σ∞(x) + τ(y)− k

∣∣≤ a(x, y),
(3.3)

where a(x, y), d(x, y), e(x, y) and w(u) are defined as in Theorem 2.3. If u(x, y) is a solu-
tion of (3.1) with condition (3.2), then it can be written as (see [1, page 80]):

u�(x, y)= σ∞(x) + τ(y)− k−
∫ x

0

∫∞
y
r(s, t)dtds−

∫ x

0

∫∞
y
h1
(
s, t,u(s, t)

)
dtds (3.4)
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for all x, y ∈R+. Applying (3.3) to (3.4), we get

∣∣u(x, y)
∣∣� ≤ a(x, y) +

∫ x

0

∫∞
y

∣∣r(s, t)
∣∣dtds

+
∫ x

0

∫∞
y

∣∣u(s, t)
∣∣�−1[

d(s, t)w
(∣∣u(s, t)

∣∣)+ e(s, t)
]
dtds

(3.5)

for all x, y ∈R+. An application of Theorem 2.3 to (3.5) yields

u(x, y)≤G−1
{
G
[(

a(x, y) +
∫ x

0

∫∞
y
r(s, t)dtds

)1/�

+E�(x, y)
]

+
1
�

∫ x

0

∫∞
y
d(s, t)dtds

}

(3.6)

for all 0≤ x ≤ x̃1, ỹ1 ≤ y <∞, where

E�(x, y)= 1
�

∫ x

0

∫∞
y
e(s, t)dtds, (3.7)

G and G−1 are defined as in Theorem 2.3, and x̃1, ỹ1 ∈R+ are chosen so that the quantity
inside the curly brackets in (3.6) is in the range of G.

(b) Consider the partial differential equation

D1D2u
�(x, y)= h2

(
x, y,u(x, y), logu(x, y)

)
+D2g

(
x, y,u(x, y)

)
, (3.8)

u�(x,∞)= σ∞(x), u�(0, y)= τ(y), u�(0,∞)= k, (3.9)

where h2 ∈ C(R3
+×R,R), g ∈ C(R3

+,R), σ∞,τ ∈ C(R+,R+), �,k > 0 are constants. Assume
that

∣∣h2(x, y,u, logu)
∣∣≤ u�

[
f (x, y)w

(| logu|)+ e(x, y)
]
,

∣∣g(x, y,u)
∣∣≤ c(x, y)u� ,

∣∣σ∞(x) + τ(y)− k−
∫ x

0
g
(
s,∞,σ∞(s)

)
ds
∣∣≤ a(x, y)

(3.10)

for all x, y ∈ R+ and all u > 0, where a(x, y), c(x, y), e(x, y), f (x, y), and w(u) are as de-
fined in Corollary 2.8. If u(x, y) ∈ C(R+,R1) is a solution of (3.8) with condition (3.9),
then it can be written as (see [1, page 80]):

u�(x, y)= σ∞(x) + τ(y)− k−
∫ x

0
g
(
s,∞,σ∞(s)

)
ds

+
∫ x

0
g
(
s, y,u(s, y)

)
ds−

∫ x

0

∫∞
y
h2
(
s, t,u(s, t), logu(s, t)

)
dtds

(3.11)

for all x, y ∈R+.
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Applying (3.10) to (3.11), we obtain

u�(x, y)≤ a(x, y) +
∫ x

0
c(s, y)u�(s, y)ds

+
∫ x

0

∫∞
y
u�(s, t)

[
f (s, t)w

(
logu(s, t)

)
+ e(s, t)

]
dtds

(3.12)

for all x, y ∈R+. An application of Corollary 2.8 to (3.12) yields

u(x, y)≤ exp
(
G−1

{
G
[

1
�

log
(
p∗(x, y)a(x, y)

)
+E�(x, y)

]

+
1
�
p∗(x, y)

∫ x

0

∫∞
y

f (s, t)dtds
}) (3.13)

for all 0≤ x ≤ x̃2, ỹ2 ≤ y <∞, where

p∗(x, y)= 1 +
∫ x

0
c(s, y)exp

(∫ x

s
c(m, y)dm

)
ds, (3.14)

G, G−1 are as defined in Corollary 2.8, E�(x, y) is as defined in Application (a) above, and
x̃2, ỹ2 ∈ R+ are chosen so that the quantity inside the curly brackets in (3.13) is in the
range of G.
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