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Abstract  - Performances of gate dielectrics prepared by double nitridation in NO and N2O 

are investigated. Stronger oxide/Si interface, less charge trapping and larger charge-to-

breakdown are observed for such gate dielectrics than singly NO-nitrided gate dielectric. The 

physical mechanisms behind the findings are attributed to larger nitrogen peak concentration 

located almost at the oxide/Si interface and total nitrogen content near the oxide/Si interface 

of these gate dielectrics. 
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1. Introduction 

       As an alternative gate dielectric, oxynitrides have drawn considerable attention due to 

their superior performance and reliability properties over conventional SiO2 [1-5]. However, 

NH3-nitrided oxides suffer from hydrogen-related electron trapping problems [2-3] while 

N2O-based oxides require a much larger thermal budget for sufficient nitrogen incorporation 

[6-7]. To avoid these disadvantages of NH3 and N2O, nitric oxide (NO) has been proposed as 

a dielectric growth/anneal ambient to obtain better quality dielectric films [8-10]. 

Furthermore, NO-annealed process (an initial oxide grown in pure oxygen and then annealed 

in NO ambient) is preferred to prepare oxynitride with sufficient thickness in a reasonable 

time for manufacturing purposes, considering self-limiting of the growth process in NO 

ambient. This investigation further finds that NO nitridation combined with N2O nitridation 

(i.e. double nitridation) is a promising technique. In detail, if the initial oxide is grown in N2O 

and then annealed in NO ambient, or the initial oxide is grown in O2 and then nitrided in NO 

ambient followed by N2O annealing, better dielectric films with a harder oxide/Si interface, 

less charge trapping, and larger breakdown fields can be obtained compared with these 

properties in singly NO-nitrided dielectric films. We attribute the involved mechanisms to 

larger interfacial nitrogen concentration and total nitrogen content in the double-nitridation 

oxynitrides. This work reports relevant results in terms of stress-induced increase of 

interface-state density and shift of flat-band voltage, and charge trapping and breakdown 

properties of  MOS capacitors. 

 
2.  Experimental 

 
     MOS capacitors were fabricated on p-type (100) silicon wafers with a resistivity of ~ 7 Ω- 

cm by a self-aligned n+ polysilicon gate process. Gate oxides were grown in a conventional 

horizontal furnace in either dry O2 or pure N2O ambient at 950 oC to the same thickness of 

7.0 nm (NO was not used due to its low oxidation rate). They were then annealed in a pure 
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NO ambient at 950 oC for 30 min (denoted as ONO for O2 growth and N2ONO for N2O 

growth) to increase their nitrogen contents. Some of the ONO samples were further annealed 

in N2O ambient at 950 oC for 30 min (denoted as ONON2O) to provide another form of 

doubly-nitrided sample for comparing with N2ONO sample. Final oxide thickness measured 

by a capacitance voltage (C-V) technique was 8.2 ± 0.5 nm for ONO sample, 7.4 ± 0.5 nm for 

N2ONO sample and 9.3 ± 0.5 nm for ONON2O sample. Control sample with a film thickness 

of 8.5 ± 0.5 nm was thermally grown also at 950 oC in dry O2 (denoted as OX). All gate 

oxides finally received an in situ N2 anneal at 950 oC for 20 min. To study the interface and 

charge-trapping properties, Fowler-Nordheim (F-N) constant-current stress was used with 

electron injection from the gate, and the oxide/Si interface as the collecting electrode and the 

site of greatest damage. Increase in mid-gap interface-state density (ΔDitm), shift of flat-band 

voltage (ΔVfb), charge-to-breakdown (QBD), and change in gate voltage (ΔVG) were measured 

on the MOS capacitors with an area of 10-4 cm2. All measurements were carried out in a 

light-tight and electrically-shielded environment. 

 
3.  Results 

  
3.1  Nitrogen profile 
 
     The nitrogen profiles of the three oxynitrides were studied by secondary ion mass 

spectroscopy (SIMS) technique using Cs+ bombardment and CsN+ detection, and shown in 

Fig. 1. Two important points can be extracted: 1) N2ONO and ONO oxynitrides have the 

largest and smallest peak nitrogen concentrations (Np), respectively, with Np of ONON2O 

oxynitride close to that of N2ONO oxynitride; 2) the location of Np is almost at the interface 

in the N2ONO and ONON2O samples, while it is inside the Si substrate in the case of the 

ONO sample. Thus the total nitrogen contents in the two doubly-nitrided samples are larger 

than that in the singly-nitrided sample because their nitrogen profiles have almost identical 
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width at half of Np (3.0 nm for N2ONO oxynitride, 3.2 nm for ONO oxynitride and 3.4 nm 

for ONON2O oxynitride).  

 
3.2  Device properties 
 
    The hardness of the oxide/Si interface is evaluated by ΔDitm of the capacitors after a F-N 

constant-current stress at -10 mA/cm2 (the substrate as anode) for different injection times. 

As shown in Fig. 2, the creation of oxide/Si interface states of the three nitrided samples is 

suppressed as compared to OX sample due to interfacial nitrogen incorporation, with 

N2ONO sample better than the other two nitrided samples owing to its larger Np at the 

oxide/Si interface. This difference indicates that a double nitridation by NO and N2O can 

result in a harder oxide/Si interface than a single NO nitridation because more nitrogen 

incorporation at/near the oxide/Si interface, as shown in Fig.1, can produce more strong Si-N 

and N-O bonds. 

     Electron trapping in the oxide were examined by monitoring the change in gate voltage of 

the capacitors to maintain a constant current density of 10 mA/cm2 with gate injection. As 

shown in Fig. 3, the electron trapping of ONON2O oxynitride is smaller than that of ONO 

oxynitride, while the opposite holds for the other doubly-nitrided sample N2ONO.  

     Fig. 4 is the flat-band voltage shift of the capacitors under the same F-N stress conditions 

as those in Fig. 2. Again, N2ONO sample is most resistant to the hot-carrier stress and poorer 

resistance is observed in the ONON2O sample. A negative shift in Vfb indicates hole 

trapping, which is maybe due to generated donor-like interface states [11] and bulk trapping 

near the oxide/Si interface. We assume that creation of hole traps at/near the oxide/Si 

interface is more effectively suppressed for the two doubly-nitrided samples (N2ONO and 

ONON2O) than in the case of ONO oxynitrides due to more nitrogen incorporation near the 

interface. 
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    Presented in Fig. 5 is the charge-to-breakdown of the gate oxides under a constant-current 

stress of -100 mA/cm2. Improved QBD of oxynitrides is obtained as compared to thermal 

oxide (OX), with ONON2O oxynitride the best due to its suppressed electron-trap generation 

/trapping.  

4.  Discussions 

4.1 Nitrogen profile 

      For N2ONO and ONON2O oxynitrides, the larger Np is due to additional incorporation of 

nitrogen during the N2O oxidation and annealing. Their Np’s locations are determined by the 

combined effect of N2O and NO nitridations, because Np of N2O nitridation is inside the 

oxide while that of NO nitridation is inside the Si substrate [10]. Therefore, the double 

nitridation by NO and N2O is favourable in adjusting the location of Np to the oxide/Si 

interface, as well as increasing the interfacial nitrogen incorporation. Additionally, the 

smaller thickness increase of N2ONO oxynitride (0.4 nm) than that of ONO oxynitride (1.2 

nm) after NO annealing implies that better oxidation resistance and thus thickness control can 

be obtained when the initial oxide is grown in a N2O ambient. On the other hand, N2O 

annealing of ONO sample also produces a thickness increase of 1.1 nm, indicating different 

kinetics between N2O and NO annealings. 

4.2 Device properties 

     Poorer electron trapping properties of N2ONO oxynitride than ONON2O and ONO 

oxynitrides is associated with more nitrogen in the interior of N2ONO oxynitride than 

ONON2O and ONO oxynitrides, as shown in Fig. 1, because interior nitrogen degrades the 

breakdown, which is related to electron trapping [12, 13], of oxynitrides. The larger amount 

of interior nitrogen in N2ONO oxynitride comes from the N2O oxidation, which results in 

nitrogen incorporation throughout almost the whole oxide [12]. Fortunately, the interior 

nitrogen can be reduced by NO annealing. A possible reaction [14] for this reduction is 
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                                 Si-N-Si + NO → Si-O-Si + N2.                          
 
As demonstrated in Fig. 1c, nitrogen concentration is smaller in a large portion of N2ONO 

sample after the NO annealing. We expect that if the conditions of the NO annealing are 

optimized, the remaining interior nitrogen can become negligible. 

        In Fig. 5, the extent of QBD gain for the three oxynitrides basically follows that of their 

ΔVg reduction shown in Fig. 3, implying that the breakdown is related to electron trapping in 

the oxides. In  other  words, the larger the electron-trap generation/trapping rate, which is 

proportional to the slope of ΔVG versus injected charge in Fig. 3, the smaller is QBD [13, 15]. 

On the other hand, we assume that the oxide/Si interface properties would also affect the 

breakdown of devices, because it is found that more trap generation at the interface is 

accompanied by a smaller QBD [16]. Therefore, we suggest that QBD is controlled by a 

combined effect of electron trapping in oxide and interface-trap generation, with the former 

probably dominant. This effect is why N2ONO sample has a QBD almost identical to ONO 

sample, although the former has more electron trapping but less ΔDitm than the latter. Thus, 

we propose that a sufficiently large amount of N near the oxide/Si interface of oxynitride is 

effective in suppressing charge trapping and interface degrading, resulting in larger 

breakdown fields. 

 
5. Conclusions 

 
        Gate dielectrics with increased resistance against hot-carrier bombardments, suppressed 

charge trapping and  larger breakdown fields can be achieved by double-nitridation processes 

using both NO and N2O. The effects are due to larger interfacial nitrogen concentrations and 

larger total nitrogen content near the oxide/Si interface of such oxynitrides. Therefore, the 

double nitridation in NO and N2O could be a promising process for preparing gate dielectric 

in MOS devices. 
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Captions: 

 

 
Fig. 1 SIMS profile of nitrogen for the three oxynitrides. (a) ONO oxynitride, (b) ONON2O 

oxynitride and (c) N2ONO oxynitride. 

 

Fig. 2 Increase in midgap interface-state density ΔDitm of MOS capacitors with different gate 

dielectrics under a constant-current stress of -10 mA/cm2. Lines are drawn as guides for the 

eyes. 

 

Fig. 3 Change in gate voltage ΔVG of MOS capacitors under a constant-current stress at 10 

mA/cm2 with gate injection. 

 
 
Fig. 4 Flat-band voltage shift ΔVfb of MOS capacitors under the same stress conditions as 

those in Fig. 2. Lines are drawn as guides for the eyes. 

 

 

Fig. 5 Charge-to-breakdown QBD of gate dielectrics measured under a constant-current stress 

at 100 mA/cm2 with gate injection. The line is drawn as a guide for the eyes. 
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