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Abstract. Some generalized Hölder’s inequalities for positive as well as negative expo-
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1. Introduction. While the renowned inequality of Hölder [1] is well celebrated for

its beauty and its wide range of important applications to real and complex analysis,

functional analysis, as well asmany disciplines in appliedmathematics, it is a little less

well known that it has a counterpart for negative exponents. Furthermore, it appears

that nowhere in the literature contains a generalization of them to the case involving

more than 2 dependent functions. It is the purpose of the present note to explore such

generalizations. Interested readers are also referred to [2] for an “inverse Hölder’s

inequality” (for positive exponents) and its generalizations.

For the sake of convenience, we first restate the classical Hölder’s inequalities here.

Hölders inequality for positive exponents [1, page 190]. Let p,q > 1 be
real numbers satisfying 1/p+1/q = 1. Let f ∈ Lp , g ∈ Lq. Then fg ∈ L1 and

∫
|fg|dµ ≤ ‖f‖p‖g‖q. (1.1)

Hölder’s inequality for negative exponents [1, page 191]. Let 0 < p < 1
and q ∈ R be such that 1/p+1/q = 1 (hence q < 0). If f ,g are measurable functions,
then ∫

|fg|dµ ≥
(∫

|f |p dµ
)1/p(∫

|g|q dµ
)1/q

(1.2)

unless
∫ |g|q = 0, in which case the right-hand side of (1.2) does not make sense.

2. The inequalities. Let m ≥ 2 be any integer. Hölder’s inequalities (1.1) and (1.2)
can be generalized to the case involvingm functions as follows.

Theorem 2.1 (generalized Hölder’s inequality for positive exponents). Let p1, . . . ,
pm > 0 be real numbers such that

∑m
α=1 1/pα = 1. Let fα ∈ Lpα , α = 1, . . . ,m. Then∏m

α=1fα ∈ L1 and ∫ m∏
α=1

∣∣fα∣∣dµ ≤
m∏
α=1

∥∥fα∥∥pα. (2.1)

Proof. We use induction onm. Whenm = 2, we are given p1,p2 > 0 with 1/p1+
1/p2 = 1. In particular, we have p1,p2 > 1 and so (2.1) is reduced to the classical
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Hölder’s inequality (1.1). Now suppose (2.1) holds for some integer m ≥ 2. We claim
that it also holds form+1. So let p1, . . . ,pm+1 > 0 be real numbers with

∑m+1
α=1 1/pα = 1

and let fα ∈ Lpα , α = 1, . . . ,m+ 1. Note that, as above, we must have pα > 1 for
α= 1, . . . ,m+1. In particular, we have

p1 > 0,
p1

p1−1 > 0,
1
p1
+ 1
p1/(p1−1) = 1. (2.2)

Thus by the classical Hölder’s inequality (1.1),

∫ m+1∏
α=1

∣∣fα∣∣dµ =
∫ ∣∣f1∣∣·

m+1∏
α=2

∣∣fα∣∣dµ

≤ ∥∥f1∥∥p1


∫ 
m+1∏
α=2

∣∣fα∣∣


p1/(p1−1)

dµ



(p1−1)/p1

= ∥∥f1∥∥p1


∫ m+1∏
α=2

∣∣fα∣∣p1/(p1−1) dµ


(p1−1)/p1

.

(2.3)

Next, since

pα
(
p1−1

)
p1

> 0 for α= 2, . . . ,m+1, (2.4)

m+1∑
α=2

1
pα
(
p1−1

)
/p1

= p1
p1−1

m+1∑
α=2

1
pα

= p1
p1−1

(
1− 1

p1

)
= 1, (2.5)

by induction hypothesis and (2.3), we arrive at

∫ m+1∏
α=1

∣∣fα∣∣dµ ≤ ∥∥f1∥∥p1

m+1∏
α=2

(∫ ∣∣fα∣∣p1/(p1−1)·pα(p1−1)/p1 dµ
)p1/pα(p1−1)

(p1−1)/p1

= ∥∥f1∥∥p1 ·
m+1∏
α=2

(∫ ∣∣fα∣∣pα dµ
)1/pα

,

(2.6)

and so the assertion follows.

While in Theorem 2.1 it seems quite obvious on how to generalize the classical

Hölder’s inequality (1.1) to the situation involving m(≥ 2) functions, the generaliza-
tion of inequality (1.2) to the same situation is another story. There is no obvious

way to achieve that. In fact, one can easily observe that there are at least two possi-

ble directions to tackle the problem. First, to try to generalize to the situation where

all but one of the pα’s are real numbers lying in the interval (0,1), hence the other
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one is forced to be negative in order that
∑
1/pα = 1; and second, to the situation

where all but one of the pα’s are negative, and the other one being positive to assure∑
1/pα = 1. Experience tells us that only one of these directions can be right. Indeed,

as can be seen in the following theorem, the latter direction is the correct one. Inter-

ested readers are advised to try and work on the first direction and experience the

obstruction there.

Theorem 2.2 (generalized Hölder’s inequality for negative exponents). Let p1, . . . ,
pm−1 < 0 and pm ∈ R be such that ∑m

α=1 1/pα = 1 (hence 0 < pm < 1). Let fα be
measurable functions for α= 1, . . . ,m. Then

∫ m∏
α=1

∣∣fα∣∣dµ ≥
m∏
α=1

(∫ ∣∣fα∣∣pα dµ
)1/pα

(2.7)

unless
∫ |fα|pα dµ = 0 for some α = 1, . . . ,m−1, in which case the right-hand side of

(2.7) does not make sense.

Proof. Similar to the proof of Theorem 2.1, we use induction onm. Clearly when
m = 2, equation (2.7) reduces to the classical Hölder’s inequality (1.2). Now suppose
that (2.7) holds for some integer m ≥ 2. We claim that it also holds for m+1. So let
p1, . . . ,pm < 0 and pm+1 ∈ R be such that

∑m+1
α=1 1/pα = 1 and let fα, α = 1, . . . ,m+1,

be measurable functions. Note that 0<pm+1 < 1. Since

p1 < 0, 0<
p1

p1−1 < 1,
1
p1
+ 1
p1/

(
p1−1

) = 1, (2.8)

by the classical Hölder’s inequality (1.2), we have

∫ m+1∏
α=1

∣∣fα∣∣dµ =
∫ ∣∣f1∣∣·

m+1∏
α=2

∣∣fα∣∣dµ

≥
(∫ ∣∣f1∣∣p1 dµ

)1/p1
∫ 
m+1∏
α=2

∣∣fα∣∣


p1/(p1−1)

dµ



(p1−1)/p1

=
(∫ ∣∣f1∣∣p1 dµ

)1/p1
∫ m+1∏
α=2

∣∣fα∣∣p1/(p1−1) dµ


(p1−1)/p1

(2.9)

unless
∫ |f1|p1 dµ = 0. Now since

pα
(
p1−1

)
p1

< 0 for α= 2, . . . ,m, pm+1
(
p1−1

)
p1

> 0, (2.10)

and as in (2.5),

m+1∑
α=2

1
pα
(
p1−1

)
/p1

= 1, (2.11)
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by induction hypothesis and (2.9), we obtain

∫ m+1∏
α=1

∣∣fα∣∣dµ=
(∫ ∣∣f1∣∣p1 dµ

)1/p1m+1∏
α=2

(∫ ∣∣fα∣∣p1/(p1−1)·pα(p1−1)/p1 dµ
)p1/pα(p1−1)

(p1−1)/p1

=
(∫ ∣∣f1∣∣p1 dµ

)1/p1 m+1∏
α=2

(∫ ∣∣fα∣∣pα dµ
)1/pα

=
m+1∏
α=1

(∫ ∣∣fα∣∣pα dµ
)1/pα

(2.12)

unless
∫ |fα|pα dµ = 0 for some α= 1, . . . ,m.
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