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Abstract

In 1922–23, Julia and Fatou proved that any 2 rational functions f and g of
degree at least 2 such that f (g(z)) = g(f (z)), have the same Julia set. Baker then
asked whether the result remains true for nonlinear entire functions. In this paper,
we shall show that the answer to Baker’s question is true for almost all nonlinear
entire functions. The method we use is useful for solving functional equations. It
actually allows us to find out all the entire functions g which permute with a given
f which belongs to a very large class of entire functions.

1. Introduction and main results

The Fatou set F (f ) of an entire function f of one complex variable is the subset
of the complex plane where the family {fn} of iterates of f is normal. Its Julia set
J(f ) is equal to C\F (f ). The Fatou set and Julia set of a rational function can be
defined as subsets of the Riemann sphere in a similar way. A well known property
of the Julia set of an entire or rational function f is that J(f ) = J(fn). Other
basic knowledge of iterations of rational or transcendental functions can be found in
[5, 6, 13].

In 1922–23, Julia [16] and Fatou [12] proved that for any 2 rational functions f
and g of degree at least 2 such that f and g are permutable, i.e. f ◦ g = g ◦ f , then
their Julia sets will be the same. It is natural to consider the following open problem
which was first mentioned in [4] by Baker.

Problem A. Let f and g be nonlinear entire functions. If f and g are permutable,
is J(f ) = J(g)?

Julia and Fatou’s works were motivated by the problem of characterizing all per-
mutable rational functions f and g. Julia [16] and Fatou [12] solved this problem
when both f and g are polynomials. They proved that for permutable nonlinear
polynomials f and g, there exist natural numbers m,n such that (up to a conju-
gacy of linear maps) either (i) fm(z) = gn(z); (ii) f (z) = zm and g(z) = zn or (iii)
f (z) = Tm(z) and g(z) = Tn(z), where Tk is the Tchebycheff polynomial determined
by the equation cos kw = Tk(cos w).

The rational case was first solved completely by Ritt [24] in 1923. However, Ritt
did not use methods from complex dynamics. A proof of Ritt’s result in the spirit
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of the ideas of Julia and Fatou was provided by Eremenko [10] in 1989. It is also
natural to ask the following open problem.

Problem B. Is there a complete classification of all pairs of nonlinear permutable
entire functions?

In 1958–59, Baker [1] and Iyer [15] started the investigations of permutable
entire functions. They both proved that if a nonconstant polynomial f is permutable
with a transcendental entire function g, then f (z) = e2mπi/kz + b for some
m, k ∈ N and complex number b. It follows from this result, as well as Julia and
Fatou’s results, that in order to answer Problems A and B, we only need to consider
permutable transcendental entire functions. Let m,n ∈ N and h be a transcendental
entire function. Suppose that az+ b and cz+d permute with hm and hn respectively.
If az+b also permutes with cz+d, then f = ahm+b permutes with g = chn+d. Up to
a conjugacy of linear maps, almost all known examples of permutable transcendental
entire functions are of this form. Note that a and c must be a pth root and qth root
of unity for some p, q ∈ N. If both a, b� 1, then it is easy to check that fp = hmp and
gq = hnq so that fnpq = hmnpq = gmpq. This is case (i) above. Recently, the following
interesting example of permutable transcendental entire functions is mentioned in
[14].

Example 1. Let a, c ∈ C such that e4a = −1 and c� 0.
Define f (z) = ci[exp ((ai/2c2)z2) + exp ((−ai/2c2)z2)] and g(z) = c[exp ((ai/2c2)z2)

− exp ((−ai/2c2)z2)]. Then f permutes with g.
In [1], Baker characterized all nonlinear entire functions which permute with the

exponential function and proved the following result.

Theorem A. Let g be a nonlinear entire function which is permutable with f (z) =
aebz + c (ab� 0, a, b, c ∈ C), then g = fn. Hence J(f ) = J(fn) = J(g).

This result shows that there are only countably infinitely many nonlinear entire
functions which permute with f (z) = ez. This is in fact true for general f (see [3]).
Theorem A also answers Problems A and B for the special case that f (z) = ez.
Concerning Problem A, Baker proved the following result in [4].

Theorem B. Suppose that f and g are transcendental entire functions such that g(z) =
af (z) + b, where a and b are complex numbers. If g permutes with f , then J(f ) = J(g).

In fact Baker only proved the case a = 1, but the general case can be proved
similarly (see [22]). In the same paper, after a careful analysis of Julia and Fatou’s
original arguments, Baker also proved the following result.

Theorem C. If f and g are permutable transcendental entire functions and if ∞ is
neither a limit function of any subsequence of {fn} in a component of F (f ), nor of any
subsequence of {gn} in a component of F (g), then J(f ) = J(g).

From the classification of components of Fatou sets (see [6]), there are only two
ways in which fn can tend to infinity locally uniformly on a component U of F (f ).
One possibility is thatU is a wandering domain of f , i.e. fm(U )� fn(U ) for all n�m.
The other is f r(U ) ⊂ V for some r > 0 and Baker domain V. V is a Baker domain
if ∞ ∈ V and fn(V ) ⊂ V for some n > 0. The following result of Bergweiler and
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Hinkkanen [7] shows that the presence of Baker domain is not a problem provided
that both f and g do not have wandering domain.

Theorem D. Let f and g be permutable transcendental entire functions. If both f and
g have no wandering domains, then J(f ) = J(g).

A slightly weaker version of Theorem D was first proved by Langley [18]. Besides
Theorem D, there are other partial results concerning Problem A (see [13, chapter
7], [22, 23]). There are quite a lot of results about permutable entire functions which
are related to Problem B. They can be found in [14, 17, 25–28]. The following typical
example of these results can be found in [25].

Theorem E. Let f (z) = p(z)eq(z), where p(z) and q(z) are polynomials. If g is a finite
order entire function which permutes with f . Then g(z) = af (z) for some a ∈ C.

All these results require both f and g to satisfy certain conditions. This is rather re-
strictive because in general given an entire function f , it is difficult to check whether
the entire functions which permute with f satisfy the required condition or not. The
situation will be much clearer if we rephrase Problem A into an equivalent problem
as follows: let f be a nonlinear entire function. If g is a nonlinear entire function
which permutes with f , is J(f ) = J(g)? We immediately see that Problem A has
only been solved for polynomials and transcendental entire functions aebz + c.

In this paper, we shall answer Problems A and B for a class of entire functions
including ez+p(z), sin z+p(z), where p is a nonconstant polynomial. In fact, we shall
prove that for any nonlinear entire function g which permutes with f in this class,
g(z) = afn(z) + b for some a, b ∈ C. Note that fn ◦ g = g ◦ fn and hence by Theorem
B, J(f ) = J(fn) = J(g). By factoring out fn, we also have fn(az + b) = afn(z) + b.
The result of Baker and Iyer mentioned before tells us that a is a kth root of unity.

Before stating our main result, we recall that an entire function F is prime (left-
prime) in the entire sense if whenever F (z) = f (g(z)) for some entire functions f, g,
then either f or g is linear (f is linear whenever g is transcendental). For example,
ez + z, zez are prime functions (see [8] for more examples).

Theorem 1. Let f be a transcendental entire function which satisfies the following
conditions.
(A1) f is not of the form H ◦Q, where H is periodic entire and Q is a polynomial.
(A2) f is left-prime in the entire sense.
(A3) f ′ has at least two distinct zeros.
(A4) There exists a natural number N such that for any complex number c, the simul-

taneous equations f (z) = c, f ′(z) = 0 have at most N solutions.
(A5) The orders of zeros of f ′ are bounded by M for some M ∈ N.
Let g be a nonlinear entire function which permutes with f . Then g(z) = afn(z) + b,

where a is a kth root of unity and b ∈ C. Hence J(f ) = J(g).

The conditions (A4) and (A2) are related. For example, Ozawa [21] proved that if
f is of finite order and for any c ∈ C, the simultaneous equations f (z) = c, f ′(z) = 0
have only a finite number of solutions, then f is left-prime in the entire sense. Other
similar results can also be found in [20] and [21]. It is easy to check that for any
nonconstant polynomial p, ez +p(z) and sin z+p(z) satisfy conditions (A4) and (A5).
By Ozawa’s result, they are left-prime. Using Borel’s Lemma ([8, theorem 1·7]), it is
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not difficult to show that the dervatives of ez + p(z) and sin z + p(z) have infinitely
many zeros. Suppose that ez+p(z) or sin z+p(z) is of the form H ◦Q in (A1). Then Q
cannot be linear because ez+p(z) and sin z+p(z) are nonperiodic. Now Q is of degree
greater than 1, then it can be shown that the order of H ◦Q will be greater than 1
which is also impossible as both ez + p(z) and sin z + p(z) are of order 1. Therefore,
ez + p(z) and sin z + p(z) satisfy conditions (A1)–(A5).

The conditions (A1)–(A5) are not restrictive. In certain sense, almost all entire
functions satisfy these conditions as can be seen from the following result of Noda
[20].

Theorem F. Let f be a transcendental entire function. There exists a countable set
Ef ⊂ C such that for all a ^ Ef , fa(z) = f (z) + az satisfies the following conditions.

(B1) fa is nonperiodic.
(B2) fa is prime in the entire sense.
(B3) f ′a has infinitely many zeros.
(B4) For any complex number c, the simultaneous equations fa(z) = c, f ′a(z) = 0 has

at most one solution.
(B5) The orders of zeros of f ′a(z) are equal to 1.
Noda’s original proof only shows that we can find an exceptional set Df ⊂ C such

that fa satisfies (B1)–(B4) for all a ^ Df . (B5) will also be satisfied if we replace Df

by Ef = Df x {−f (c)|f ′′(c) = 0}. Clearly, Bi implies Ai for i = 2, 3, 4, 5. It is not
difficult to check that conditions (B1) and (B2) together imply condition (A1). Now,
combining Theorem 1 and Theorem F, we obtain the following result which says that
in certain sense, the answer to Baker’s question is yes for almost all entire functions.

Theorem 2. Let f be a transcendental entire function and define fa(z) = f (z) + az.
Then there exists a countable set Ef ⊂ C such that for each a ^ Ef , any nonlinear entire
function g permutes with fa is of the form g(z) = cfna (z) + d, where c is a kth root of
unity and d ∈ C. Hence J(fa) = J(g).

The method developed in this paper will be useful for solving functional equations.
Actually we can also use it to prove the following result.

Theorem 3. Let q be a nonconstant entire function and p be a polynomial with at
least two distinct zeros. Suppose that f (z) = p(z)eq(z) is prime in the entire sense. Then
any nonlinear entire function g which permutes with f is of the form g(z) = afn(z) + b,
where a is a kth root of unity and b ∈ C. Hence J(f ) = J(g).

It is known that if q is a polynomial and p and q do not have a nonlinear common
right factor, then f (z) = p(z)eq(z) is prime in the entire sense.

2. The Common Right Factor Theorem

To prove Theorem 1, we first prove the Common Right Factor Theorem which
gives a sufficient condition for the existence of a nonlinear generalized common right
factor of two entire functions.

Definition 1. Let F (z) be a nonconstant entire function. An entire function g(z) is
a generalized right factor of F (denoted by g 6 F ) if there exists a function f , which
is analytic on the range of g, such that F = f ◦ g. If h 6 f and h 6 g, we say that h
is a generalized common right factor of f and g.
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The following lemma is crucial. It is extracted from the proof of theorem 1·1 in a

paper of Eremenko and Rubel [11]. A quite detailed proof of it can also be found in
[19].

Lemma 1. Let f, g be two entire functions. For i = 1, . . . , k, k > 2, let Si = {zin}n∈N
be a sequence of distinct complex numbers with limit point zi. Suppose that all the limit
points zi are distinct and for all n ∈ N,{

f (z1n) = f (z2n) = · · · = f (zkn)
g(z1n) = g(z2n) = · · · = g(zkn).

Then there exists an entire function h (which depends on f and g only and is inde-
pendent of k and the sequences Si) satisfying h 6 f , h 6 g and h(z1) = h(zi) for all
2 6 i 6 k.

Example 2. Let f (z) = cos z and g(z) = sin z. Let z1n = 1/n, z2n = 2π + 1/n and
z3n = −2π + 1/n. Then limn→∞ z1n = 0, limn→∞ z2n = 2π, limn→∞ z3n = −2π and
for all n ∈ N, {

f (z1n) = f (z2n) = f (z3n)
g(z1n) = g(z2n) = g(z3n).

Note that there exists an entire function h(z) = eiz satisfying h 6 f , h 6 g and
h(0) = h(−2π) = h(2π).

In many situations, Lemma 1 is not so easy to use because of the difficulties in
finding the sequences required in the lemma. We shall prove the Common Right
Factor Theorem below which is quite powerful and easy to use.

Theorem 4 (Common Right Factor Theorem). Let f and g be two entire functions
and z1, . . . , zk be k > 2 distinct complex numbers such that{

f (z1) = f (z2) = · · · = f (zk) = A
g(z1) = g(z2) = · · · = g(zk) = B.

Suppose that there exist nonconstant functions f1 and g1 such that f1 ◦ f ≡ g1 ◦ g
on
⋃k
i=1 Ui, where Ui is some open neighbourhood containing zi. If f1 is analytic in a

neighbourhood of A and the order of f1 at A is K < k, then there exists an entire function
h (which depends on f and g only and is independent of k and zi) with h 6 f , h 6 g.
Moreover, among the zi, there exist at least m = [k − 1/K]+1 distint points zn1 , . . . , znm
such that h(zn1 ) = · · · = h(znm).

We immediately have the following

Corollary 1. Let f and g be two entire functions and {zn}n∈N be an infinite sequence
of distinct complex numbers such that for all n ∈ N, f (zn) = A and g(zn) = B. Suppose
that there exist nonconstant functions f1 and g1 such that f1 ◦ f ≡ g1 ◦ g on

⋃∞
i=1 Ui,

where Ui is some open neighbourhood containing zi. If f1 is analytic in a neighbourhood
of A, then there exists a transcendental entire function h with h 6 f , h 6 g.

Remark. In Theorem 4, the condition that k > K is essential. Let f (z) = z2,
g(z) = eiz, f1(z) = cos

√
z and g1(z) = 1

2 (z + z−1). Then cos z = f1 ◦ f (z) = g1 ◦ g(z).
Although f (−π) = f (π) = π2 and g(−π) = g(π) = −1, f and g do not have a nonlinear
generalized common right factor. Note that in this case, the order K of f1 at π2 is
exactly two.
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Proof of Theorem 4. Replacing f1(z) by f1(z+A) and f (z) by f (z)−A if necessary,

we may assume that A = 0. Recall that f1 is analytic at A with order K. So if V
is a sufficiently small neighbourhood of A = 0 and a, b ∈ V such that f1(a) = f1(b),
then b ≈ el

2πi
K a for some 0 6 l 6 K − 1. Hence if we take any ray L starting from

f1(A), then f−1
1|V (L) consists of K curves starting at A = 0 which divide V into K

open sector shaped regions Vj such that f1 is injective on each region Vj .
For each n ∈ N and 1 6 i 6 k, let Dn(zi) = {z: |z−zi| < 1/n}. There is no harm in

assuming that all Dn(zi) ⊂ Ui. Since g(z1) = g(zi) = B and g is entire,
⋂n
i=1 g(Dn(zi))

is an open set containing B. Choose a z1n ∈ Dn(z1) such that g(z1n) ∈ ⋂n
i=1 g(Dn(zi)),

g(z1n)� g(z1) and arg{f1(f (z1n))− f1(A)} = π. The last condition means that f (z1n)
is on a curve through A which approximately bisects V1. Now for each 2 6 i 6 k,
there exists zin ∈ Dn(zi) such that g(z1n) = · · · = g(zkn). Since g(z1n) � g(z1) =
g(zi) = B, we have zin � zi, for all n ∈ N. Clearly, zin → zi as n → ∞ and hence
f (zin) → f (zi) = A as n → ∞. By passing to a subsequence if necessary, we may
assume that for each i, {zin}n∈N is a sequence of distinct complex numbers with limit
point zi.

From the condition that f1 ◦ f ≡ g1 ◦ g on
⋃k
i=1 Ui, we have f1(f (z1n)) = · · · =

f1(f (zkn)). Hence for each fixed n, f (zjn) ≈ elj
2πi
K f (z1n) for some 0 6 lj 6 K − 1.

Since f (z1n) is on a curve through A which approximately bisects V1, each f (zjn)
is also on a curve through A which approximately bisects some Vi. Therefore there
exists one sector shaped region Vi which contains at least m = [k − 1/K] + 1 of
the f (zjn)′s, say f (zj1n), . . . , f (zjmn). Since f1(f (zj1n)) = · · · = f1(f (zjmn)) and f1 is
injective on Vi, we must have f (zj1n) = · · · = f (zjmn). Therefore for each n ∈ N, we
obtain a subset (depending on n) {j1, . . . , jm} of {1, . . . , k}. As there are only finitely
many subsets of {1, . . . , k} containing exactlym elememts, we can find a {j1, . . . , jm}
which corresponds to infinitely many n. For these n, we have{

f (zj1n) = f (zj2n) = · · · = f (zjmn)
g(zj1n) = g(zj2n) = · · · = g(zjmn).

Clearly, Sji = {zjin} are the required sequence in Lemma 1 and we are done.

3. Proof of Theorems 1 and 3

Let n̄(r, 1/f ) and n̄(ro 6 |z| 6 r, 1/f ) be the number of distinct zeros of f in |z| 6 r
and ro 6 |z| 6 r respectively. The following lemma is due to Clunie [9].

Lemma 2. Let k be entire and transcendental. Given K > 0 there is a number r0 > 0
and an increasing sequence {rn}n∈N with r1 > r0 and rn → ∞ (as n → ∞) such that
for n > 1 and all r in rn 6 r 6 r2

n and all a satisfying r0 6 |a| 6 r we have

n̄

(
r,

1
k − a

)
> K.

Lemma 3. Let h, k be entire and transcendental. Suppose that h has infinitely many
zeros. Then for each N ∈ N, there exists a zero aN of h such that k(z) = aN has at least
N distinct roots which are not the zeros of h.

Proof of Lemma 3. Assume the contrary, then for each zero ai of h, all (except at
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most N − 1) distinct roots of k(z) = ai are zeros of h. This implies that∑

h(ai)=0
|ai|6r

[
n̄

(
r,

1
k − ai

)
− (N − 1)

]
6 n̄

(
r,

1
h

)
.

Hence, ∑
h(ai)=0
|ai|6r

n̄

(
r,

1
k − ai

)
6 n̄

(
r,

1
h

)
+ (N − 1)n̄

(
r,

1
h

)
= Nn̄

(
r,

1
h

)
.

We therefore have for all 0 < r0 < r,∑
h(ai)=0

r06|ai|6r

n̄

(
r,

1
k − ai

)
6 Nn̄

(
r,

1
h

)
. (1)

Applying Lemma 2 to k and K = 2N , we get the r0 and required sequence {rn}n∈N
such that ∑

h(ai)=0
r06|ai|6rn

n̄

(
rn,

1
k − ai

)
>

∑
h(ai)=0

r06|ai|6rn

2N = 2Nn̄
(
ro 6 |z| 6 rn, 1

h

)
.

Since h has infinitely many zeros, for all sufficiently large rn, n̄(ro 6 |z| 6 rn, 1/h)
> n̄(ro, 1/h). Hence for all sufficiently large rn,∑

h(ai)=0
r06|ai|6rn

n̄

(
rn,

1
k − ai

)
> Nn̄

(
rn,

1
h

)
.

This contradicts (1).

Lemma 4. Let f be a transcendental entire function such that f ′ has at least two distinct
zeros. Let g be a nonlinear entire function permutes with f . Then for each K ∈ N, there
exists aK ∈ C, g′(aK) = 0 such that f − aK and f ′ ◦ g have at least K common distinct
zeros.

Proof of Lemma 4. As g is an nonlinear entire function which permutes with the
transcendental entire function f , the result of Baker and Iyer mentioned earlier
guarantees that g is transcendental. Now f ◦ g = g ◦ f implies that f ′(g(z))g′(z) =
g′(f (z))f ′(z). Suppose that g′ ◦ f has finitely many (say M ) zeros. Then all (except
M ) zeros of f ′ ◦g are zeros of f ′. Since f ′ has at least 2 zeros and g is transcendental
entire, by the Little Picard Theorem f ′ ◦ g has infinitely many zeros. It follows that
f ′ also has infinitely many zeros. Now by Lemma 3, there exists a ∈ C , f ′(a) = 0
such that g(z) = a has at least M + 1 roots which are not the zeros of f ′. This is a
contradiction. Therefore g′ ◦ f has an infinite number of zeros and hence g′ has at
least one zero. Clearly at least one zero of g′ is not a Picard exceptional value of f ,
otherwise g′◦f will have finitely many zeros only. So there exists some b ∈ C, g′(b) = 0
such that f (z) = b has an infinite number of roots. Suppose that g′ has only finitely
many zeros. It follows from f ′(g(z))g′(z) = g′(f (z))f ′(z) that f − b and f ′ ◦ g have
infinitely many common zeros and we are done in this case. Now suppose that g′ has
infinitely many zeros. By Lemma 3, for each K ∈ N, there exists aK ∈ C, g′(aK) = 0
such that f − aK has at least K distinct zeros which are not the zeros of g′. Since
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f ′(g(z))g′(z) = g′(f (z))f ′(z), f − aK and f ′(g) must have at least K distinct common
zeros.

We also need the following result of Baker ([1, p. 145]).

Lemma 5. If f and g are permutable entire transcendental functions, then there exists
a positive integer n and R > 0, such that M (r, g) < M (r, fn) holds for all r > R, where
M (r, g),M (r, fn) denote the maxmium modulus function of g and fn respectively.

Proof of Theorem 1. For each natural number K which is a multiple of 2N (M +1),
by Lemma 4 we can now find some aK ∈ C, g′(aK) = 0 such that f − aK and f ′(g)
has at least K distinct common zeros, say z1, . . . , zK . Now f (zi) = aK implies that
f (g(zi)) = g(f (zi)) = g(aK). Moreover, f ′(g(zi)) = 0. By condition (A4), the system of
equations f (z) = g(aK), f ′(z) = 0 has at most N solutions. Therefore, at least K/N
of g(zi) are equal (say g(z1), . . . , g(zK/N )). Hence we have{

f (z1) = f (z2) = · · · = f (zK/N ) = aK
g(z1) = g(z2) = · · · = g(zK/N ) = B.

According to condition (A5), the order of f atB is at mostM+1 andK/N > M+1.
By the Common Right Factor Theorem, there exists an entire function h (which
depends on f and g only) with h 6 f , h 6 g. Moreover, among the z1, . . . , zK/N ,
there exist at least m = K/N (M + 1) distinct points at which h takes the same
value. Since K as well as m can be arbitrarily large and h is independent of K, h is
transcendental.

As h 6 f and h 6 g, f = f1 ◦ h and g = g1 ◦ h for some f1, g1 which are analytic
on the range of h. h is transcendental entire, by the Little Picard Theorem, h can
omit at most one complex number. If the range of h is C\{a} for some a ∈ C, then
h = a+ eq for some entire function q and f (z) = f1(a+ ew) ◦ q(z). Note that q cannot
be transcendental because by condition (A2), f is left-prime. Therefore q must be a
polynomial which is also impossible by condition (A1). So the range of h must be
the whole plane. This implies that both f1, g1 are entire. Since f is prime and h is
transcendental, f1 must be linear. Hence h = f−1

1 ◦ f and g = g1 ◦ f−1
1 ◦ f = g2 ◦ f

where g2 = g1 ◦ f−1
1 . From f ◦ g = g ◦ f , we have f ◦ g2 ◦ f = g2 ◦ f ◦ f . Note that

the range of f equals that of h. Therefore, f ◦ g2 ≡ g2 ◦ f on C. If g2 is nonlinear,
by repeating the same arguments, we can find an entire g3 which permutes with f
such that g2 = g3 ◦ f and g = g3 ◦ f 2. Inductively, we have g = gm+1 ◦ fm provided
that gm is nonlinear. If there exists some m such that gm is linear, then we are done.
So assume that all gm are nonlinear. Since each gm permutes with f , gm must be
transcendental. By Lemma 5, there exists a positive integer n and R > 0, such that
log M (r, g) < log M (r, fn) holds for all r > R.

On the other hand, a result of Clunie ([9, theorem 1]) implies that

lim sup
r→∞

log M (r, g)
log M (r, fn)

= lim sup
r→∞

log M (r, gn+1 ◦ fn)
log M (r, fn))

=∞.

This is a contradiction and we are done.

Proof of Theorem 3. Note that g is transcendental as it is nonlinear. Since p has
at least two distinct zeros, p(g(z)) has infinitely many zeros by the Little Picard
Theorem. It follows from p(g(z))eq(g(z)) = g(p(z)eq(z)) that g(p(z)eq(z)) also has infinite
number of zeros. Therefore there exists a zero b of g such that p(z)eq(z)−b has infinitely
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many zeros {zi}i∈N. Note that the z′is are zeros of p(g(z))eq(g(z)) = g(p(z)eq(z)). Hence,
p(g(zi)) = 0 for all i ∈ N. Therefore we can find an infinite subsequence {zni}i∈N such
that f (zni) = b and g(zni) = a for some zero a of p. By Corollary 1, there exists a
transcendental entire function h with h 6 f and h 6 g. Since f is nonperiodic and
prime, we can repeat the arguments used in the proof of Theorem 1 to obtain the
required conclusions.

4. Final remarks

Provided that the below conjecture is true, we can replace condition (A4) in The-
orem 1 by a much weaker condition: for any c ∈ C, the simultaneous equations
f (z) = c, f ′(z) = 0 have only a finite number of solutions.

Conjecture. Let f be a transcendental entire function such that f ′ has at least two
distinct zeros. Let g be a nonlinear entire function which permutes with f . Then
there exists a ∈ C, g′(a) = 0 such that f − a and f ′ ◦ g have infinitely many distinct
common zeros.

It is expected that the Common Right Factor Theorem and its corollary will also
be useful to solve other functional equations (e.g. f ◦ f = g ◦ g). These results reduce
the problem of solving one functional equation to a problem of solving systems of
simultaneous equations. Therefore it would be nice to know whether it is true that
if f ◦ g = g ◦ f or f ◦ f = g ◦ g, then we can always find two distinct points z1, z2 such
that f (z1) = f (z2) and g(z1) = g(z2), where f, g are transcendental entire functions.
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