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Geometric Quantization, Parallel Transport

and the Fourier Transform

William D. Kirwin1 and Siye Wu2

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, USA

Abstract

In quantum mechanics, the momentum space and position space wave functions are related by

the Fourier transform. We investigate how the Fourier transform arises in the context of geometric

quantization. We consider a Hilbert space bundle H over the space J of compatible complex structures

on a symplectic vector space. This bundle is equipped with a projectively flat connection. We show

that parallel transport along a geodesic in the bundle H → J is a rescaled orthogonal projection or

Bogoliubov transformation. We then construct the kernel for the integral parallel transport operator.

Finally, by extending geodesics to the boundary (for which the metaplectic correction is essential), we

obtain the Segal-Bargmann and Fourier transforms as parallel transport in suitable limits.
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1. Introduction

In quantum mechanics, the position and momentum space wave functions are related by the Fourier

transform. In this paper we examine how this relationship arises in the context of geometric quantization.

We provide a geometric interpretation of the Fourier transform as parallel transport in a vector bundle

of infinite rank. In fact, this consideration leads to a smoothly parametrized family of transforms which

includes the Fourier transform, the Segal-Bargmann transform, and the Bogoliubov transform.

Quantization of a symplectic manifold (M,ω) requires an Hermitian line bundle ℓ → M with a com-

patible connection such that the curvature is ω√
−1

. ℓ is called a pre-quantum line bundle and it exists if

and only if the de Rham class [ ω
2π ] is integral. The pre-quantum Hilbert space H0 consists of sections of ℓ

which are square-integrable with respect to the Liouville volume form on M . As is well-known, H0 is too

large for the purpose of quantization. The additional structure we need is an almost complex structure

compatible with ω. The space J of such J is connected and contractible. Each J ∈ J defines a quantum

Hilbert space HJ of (square-integrable) J-holomorphic sections of ℓ. They form a vector bundle H of

Hilbert spaces over J, provided there is no jump of dimHJ as J varies.

To compare HJ with different J , we need a connection on H → J. Given J, J ′ ∈ J and a path

connecting them, parallel transport in H is a unitary operator from HJ to HJ′ . If the connection is

1Current address: Department of Mathematics and Statistics, Utah State University, Logan, UT 84322-3900, USA; E-mail

addresses: kirwin@math.usu.edu

2E-mail addresses: swu@euclid.colorado.edu
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projectively flat, the holonomy is U(1), and parallel transports along different paths from J to J ′ differ by

at most a phase. Since a quantum state is actually represented by a ray in the Hilbert space, the “physics”

obtained is thus independent of the choice of J . Unfortunately such a connection does not exist in general

[5]. We will henceforth restrict our attention to a symplectic vector space (V, ω). We also restrict J to the

space of linear complex structures on V compatible with ω. In this case, a projectively flat connection on

H → J is constructed in [1], as a finite dimensional model for studying Chern-Simons gauge theory.

In this paper, we study parallel transport in the bundle H along the geodesics in J, when the symplectic

manifold is a vector space. The space J can be identified with the Siegel upper-half space, which has a

natural Kähler metric. We show that parallel transport along a geodesic in the Hilbert space bundle is

a rescaled orthogonal projection. Hence parallel transport agrees with the Bogoliubov transformation in

[14,15] and the intertwining operators in [10] and [8]. Part of the boundary of J (as a bounded domain)

consists of real Langrangian subspaces L of (V, ω). Each L is a real polarization and also defines a quantum

Hilbert space. By extending geodesics to the boundary (for which the metaplectic correction is essential),

we obtain the Segal-Bargmann and Fourier transforms as parallel transport in suitable limits.

The rest of the paper is organized as follows. In Section 2, we recall the identification of J with the

Siegel upper-half space and describe the connection and the resulting geometry of the bundle of quantum

Hilbert spaces over J. We also incorporate the metaplectic correction. In Section 3, we study parallel

transport in H along geodesics in J. The condition of parallel transport is a partial differential equation.

By the Sp(V, ω) symmetry, it suffices to consider a special class of geodesics so that the equation can be

solved explicitly. We then show that the parallel transport is actually a rescaled orthogonal projection

or the Bogoliubov transformation. Hence the integral kernel for the equation of parallel transport is the

Bergman reproducing kernel, up to a positive factor. We then show that by extending a geodesic in

one direction to infinity, the parallel transport becomes the Segal-Bargmann transform. Extending both

ends of a geodesic to infinity, the parallel transport converges to the Fourier transform. Since a real

Lagrangian space is on the boundary of J, the quantum Hilbert space associated to it is not inside the

bundle H → J. We show that with the metaplectic correction, the limit holds in the sense of almost

everywhere convergence as sections over V . Other ways to formulate the limit are also established.

Finally, we would like to mention some recent related work. Let K be a Lie group of compact type,

that is, K is locally isomorphic to a compact Lie group. The cotangent bundle T ∗K is naturally symplectic

and, being diffeomorphic to the complexification KC, has a compatible complex structure. In [6], Hall

constructed a generalized Segal-Bargmann transform between the vertically polarized and Kähler polarized

quantum Hilbert spaces. The pairing is a unitary operator and a rescaled projection, as in [14,15] for the

flat case. In [4], the authors study parallel transport in the quantum Hilbert space bundle over a 1-

parameter family of Kähler polarizations on T ∗K. As in the flat case [1], the parallel transport equation

is given by a holomorphic version of the heat operator, which also appeared in [6]. It would be interesting

to explore the projective flatness of the quantum Hilbert space bundle over a larger class of Kähler

polarizations on T ∗K.

2. Geometry of the Hilbert Space Bundle

2.1 Complex polarizations and the metaplectic correction

Let V be a real vector space of dimension 2n equipped with a constant symplectic form ω (i.e., a nondegen-

erate, closed 2-form). There exist linear coordinates {xi, yi}i=1,...,n or tx = (x1 · · · xn), ty = (y1 · · · yn)

on V such that

ω =

n
∑

i=1

dxi ∧ dyi = tdx ∧ dy.
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A complex structure J ∈ End(V ) is compatible with the symplectic form ω if ω(J · , J · ) = ω( · , · ) and

ω( · , J · ) > 0. Given such a J , the complexification of V decomposes as

V C = V
(1,0)
J ⊕ V

(0,1)
J ,

where V
(1,0)
J = {X ∈ V C | JX =

√
−1X} and V

(0,1)
J = V

(1,0)
J . Let J be the set of all compatible complex

structures on V . J can be identified, as follows, with the Siegel upper half-space

Hn = {Ω ∈Mn(C) | tΩ = Ω , ImΩ > 0} ⊂ C
1
2n(n+1).

We associate a compatible complex structure J ∈ J to a point Ω ∈ Hn so that V
(1,0)
J is the graph of Ω .

Equivalently, the complex structure can be written in terms of Ω = Ω1 +
√
−1Ω2 as

J =

(

Ω1Ω
−1
2 − Ω2 − Ω1Ω

−1
2 Ω1

Ω−1
2 − Ω−1

2 Ω1

)

.

Thus J is identified with the positive Lagrangian Grassmannian. Real Lagrangian subspaces correspond

to certain points on the boundary of Hn. For any Ω ∈ Hn, we choose the corresponding holomorphic

coordinates on V as

zΩ = (2Ω2)
− 1

2 (x − Ω̄y). (2.1)

The matrix factor (2Ω2)
− 1

2 is chosen so that the symplectic form is

ω =
√
−1 tdzΩ ∧ dz̄Ω .

We will drop the subscript Ω when there is no danger of confusion.

There is a pre-quantum line bundle ℓ → V with a connection whose curvature is ω√
−1

. We use the

symplectic potential τ = 1
2

∑n
i=1 x

idyi − yidxi to trivialize ℓ → V . That is, the covariant derivative of a

section s ∈ Γ (ℓ) along X is

∇Xs = X(s) −
√
−1 (ιXτ)s,

if s is identified with a function on V . The pre-quantum Hilbert space H0 consists of square-integrable

sections of ℓ with respect to the Liouville volume form εω = ωn

(2π)nn! . Polarized sections of ℓ are those

which are holomorphic, i.e.,

∇z̄ s = 0.

Using the complex coordinates (2.1), the covariant derivatives in ℓ are

∇z =
∂

∂z
− 1

2
z̄, ∇z̄ =

∂

∂z̄
+

1

2
z. (2.2)

Hence, a polarized section ψ ∈ HJ can be written as

ψ = φ(z) e−
1
2 |z|

2

for some entire function φ. Let HJ ⊂ H0 denote the space of square integrable polarized sections with

respect to the complex structure J . This is the quantum Hilbert space. We then have a quantum Hilbert

space bundle H → J with fiber HJ over J . There is an Hermitian structure on this bundle given by

〈ψ1, ψ2〉 =

∫

V

ψ̄1ψ2 εω (2.3)

for ψ1, ψ2 ∈ HJ . Here and below, when J is parameterized by Ω ∈ Hn, the subscript J can be replaced

by Ω . For example, we write HΩ = HJ .
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Since J is the positive Lagrangian Grassmannian, there is a natural canonical bundle L → J with

fiber V
(1,0)
J over J . Let K → J be the dual determinant bundle with fiber KJ =

∧n
(V

(1,0)
J )∗. Since J is

contractible, there is a unique (up to equivalence) square root bundle
√

K → J such that
√

K⊗
√

K = K.

This square root bundle is known as the bundle of half-forms. We define the corrected quantum Hilbert

space bundle Ĥ → J as Ĥ = H⊗
√

K. The fiber ĤJ = HJ ⊗
√

KJ is called the corrected quantum Hilbert

space. Including the bundle of half-forms is known as the metaplectic correction.

2.2 Symplectic and metaplectic group actions

Given a vector space V with a symplectic form ω, the symplectic group Sp(V, ω) is the set of linear

transformations on V preserving ω. Upon choosing a set of linear symplectic coordinates {xi, yi}i=1,...,n,

the group Sp(V, ω) is isomorphic to

Sp(2n,R) =
{

(

A B
C D

)

∣

∣

∣

tAC = tCA, tBD = tDB, tAD − tCB = In

}

.

The group Sp(V, ω) acts on the set J of compatible complex structures by g : J 7→ gJg−1. The correspond-

ing action on positive complex Lagrangian subspaces is g : V
(1,0)
J 7→ gV

(1,0)
J = V

(1,0)
gJg−1 . Identifying J with

the Siegel upper half-space Hn, the action of Sp(V, ω) on J becomes the fractional linear transformation

on Hn, i.e.,

g =
(

A B
C D

)

: Ω 7→ g · Ω = (AΩ +B)(CΩ +D)−1. (2.4)

The following results, which will be used in the sequel, can be verified by straightforward calculations.

Lemma 2.1 Suppose g =
(

A B
C D

)

∈ Sp(2n,R) and Ω = g ·Ω0,Ω
′ = g ·Ω ′

0 ∈ Hn. Put ΞΩΩ ′ = Ω−Ω̄
′

2
√
−1

. Then

1. Ω − Ω̄ ′ = t(CΩ ′
0 +D)−1(Ω0 − Ω̄ ′

0)(CΩ0 +D)−1. (2.5)

In particular,

ImΩ = t(CΩ0 +D)−1ImΩ0 (CΩ0 +D)−1.

2. (Ω−1
2 − Ξ−1

ΩΩ ′)Ω2 = (Ω − Ω̄ ′)−1(Ω̄ − Ω̄ ′) = (CΩ0 +D)(Ω0 − Ω̄ ′
0)

−1(Ω̄0 − Ω̄ ′
0)(CΩ0 +D)−1; (2.6)

Ω ′
2(Ω

′
2
−1 − Ξ−1

ΩΩ ′) = (Ω − Ω ′)(Ω − Ω̄ ′)−1 = t(CΩ ′
0 +D)−1(Ω0 − Ω ′

0)(Ω0 − Ω̄ ′
0)

−1t(CΩ ′
0 +D). (2.7)

The action of Sp(V, ω) on V lifts to the pre-quantum line bundle ℓ preserving the connection. Con-

sequently, the group Sp(V, ω) acts on the pre-quantum Hilbert space H0. In fact, since the symplectic

potential τ is preserved by Sp(2n,R), under the corresponding trivialization ℓ ∼= V × C, the action of

g ∈ Sp(2n,R) is

g · (v, ζ) = (gv, ζ), v ∈ V ∼= R
2n, ζ ∈ C,

and that on s ∈ H0 ∼= L2(V ) ⊗ C is

(g · s)(v) = s(g−1v), v ∈ V.

The action of Sp(V, ω) lifts to the Hilbert space bundle H → J covering the action on J. Since Sp(V, ω)

preserves the connection on ℓ, the action g : HJ → HgJg−1 is a unitary isomorphism for any g ∈ Sp(V, ω).

The symplectic group Sp(V, ω) also acts on the vector bundle L → J and hence on the line bundle

K → J. In fact the choice of coordinates (2.1) provides a global unitary section Ω 7→ dnzΩ of K. The

transformation of the complex coordinates

g =
(

A B
C D

)

: zΩ 7→ (g−1)∗zΩ = Ω
− 1

2
2

t(CΩ +D)(g · Ω)
1
2
2 zg·Ω = Ω

1
2
2 (CΩ +D)−1(g · Ω)

− 1
2

2 zg·Ω , (2.8)

where (g · Ω)2 = Im(g · Ω), is unitary, and so is that of the section dnz

g =
(

A B
C D

)

: dnzΩ 7→ (g−1)∗dnzΩ =
det (CΩ +D)

| det(CΩ +D)|d
nzg·Ω . (2.9)
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This action does not lift to
√

K, but the double covering group of Sp(V, ω) does act on
√

K. Since Sp(V, ω)

is connected and π1(Sp(V, ω)) ∼= Z, there is a unique (up to isomorphism) connected double covering group

Mp(V, ω), called the metaplectic group. The double covering group of Sp(2n,R) is denoted by Mp(2n,R).

We have the following well-known result (see for example [9]):

Proposition 2.2 Mp(V, ω) is isomorphic to the group whose elements are pairs (σ, g), where σ is a

bundle isomorphism of
√

K → J covering the action of g ∈ Sp(V, ω) on J. That is, we have a commutative

diagram √
K

σ−→
√

K

↓ ↓
J

g−→ J

Consequently, the metaplectic group Mp(V, ω) acts on
√

K and hence acts on the corrected quantum

Hilbert space bundle Ĥ = H ⊗
√

K. Given g =
(

A B
C D

)

∈ Sp(2n,R), the action of a lifted element in

Mp(2n,R) is

ψ ⊗
√

dnzΩ ∈ ĤΩ 7→ det (CΩ +D)
1
2

| det(CΩ +D)| 12
ψ ◦ g−1 ⊗

√

dnzg·Ω ∈ Ĥg·Ω , (2.10)

where the square root det (CΩ +D)
1
2 depends on the lift of g to Mp(2n,R).

2.3 Projectively flat and flat connections

First, we describe a projectively flat connection on H → J [1]. Combining this and the connection on√
K → J, we obtain a flat connection on Ĥ → J [15, §10.2].

Since H → J is a subbundle of the product bundle J × H0 → J, the trivial connection on the latter

projects to a connection on H. This connection is [1]

∇H = δ +
1

4
(δJ ω−1)ij ∇zi ∇zj , (2.11)

where δ is the exterior differential on J. The second term is a 1-form on J valued in the set of skew-adjoint

operators on HJ . Let PJ = 1
2 (1 −

√
−1J) : V C → V

(1,0)
J be the projection with respect to the Hermitian

form on V C defined by ω and J . Then the curvature of the above connection is [1]

FH = −1

8
Tr(PJδJ ∧ δJPJ ) idHJ

. (2.12)

So the connection is projectively flat [1]. Henceforth we omit the identity operator.

The connection described above blows up at the boundary of J. We will be interested in extending

geodesics in J to the boundary. In order to parallel transport along the extended geodesics in the next

section, we must employ the metaplectic correction.

The product bundle V C × J → J has an Hermitian structure defined by ω and J . So a connection on

the sub-bundle L → J is given by the orthogonal projection of the trivial connection. Its curvature is

FL = PJ δ(PJδPJ) = PJ δPJ ∧ δPJ PJ = −1

4
PJ δJ ∧ δJ PJ . (2.13)

Proposition 2.3 ([15, §10.2]) The induced connection on the corrected quantum Hilbert space bundle

Ĥ → J is flat.

Proof. The connection on
√

K is F
√

K = − 1
2TrFL. So by (2.12) and (2.13),

FH + F
√

K = 0.

5



The result was proved in [15, §10.2] using cocycles. 2

The identification J = Hn provides J with a convenient set of coordinates. Using the variation of J ,

δJ =

√
−1

2

(

Ω̄

In

)

Ω−1
2 δΩ Ω−1

2 (In,−Ω̄) −
√
−1

2

(

Ω

In

)

Ω−1
2 δΩ̄ Ω−1

2 (In,−Ω),

the connection (2.11) becomes

∇H = δ −
√
−1

2
t∇zΩ

− 1
2

2 δΩ̄ Ω
− 1

2
2 ∇z. (2.14)

The curvatures (2.12) is

FH =
1

8
Tr(Ω−1

2 δΩ ∧ Ω−1
2 δΩ̄). (2.15)

The latter is proportional to the standard Kähler form on Hn. On the other hand, using the (unitary)

global section
√
dnz, the connection on

√
K is given by the 1-form (for any n ≥ 1)

A
√

K =
√
−1
4 Tr(Ω−1

2 δΩ1). (2.16)

Its curvature is the negative of (2.15).

The Hilbert space HJ is the Fock space of a harmonic oscillator with Hamiltonian H = |z|2. In the

case n = 1, the parameter Ω is τ = τ1 +
√
−1 τ2 in the upper half-plane. A unitary basis for HJ is

{|k〉 = zk

√
k!
e−

1
2 |z|

2}k∈N. The vector |0〉 is the vacuum state and |k〉 (k ≥ 1) are the excited states. Such a

basis provides a global unitary frame for the bundle H. Each |k〉, regarded as a function of τ valued in

H0, has the exterior derivative

δ|k〉 =

√
−1

4τ2

[(

k|k〉 −
√

(k + 1)(k + 2)|k + 2〉
)

δτ +
(

k|k〉 − 2z̄
√
k|k − 1〉 + z̄2|k〉

)

δτ̄
]

.

The connection is given by an infinite skew-Hermitian matrix valued 1-form

AH

kl = 〈k|δ|l〉 =

√
−1

4τ2

[(

k δkl −
√

k(k − 1) δk,l+2

)

δτ +
(

l δkl −
√

l(l− 1) δk+2,l

)

δτ̄
]

, (2.17)

while the matrix of the curvature 2-form is, as expected,

〈k|FH|l〉 =
δτ ∧ δτ̄

8τ2
2

δkl. (2.18)

3. Parallel Transport along the Geodesics

3.1 Solutions to the equation of parallel transport

The Siegel upper half-space Hn has a non-positively curved Kähler metric

ds2 = Tr(Ω−1
2 δΩ Ω−1

2 δΩ̄),

which is invariant under the action of Sp(2n,R). We study parallel transport in the bundles H and Ĥ

along the geodesics in Hn. Let Ω ,Ω ′ ∈ Hn represent J, J ′ ∈ J, respectively. The parallel transport in the

bundle H along the unique geodesic from Ω to Ω ′ is a unitary operator, and so is that in Ĥ. We denote

them by UJ′J = UΩ ′Ω : HJ → HJ′ and ÛJ′J = ÛΩ ′Ω : ĤJ → ĤJ′ , respectively. The generating function

for the basis of HΩ is a coherent state or a principal vector [2]

cα(zΩ) = exp(tᾱzΩ − 1
2 |zΩ |2), (3.1)

where α ∈ Cn. We wish to find UΩ ′Ω cα ∈ HΩ ′ and its metaplectic correction.

For any diagonal matrix Λ = diag[λ1, . . . , λn] ≥ 0, the curve γΛ : R → Hn defined by γΛ(t) =
√
−1 e2Λt

is a geodesic in Hn.
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Lemma 3.1 ([11]) For any geodesic γ : R → Hn, there exist g ∈ Sp(2n,R) and a diagonal matrix Λ ≥ 0

such that γ = g · γΛ.

We first study parallel transport along the geodesic γΛ; the latter determines a one-parameter family

of complex structures Jt, whose complex coordinates are zt = 1√
2
(e−Λtx +

√
−1 eΛty). The equation of

parallel transport of a family of polarized sections ψt ∈ Γ (γ∗
Λ
H) is

(∂t − 1
2

t∇zt
Λ∇zt

)ψt = 0. (3.2)

Proposition 3.2 The parallel transport of cα(z0) along γΛ from Ω0 =
√
−1 In to Ωt =

√
−1 e2Λt is given

by

(UΩtΩ0 cα)(z) = (det sechΛt)
1
2 exp

[

1

2

(

ᾱ

z

)t (

tanhΛt sechΛt

sechΛt −tanhΛt

)(

ᾱ

z

)

− 1

2
|z|2
]

. (3.3)

Proof. Since the connection 1-form − 1
2

t∇zΛ∇z is a sum of diagonal terms, we can assume n = 1; the

general case is similar. We can also set λ1 = 1 by a rescaling of t. Let ψt be the parallel transport of cα.

Write z = zt and ψt = φ(t, z)e−
1
2 |z|

2

. Then φ(t, z) is an entire function in z (for each t) satisfying

(

∂

∂t
− 1

2

∂2

∂z2
+

1

2
z2

)

φ(t, z) = 0, φ(0, z) = eᾱz.

Here we have used (2.2) and d
dtz = −z̄. Set φ(t, z) = ef(t,z). Then f(t, z) satisfies

ft − 1
2fzz − 1

2f
2
z + 1

2z
2 = 0, f(0, z) = ᾱz.

If we look for a solution of the form f(t, z) = 1
2p(t)z

2 + q(t)z + 1
2r(t), then p, q, r satisfy a set of ordinary

differential equations

pt = p2 − 1, qt = pq, rt = p+ q2

with the initial conditions p(0) = r(0) = 0, q(0) = ᾱ. The solutions are p(t) = − tanh t, q(t) = ᾱ sech t,

r(t) = ln sech t+ ᾱ2 tanh t, and hence

φ(t, z) =
√

sech t exp
(

ᾱz sech t+ 1
2 (ᾱ2 − z2) tanh t

)

.

The result follows from the uniqueness of parallel transport. 2

Proposition 3.2 enables us to calculate the parallel transport of any basis vector in HJ0 . In particular,

the parallel transport of the vacuum is no longer the vacuum in a new polarization; it is a linear combination

of states with an even number of excitations. We list the parallel transport of a few states with small

excitation numbers in the case n = 1, λ1 = 1:













1

z0
z2
0

...













e−
1
2 |z0|2 7→

√
sech t













1

zt sech t

z2
t sech2t+ tanh t

...













e−
1
2 z2

t tanh t− 1
2 |zt|2 . (3.4)

Next we study parallel transport in the half-form bundle
√

K. As noted earlier, the complex coordinates

corresponding to the point γΛ(t) ∈ Hn are zt = 1√
2
(e−Λtx+

√
−1 eΛty). As t varies, the complex coordinates

change by d
dtzt = −Λz̄t, whose projection to V

(1,0)
γΛ(t) is 0. Consequently, dzt is a parallel section of γ∗

Λ
L∗

and
√
dnzt is a parallel section of γ∗

Λ
K. The latter is also a consequence of (2.16). Hence the parallel

transport of cα ⊗
√
dnz0 is UΩtΩ0 cα ⊗

√
dnzt.

We now turn to parallel transport along a general geodesic.
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Theorem 3.3 Let Ω ,Ω ′ ∈ Hn and let γ be the unique geodesic such that γ(0) = Ω and γ(1) = Ω ′. Then

1. The parallel transport of cα(zΩ) along γ is

(UΩ′Ω cα)(z′
Ω′) =

(detΩ2)
1
4 (detΩ ′

2)
1
4

|detΞΩΩ′ | 12
exp





1

2

(

ᾱ

z′
Ω′

)t (

In − Ω
1
2
2 Ξ−1

ΩΩ′Ω
1
2
2 Ω

1
2
2 Ξ−1

ΩΩ′Ω
′
2

1
2

Ω ′
2

1
2 Ξ−1

ΩΩ′Ω
1
2
2 In − Ω ′

2

1
2 Ξ−1

ΩΩ′Ω ′
2

1
2

)(

ᾱ

z′
Ω′

)

− 1

2
|z′

Ω′ |2


 .

(3.5)

2. The parallel transport of
√
dnzΩ along γ is

(det ΞΩ ′Ω)
1
2

| det ΞΩ ′Ω |
1
2

√

dnzΩ ′ =
| detΞΩΩ ′ | 12
(detΞΩΩ ′)

1
2

√

dnzΩ ′ . (3.6)

3. The parallel transport of cα(zΩ) ⊗
√
dnzΩ along γ is the tensor product of (3.5) and (3.6).

Proof. Let g =
(

A B
C D

)

and Λ be given by Lemma 3.1 such that γ = g · γΛ. Then Ω = g · Ω0,Ω
′ =

g · Ω ′
0 ∈ Hn, where Ω0 =

√
−1 In and Ω ′

0 =
√
−1 e2ΛIn.

1. We first map cα(zΩ) = exp(tᾱzΩ − 1
2 |zΩ |2) in HΩ by g−1 to cα0(z0) = exp(tᾱ0z0 − 1

2 |z0|2) in HΩ0 . By

the unitarity of (2.8), we have |z0|2 = |zΩ |2 and

α0 = t(CΩ0 +D)Ω
1
2
2 α = (CΩ0 +D)−1Ω

− 1
2

2 α.

The parallel transport of cα0(z0) in HΩ0 along γΛ is (UΩ ′
0Ω0

cα0)(z
′
0) in HΩ ′

0
given by (3.3). Since the

connection is invariant under Sp(2n,R), the action of g on the latter is (UΩ ′Ω cα)(z′
Ω ′) in HΩ ′ . Here

z′0 = e−Λ t(CΩ ′
0 +D)Ω ′

2

1
2 z′Ω ′ = eΛ(CΩ ′

0 +D)−1Ω ′
2
− 1

2 z′Ω ′ .

Using these identities and Lemma 2.1, we get

det(coshΛt) = detΞΩ0Ω
′
0
det(ImΩ ′

0)
− 1

2 = | detΞΩΩ ′ |(detΩ2)
− 1

2 (detΩ ′
2)

− 1
2 ,

tᾱ0 sechΛt z′0 = tᾱΩ
1
2
2 (CΩ0 +D)Ξ−1

Ω0Ω
′
0

t(CΩ0 +D)Ω ′
2

1
2 z′

Ω ′ = tᾱΩ
1
2
2 Ξ−1

ΩΩ ′Ω
′
2

1
2 z′

Ω ′ ,

tᾱ0 tanhΛt ᾱ0 = tᾱΩ
1
2
2 (CΩ0 +D)(Ω0 − Ω̄ ′

0)
−1(Ω̄0 − Ω̄ ′

0)(CΩ0 +D)−1Ω
− 1

2
2 ᾱ = tᾱ(In − Ω

1
2
2 Ξ−1

ΩΩ ′Ω
1
2
2 )ᾱ,

and

−tz′0 tanhΛt z′0 = tz′Ω ′Ω ′
2
− 1

2 t(CΩ ′
0+D)−1(Ω0−Ω ′

0)(Ω0−Ω̄ ′
0)

−1t(CΩ ′
0 +D)Ω ′

2

1
2 z′Ω ′ = tz′Ω ′(In−Ω ′

2

1
2 Ξ−1

ΩΩ ′Ω
′
2

1
2 )z′Ω ′ .

From these identities and from (3.3), the result follows.

2. Since the connection on
√

K is invariant under Mp(2n,R), we again map
√
dnzΩ by g−1 to Ω0, parallel

transport it along γΛ to Ω ′
0, and map the result to Ω ′ by g. By (2.9), the phase accumulated in these

steps is
(

det(CΩ0 +D) det (CΩ ′
0 +D)

| det(CΩ0 +D) det(CΩ ′
0 +D)|

)
1
2

,

which is equal to those in (3.6) by taking the determinant of (2.5). 2

3.2 Projections, Bogoliubov transformations and the integral kernel of parallel transport

Given any two compatible complex structures J, J ′ ∈ J, there is an orthogonal projection PJ′J : HJ → HJ′

inside the pre-quantum Hilbert space H0. In [14] and [15, §9.9], Woodhouse showed that up to a scalar

multiplication, this projection is a unitary operator, the Bogoliubov transformation. On the other hand,

parallel transport in the bundle H → J along the geodesic from J to J ′ defines a manifestly unitary

operator from HJ to HJ′ . The rescaled projection of the vacuum state calculated in [15, §9.9] coincides

with (3.3) when α = 0. We show that this is true for all states.
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Theorem 3.4 For any J, J ′ ∈ J, the parallel transport UJ′J in H along the (unique) geodesic from J to

J ′ is the map α(J, J ′)PJ′J : HJ → HJ′ , where

α(J, J ′) =
(

det J+J ′

2

)
1
4

=
(

det
√
−1 (PJ′ − P̄J )

)
1
4 . (3.7)

Proof. The quantity α(J, J ′) defined in (3.7) in invariant under Sp(V, ω). Since all the steps are equiv-

ariant under Sp(V, ω), it suffices to consider the parallel transport along a geodesic of the form γΛ. Let Jt

be the complex structure corresponding to γ(t). We want to show that there exists a function α(t) with

α(0) = 1 such that for any ψ′ ∈ HJ0 , ψt ∈ HJt
, if {ψt} is parallel along γΛ, then

〈ψ′, ψ0〉 = α(t)〈ψ′, ψt〉

for any t ∈ R. This is equivalent to the condition that the right hand side has vanishing derivative

with respect to t. Again, without loss of generality, we prove the case of n = 1, λ1 = 1. Since zt =
1√
2
(e−tx+

√
−1 ety), we have

∇zt
= sech t∇z0 + tanh t∇z̄t

.

We also note that the formal adjoint of ∇z0 is −∇z̄0 . So

d
dt (α(t)〈ψ′, ψt〉) = α′(t)〈ψ′, ψt〉 + 1

2α(t)〈ψ′,∇2
zt
ψ〉

= α′(t)〈ψ′, ψt〉 + 1
2α(t)〈ψ′, (sech t∇z0 + tanh t∇z̄t

)∇zt
ψt〉

= α′(t)〈ψ′, ψt〉 + 1
2α(t)sech t〈−∇z̄0 ,∇zt

ψt〉 + 1
2α(t) tanh t 〈ψ′, (−

√
−1ω(∂z̄t

, ∂zt
) + ∇zt

∇z̄t
)ψt〉

= (α′(t) − 1
2α(t) tanh t)〈ψ′, ψt〉,

which vanishes if we choose α(t) =
√

cosh t. It is easy to verify α(J0, Jt) = α(t) using Jt =
( −e2t

e−2t

)

.

The second equality in (3.7) is because J+J′

2 =
√
−1 (PJ′ − P̄J ). 2

Corollary 3.5 Parallel transport in H → J along the geodesic in Hn from J to J ′ coincides with the

Bogoliubov transformation from HJ to HJ′ .

Proof. The operator α(J, J ′)PJ′J , including the scalar factor (3.7), coincides with the formula of the

Bogoliubov transformation in [14] and [15, §9.9]. 2

There is a more direct explanation of the above result. Given a complex structure J and the cor-

responding holomorphic coordinates (2.1) on V , HJ is the Fock space of the creation and annihilation

operators

a†J = z, aJ = ∇z + z̄.

As the complex structure changes along a geodesic, so do a†J and aJ . In fact, when n = 1 and along

γ(t) =
√
−1 e2t, the parallel transports of a0 and a†0 are

cosh t at + sinh t a†t and sinh t at + cosh t a†t ,

respectively, where at = aJt
and a†t = a†Jt

. This deformation of the creation and annihilation operators,

or the concept of the vacuum and excitations, is the physics origin of the Bogoliubov transformation.

For any J ∈ J represented by Ω , HJ can be identified with the space of analytic function on (V, J)

with the measure e−|zΩ |2ǫω(zΩ). The orthogonal projection onto HΩ is given by the Bergman kernel. So

we can express parallel transport by an integral kernel operator.

Proposition 3.6 For any Ω ,Ω ′ ∈ Hn, the parallel transport UΩ ′Ω in H along the (unique) geodesic from

Ω to Ω ′ is

φ(zΩ ) e−
1
2 |zΩ |2 7→ | detΞΩ ′Ω | 12

(det Ω2)
1
4 (det Ω ′

2)
1
4

e−
1
2 |z

′
Ω′ |2

∫

V

e
tz′

Ω′ z̄Ω′− 1
2 |zΩ′ |2− 1

2 |zΩ |2φ(zΩ) ǫω(zΩ ). (3.8)
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Proof. The projection onto HΩ ′ is given by the Bergman kernel

e
tz′

Ω′ z̄Ω′− 1
2 |z

′
Ω′ |2− 1

2 |zΩ′ |2 .

Using the facts J
(

Ω

1

)

=
√
−1
(

Ω

1

)

and (1,−Ω)J = −
√
−1 (1,−Ω), we get

(

1 − Ω̄

1 − Ω

)

J+J ′

2

(

Ω ′ Ω̄ ′

1 1

)

=
√
−1

(

Ω ′ − Ω̄ 0

0 Ω − Ω̄ ′

)

.

Taking the determinant, we get

det J+J ′

2
=

| detΞΩ ′Ω |2
detΩ2 detΩ ′

2

,

from which the scalar factor in (3.8) follows. 2

Up to a phase, (3.8) agrees with the unitary intertwining operator from HΩ to HΩ ′ in [10, 8].

A pairing can be defined on the half forms
√
dnzΩ and

√
dnzΩ ′ even though they come from different

complex structures.3 A simple calculation yields

〈
√

dnzΩ ′ ,
√

dnzΩ 〉 =
(detΞΩ ′Ω )

1
2

(det Ω2)
1
4 (detΩ ′

2)
1
4

. (3.9)

Since both the scalar factor in (3.8) and the phase in (3.6) are absorbed in (3.9), we have recovered

Corollary 3.7 ([15, §10.2]) Parallel transport from Ω to Ω ′ under the flat connection in Ĥ = H ⊗
√

K

is given by

ÛΩ ′Ω : ψ ⊗
√

dnzΩ ∈ ĤΩ 7→ 〈
√

dnzΩ ′ ,
√

dnzΩ 〉PΩ ′Ωψ ⊗
√

dnzΩ ′ ∈ ĤΩ ′ . (3.10)

Alternatively, this map can be described by a pairing between ĤΩ and ĤΩ ′

〈ψ′ ⊗
√

dnzΩ ′ , ψ ⊗
√

dnzΩ 〉 = 〈ψ′, ψ〉〈
√

dnzΩ ′ ,
√

dnzΩ 〉, (3.11)

where 〈ψ′, ψ〉 is the inner product of ψ ∈ HΩ and ψ′ ∈ HΩ ′ in H0.

When Ω ′ = Ω , the above pairing is the inner product (2.3)in ĤΩ .

We remark that if φ(zΩ ) e−
1
2 |zΩ |2 in (3.8) is cα(zΩ ), the integration yields the same result as (3.5).

This gives another integral kernel of parallel transport. The existence of two different kernels is because

φ(zΩ ) is restricted to be holomorphic.

Theorem 3.8 Under the assumptions of Proposition 3.6, the map UΩ ′Ω sends φ(zΩ ) e−
1
2 |zΩ |2 to

(detΩ2)
1
4 (detΩ ′

2)
1
4

|detΞΩΩ′ | 12
e
− 1

2
|z′

Ω′ |2
∫

V

φ(zΩ) exp





1

2

(

z̄Ω

z′
Ω′

)t (

In − Ω
1
2
2 Ξ−1

ΩΩ′Ω
1
2
2 Ω

1
2
2 Ξ−1

ΩΩ′Ω
′
2

1
2

Ω ′
2

1
2 Ξ−1

ΩΩ′Ω
1
2
2 In − Ω ′

2

1
2 Ξ−1

ΩΩ′Ω ′
2

1
2

)(

z̄Ω

z′
Ω′

)

− |zΩ |2


 ǫω(zΩ).

(3.12)

Proof. Since φ(zΩ )e−
1
2 |zΩ |2 is in HΩ , we have an estimate |φ(w)| ≤ C e

1
2 |w|2, where C is its norm [2].

By the reproducing property of the Bergman kernel,

φ(zΩ ) e−
1
2 |zΩ |2 =

∫

V

φ(w) e−|w|2cw(zΩ) ǫω(w),

3We recall that the pairing of dnzΩ and dnzΩ′ is determined by (−1)
n(n−1)

2
dz̄

Ω′∧dzΩ

(2π
√

−1 )n = 〈dnzΩ′ , dnzΩ 〉 ǫω and that of
√

dnzΩ and
√

dnzΩ′ is 〈
√

dnzΩ′ ,
√

dnzΩ 〉 =
√

〈dnzΩ′ , dnzΩ 〉.
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which we substitute in (3.8). The integrand satisfies

e−
1
2 |z

′
Ω′ |2
∣

∣φ(w) e−|w|2−tw̄zΩ− 1
2 |zΩ |2+tz′

Ω′ z̄Ω′− 1
2 |zΩ′ |2 ∣

∣ ≤ C e−
1
2 |w−zΩ |2− 1

2 |zΩ′−z′
Ω′ |2 .

Hence the double integral in w and zΩ is absolutely convergent. Exchanging the order of the integration

and performing the integral in zΩ , we get

∫

V

φ(w) e−|w|2(UΩ ′Ω cw)(z′
Ω ′) ǫω(w),

which is (3.12) after relabelling the integration variable w as zΩ . 2

3.3 Segal-Bargmann and Fourier transforms as parallel transport

The set S of real Lagrangian subspaces in (V, ω) can be identified with the Shilov boundary of J. For any

L ∈ S, there is an Hermitian form on the space of sections of ℓ that are covariantly constant along L by

choosing a translation invariant measure on V/L. The subspace HL of such sections that are L2-integrable

on V/L is independent of the choice of the measure. The bundles K and
√

K extend to S; the fiber of K

over L ∈ S is KL = (∧n(V/L)∗)C, where (V/L)∗ is identified as the subspace of V ∗ that annihilates L.

Let ĤL = HL ⊗
√

KL for any L ∈ S; this is the quantum Hilbert space (with the metaplectic correction)

associated to the real polarization L. The action of Sp(V, ω) on S lifts to that of Mp(V, ω) on the bundles√
K and Ĥ. There is a canonical Hermitian form on Ĥ. Given ψ1, ψ2 ∈ HL and

√
ν ∈

√
KL (L ∈ S), we

have

〈ψ1 ⊗
√
ν, ψ2 ⊗

√
ν 〉 =

∫

V/L

ψ̄1ψ2
|ν|

(2π)
n
2
, (3.13)

where |ν| is a density on V/L ∼= Rn determined by
√
ν.

The Mp(V, ω)-invariant pairing on
√

K → J between different fibers also extends. Pairings are defined

between
√

KJ ,
√

KL and between
√

KL,
√

KL′ for J ∈ J and L,L′ ∈ S such that L and L′ are transverse.

For example, if L− = {x = 0}, L+ = {y = 0} ∈ S in the symplectic coordinates (x, y) and Ω ∈ Hn, we

have

〈
√

dnzΩ ,
√
dnx 〉 = det((2Ω2)

− 1
2 Ω√

−1
), 〈

√
dny,

√
dnx 〉 =

√
−1

n
2 . (3.14)

For any J ∈ J corresponding to Ω ∈ Hn, let RJ be the subspace of ψ ∈ HJ such that

|ψ(zΩ )| ≤ C

(1 + |zΩ |2)n+α

for some C ≥ 0 and α > 0; such a ψ is L1 on V . Let R̂J = RJ ⊗
√

KJ . There is a pairing

〈ψ ⊗
√
ν, ψ′ ⊗

√
ν′ 〉 = 〈

√
ν,

√
ν′ 〉

∫

V

ψ̄ψ′ ǫω (3.15)

between any ψ ⊗ √
ν ∈ R̂J and ψ′ ⊗

√
ν′ ∈ ĤL; the integral in (3.15) is absolutely convergent. The

corresponding operator B̂JL : ĤL → ĤJ is unitary and intertwines with the Mp(V, ω)-action [2, 8, 15]. If

L = L− and if J is parameterized by Ω ∈ Hn, the operator and its inverse are, respectively,

B̂ΩL : φ(x) e

√
−1
2

txy ⊗
√

dnx 7−→ (det 2Ω2)
1
4

(det Ω√
−1

)
1
2

e
− 1

2
|z′

Ω
|2
∫

V/L−

φ(x)

exp





1

2

(

z′
Ω

x

)t (

In − (2Ω2)
1
2 ( Ω√

−1
)−1(2Ω2)

1
2 (2Ω2)

1
2 ( Ω√

−1
)−1

( Ω√−1
)−1(2Ω2)

1
2 − ( Ω√−1

)−1

)(

z′
Ω

x

)





|dnx|
(2π)

n
2
⊗
√

dnz′
Ω

,

(3.16)

11



and, if φ(zΩ ) e−
1
2 |zΩ |2 is in RΩ ,

B̂
−1
ΩL : φ(zΩ) e

− 1
2
|zΩ |2 ⊗

√
dnzΩ 7−→ (det 2Ω2)

1
4

(det Ω√−1
)

1
2

e

√
−1
2

tx′y′
∫

V

φ(zΩ) e
−|zΩ |2

exp





1

2

(

z̄Ω

x′

)t (

In − (2Ω2)
1
2 ( Ω√−1

)−1(2Ω2)
1
2 (2Ω2)

1
2 ( Ω√−1

)−1

( Ω√
−1

)−1(2Ω2)
1
2 − ( Ω√

−1
)−1

)(

z̄Ω

x′

)



 ǫω(zΩ ) ⊗
√

dnx′. (3.17)

When Ω =
√
−1 In, they are the usual Segal-Bargmann transform and its inverse [2].

For any pair of Lagrangian subspaces L,L′ ∈ S that are transverse, there exists a Fourier transform

operator F̂L′L : ĤL → ĤL′ that intertwines with the action of Mp(V, ω) [7]. In particular, we have

F̂L+L− : φ(x) e
√

−1
2

txy ⊗
√
dnx 7−→

√
−1

n
2

(

∫

V/L−

φ(x) e
√
−1 txy′ |dnx|

(2π)
n
2

)

e−
√

−1
2

tx′y′ ⊗
√

dny′, (3.18)

where the integral in the bracket is the usual Fourier transform φ̃(y′). Strictly speaking, (3.18) is valid

only on the dense subspace of ψ ⊗ √
ν ∈ ĤL such that |ψ| is L1 on V/L; the operator then extends

continuously to ĤL.

Proposition 3.9 1. Let J ∈ J and let L,L′ ∈ S be transverse to each other. Then for any ψ̂ ∈ R̂J and

ψ̂′ ∈ R̂L,

lim
J′→L

ÛJ′J ψ̂ = B̂−1
JLψ̂, lim

J′→L′
B̂J′Lψ̂

′ = F̂L′Lψ̂
′; (3.19)

here the limit is pointwise in V as J ′ → L or L′ from inside J.

2. For any J, J ′ ∈ J and L,L′, L′′ ∈ S that are mutually transverse, we have

B̂J′L = ÛJ′J ◦ B̂JL, F̂L′L = B̂−1
JL′ ◦ B̂JL, F̂L′′L = F̂L′′L′ ◦ F̂L′L. (3.20)

Proof. 1. Let J, J ′ be parameterized by Ω ,Ω ′ ∈ Hn. Without loss of generality, assume L = L−. Then

the limit J ′ → L is Ω ′ → 0 with Ω ′
2 > 0. If ψ̂(zΩ ) = φ(zΩ ) e−

1
2 |zΩ |2 ⊗

√
dnzΩ , then (ÛΩ ′Ω ψ̂)(z′

Ω ′) is the

tensor product of (3.12) and (3.6). As Ω ′ → 0, (det 2Ω ′
2)

1
4

√

dnz′
Ω ′ →

√
dnx′ and the integrand in (3.12)

goes to that in (3.17). Since the latter is absolutely integrable, the limit commutes with the integration

and thus the first limit in (3.19) follows. We remark here that the scalar factor (det 2Ω ′
2)

1
4 that goes to

zero in the limit is absorbed by the half-form
√

dnz′
Ω ′ . The proof of the second limit is similar.

2. Since the connection on the bundle Ĥ → J is flat and since ÛJ′J is the parallel transport from J to J ′,

we have ÛJ′′J′ ◦ ÛJ′J = ÛJ′′J . Using ÛJ′J : R̂J → R̂J′ and taking J ′′ → L, we get B̂−1
J′L ◦ ÛJ′J = B̂−1

JL on

R̂J , and hence on ĤJ . The proof of the other two identities are similar. 2

We thus proved that, as J ′ → L ∈ S, parallel transport of ψ̂ ∈ R̂J from J to J ′ goes to B̂−1
JLψ̂. Since

the latter is not L2 on V and its norm is defined instead by (3.13), it is not obvious why the “operator”

limJ′→L ÛJ′J is continuous on ĤJ or why its image is contained in ĤL. We now take the limit J ′ → L as

J ′ follows the path of a geodesic.

Lemma 3.10 1. Let Λ ≥ 0 be a diagonal matrix and γ = g · γΛ, a geodesic in J. Then limt→±∞ γ(t) are

real Lagrangian subspaces if and only if Λ > 0.

2. For any J ∈ J and L ∈ S, there is a geodesic γ in J such that γ(0) = J , limt→−∞ γ(t) = L.

3. A pair of real Lagrangian subspaces L,L′ are transverse if and only if there is a geodesic γ in J such

that limt→−∞ γ(t) = L, limt→+∞ γ(t) = L′.

Proof. 1. Using the identification of J and Hn, γΛ(−∞) = 0 and γΛ(+∞) = +
√
−1∞ In if and only if

Λ > 0, in which case they are real Lagrangian subspaces L− and L+, respectively. The result follows from

the transitivity of the Sp(V, ω) action on S.
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2. Without loss of generality, assume J is represented by Ω =
√
−1 In. Then for any diagonal Λ > 0,

γΛ(0) = J and limt→−∞ γΛ(t) = L−. The isotropic subgroup of J in Sp(V, ω) is isomorphic to U(n) and

acts transitively on S. Hence the result.

3. Let γ = g · γΛ (Λ > 0) be the geodesic such that the limits hold. Then L = g L− and L′ = g L+. L, L′

are transverse since L−, L+ are. Conversely, if L, L′ are transverse, then there exists g ∈ Sp(V, ω) such

that L = g L−, L′ = g L+. The geodesic γ = g · γΛ for any Λ > 0 satisfies the requirement. 2

Proposition 3.11 Let γ be a geodesic in J such that γ(0) = J and γ(−∞) = L, γ(+∞) = L′ ∈ S. Then

for any ψ̂ ∈ ĤJ , we have

lim
t→−∞

Ûγ(t)J ψ̂ = B̂−1
JLψ̂, lim

t→+∞
Ûγ(t)J ψ̂ = F̂L′L lim

t→−∞
Ûγ(t)J ψ̂ (3.21)

almost everywhere on V .

Proof. Without loss of generality, we assume γ = γΛ (Λ > 0). Then J is given by Ω =
√
−1 In and

L = L−, L′ = L+, while at γ(t), zt = 1√
2
(e−Λtx +

√
−1 eΛty). Let π± : V → V/L± be the projections.

Let (B̂−1
JLψ̂)(x, y) = φ(x) e

√
−1
2

txy ⊗
√
dnx. Using (3.19) and (3.16), we get

(Ûγ(t)J ψ̂)(x′, y′) = (B̂γ(t)L−B̂
−1
JL−

ψ̂)(x′, y′)

= det e−Λt

(

∫

V/L−

φ(x) e−
1
2

t(x−x′)e−2Λt(x−x′)+
√
−1 t(x−x′)y′ |dnx|

(2π)
n
2

)

e
√

−1
2

tx′y′ ⊗ (det
√

2eΛt)
1
2

√

dnz′t (3.22)

=

(

∫

V/L−

φ(x) e−
1
2

t(x−x′)e−2Λt(x−x′)+
√
−1 txy′ |dnx|

(2π)
n
2

)

e−
√

−1
2

tx′y′ ⊗ (det
√

2e−Λt)
1
2

√

dnz′t. (3.23)

As t→ −∞, (3.22) goes to φ(x′) e
√

−1
2

tx′y′ ⊗
√
dnx pointwise on π−1

− (Eφ), where Eφ is the Lebesgue set of

φ (see for example [12, Theorem I.1.25] or [3, Theorem 8.62]). Again, the scalar factor (det
√

2eΛt)
1
2 that

vanishes in the limit is absorbed by
√

dnz′t. As t → +∞, (3.23) goes to
√
−1

n
2 φ̃(y′) ⊗ √

dny′ pointwise

on π−1
+ (Eφ̃) (see for example [3, Theorem 8.31(c)]); this also follows from the t → −∞ limit by making

an Sp(V, ω) transformation that fixes J and exchanges L+ and L−. It is well known that the Lebesgue

set of an L2 function is the complement of a measure-zero subset (see for example [3, Theorem 3.20] or

[12, pp. 12-13]). 2

We remark that since the elements in ĤL (L ∈ S) are defined up to a set of measure-zero, the limits in

(3.21) are the best possible results for pointwise convergence. The integral in (3.22), being the convolution

of φ and the heat kernel, goes to φ(x′) when t→ −∞ as tempered distributions on V/L− (see for example

[13, Proposition 3.5.1] or [3, Corollary 8.46]). In the same sense, the integral in (3.23) goes to φ̃(y′) when

t → +∞. Hence the limits in (3.21) hold as tempered distributions on V , with the given trivialization of

ℓ.

Finally, we consider the limit in L2-spaces. S is part of the topological boundary of J as a bounded

domain. We define a topology on the disjoint union E of all ĤL (L ∈ S) and the total space of Ĥ → J.

There is a bijection from E to (J ⊔ S) × ĤJ0 if we fix any J0 ∈ J. The maps from ĤJ (J ∈ J) and ĤL

(L ∈ S) to ĤJ0 are ÛJ0J and B̂−1
J0L, respectively. The space E thus inherits the product topology on

(J ⊔ S) × ĤJ0 .

Corollary 3.12 Let J ∈ J and let L,L′ ∈ S be a transverse pair. Then for any ψ̂ ∈ ĤJ , in the above

topology on E, we have

lim
J′→L

ÛJ′J ψ̂ = B̂−1
JLψ̂, lim

J′→L′
ÛJ′J ψ̂ = F̂L′L lim

J′→L
ÛJ′J ψ̂.
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Proof. The limits follow directly from (3.20). 2
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