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An Example Concerning Infinite Factorizations
of Transcendental Entire Functions

TueN-WAI Na
Abstract. A non-linear entire function is called prime if it cannot be expressed as a
composition of two non-linear entire functions. In this paper, we construct an entire function

which is a composition of infinitely many prime transcendental entire functions.

Let P, R and T be the set of non-constant polynomials, non-constant rational functions
and transcendental entire functions respectively. Throughtout this paper X will denote one
of P,R,T. Let f, f1,..., f, be functions in X such that f = f; o---f,. An expression
like this is called a factorization of f through X. The functions f; are factors of f. Notice
that a factorization through X means every factor belongs to X while in the literatures,
the meaning of factorization does not have this restriction. For example, the factorization
2% 0 ze*" is not a factorization through 7~ of z%e2**. The simplest class of functions (in the
sense of composition) is the so-called prime functions. A non-linear meromorphic function is
prime if it cannot be expressed as a composition of two non-Md6bius meromorphic functions.
If every factor in a factorization through X is prime, we called it a prime factorization
through X. Examples of prime functions are rational functions of prime degrees, e* + z,

5% etc (see [2] for more examples). In fact there are plenty of prime entire

ze*" | sin ze
functions as Y. Noda proved in [3] showing that for any transcendental entire function f,
f(z) + az is prime for all a € C\E; where E is some countable set. The study of prime
factorizations through P started from J.F. Ritt’s paper ([4]) in 1922. His results are rather
complete. However, very little is known about prime factorizations through R and 7. The

following results are known.

(1) For f € P, there is an uniform bound for the numbers of prime factors in different

1991 Mathematics Subject Classification Primary 30D15.

The author thanks the Croucher Foundation for their support during the preparation of this paper.



factorizations of f through P. Clearly deg f will be such a bound.

(2) The number of prime factors of f € P in each prime factorization through P is the
same.

(1) is clearly also true for rational functions, while (2) is no longer true because W.
Bergweiler constructed in [1] a rational function with two prime factorization through R
which consist of two and three prime factors respectively. Whether a similar example exists
for the case T remains open. However, (1) is not true for transcendental entire functions

because of the following result.

THEOREM 1 There exists a sequence of positive real number {c,}nen such that the se-
quence of functons F,(z) = (cpe®+2)o---o(c1e*+2) converges uniformly on compact subsets
to an entire function F(z). Furthermore, for eachn € N, F(z) = H,o(c,e*+2)o- - -o(c1€%+2)
for some entire function H,. Hence, there is no uniform bound on the number of prime fac-

tors c,e® + z in different decompositions of F' through T

Proof of Theorem 1~ We define the ¢; inductively. Take ¢; = 1 and suppose ¢y, ... ¢
has been defined. Define ¢ = {2 maxy, < [e+*)[}~1. Now for each disk |z| < R, for all
k > R, we have |Fi 1(2) — Fi(2)] = |cgr1ef*® + Fi(2) — F.(2)| < |egr1ef*@] < 27% on
|z| < R. It follows that {F,} is a Cauchy sequence in the space of analytic functions on
|z| < R. Hence, {F,} converges to an entire function F' uniformly on compact subsets. For
each c,e® + z, it is obvious that it is increasing on the real axis and c,e” + n > n for all
n € N. This implies that F'(n) > n. So F' is unbounded and hence non-constant. For each
n € Nand m > n+ 1, define H,,,,(2) = (cme® + 2) 0 --- 0 (¢,41€* + 2). Then by similar
arguments, we can show that {H, ., }men converges to a non-constant entire function H, as
m trends to infinity. Clearly, F'(z) = H, o (c,e*+z)o---0o(c1e* +z). Note that each cxe® + 2z
is prime (see [2], p.118) and we are done.

It is clear that the same arguments work even if we replace each e in F,(2) = (c,e* +
z)o---0(cre® + z) by some other entire functions (not necessarily the same in each factor),
provided that we can make sure that the limiting function is not constant. For example if we
consider G,,(z) = (cp2%+2)o---0(c122+2), then the limiting function G will be non-constant.
Note that G is a composition of infinitely many polynomials while itself is transcendental.
Since the complex dynamics of polynomials and transcendental entire function are quite

different (for example, some transcendental entire functions have wandering domains while



no polynomial has a wandering domain), it would be interesting to investigate the complex

dynamics of functions like G.
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