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An Efficient Greedy Scheduler for Zero-Forcing Dirty-Paper Coding
Jisheng Dai, Student Member, IEEE, Chunqi Chang, Member, IEEE, Zhongfu Ye,

and Yeung Sam Hung, Senior Member, IEEE

Abstract—In this paper, an efficient greedy scheduler for zero-
forcing dirty-paper coding (ZF-DPC), which can be incorporated
in complex Householder QR factorization of the channel matrix,
is proposed. The ratio of the complexity of the proposed scheduler
to the complexity of the channel matrix factorization required
by ZF-DPC is O(M−1), while such ratio for the original greedy
scheduler is O(M), where M is the number of transmitters.
Therefore, the new scheduler reduces the overhead of scheduling
from being the bottleneck of ZF-DPC to being negligible.

Index Terms—Efficient greedy scheduler, multiple-input
multiple-output (MIMO), vector Gaussian broadcast channel
(GBC), zero-forcing dirty-paper coding (ZF-DPC), QR factor-
ization by Householder transformation.

I. INTRODUCTION

COMPARED to traditional single-input single-output
communication systems, multiple-input multiple-output

(MIMO) systems support greater data rate and higher re-
liability over wireless links [1], [2]. Recently, there has
been tremendous interest in MIMO multiuser systems with
multiple-antenna (vector) Gaussian broadcast channel (GBC),
for which the transmitters can cooperate in encoding their
signals but the receivers (users) are constrained to decode their
signals independently.

It is well known that dirty-paper coding (DPC) [3], which
encodes signals at the transmitter with known interference and
constrained transmitting power, achieves the capacity region
of the multiple antenna GBC [4]–[6] for the case of flat-
fading channels with perfect channel state information (CSI)
at all transmitters. A practical coding strategy called zero-
forcing dirty-paper coding (ZF-DPC) is proposed in [7] to
approach the capacity. It is noticed in [7] that the sum rate
(or throughput) of the channels with ZF-DPC can be affected
by user ordering, and the maximal sum rate can be achieved
when the number of ordered users is equal to the rank of the
channel matrix. Hence, there is a need to find the optimal user
ordering that approaches the maximal sum rate. A sub-optimal
user ordering algorithm (scheduler) called greedy scheduling
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is proposed in [8]. The performance of this scheduler and its
slightly modified versions are analyzed in [9].

However, the complexity of greedy scheduler proposed in
[8], [9] is very high if the number of transmit antennas is
large. As will be shown in this paper, the computing overhead
of the scheduler is much larger than the computation of the
channel matrix factorization itself required by ZF-DPC, the
ratio of the computational complexity of the overhead to that
of the channel matrix factorization being linearly proportional
to the number of selected users (which is chosen equal to the
number of transmitters). Therefore, fast scheduling algorithms
are desired to reduce the computational load of the scheduler.
In this paper, an efficient algorithm for the greedy scheduler
[8], [9] is proposed, which renders the overhead of scheduling
in ZF-DPC to be negligible.

The rest of this paper is organized as follows. In Section II,
ZF-DPC and greedy ZF-DPC algorithms are introduced. An
efficient greedy scheduler for near-optimal user ordering is
derived in Section III. Section IV evaluates the complexity of
different algorithms. Conclusions are drawn in Section V.

The following notations are used in this paper. The super-
scripts (·)H and ‖.‖ denote Hermitian operation and 2-norm
of a vector, respectively. (·)ij denotes the (i, j)th element of
a matrix, and I denotes the identity matrix. A\B denotes the
set A excluding set B. Cn×m is the n × m complex matrix
space.

II. ZF-DPC AND GREEDY ZF-DPC ALGORITHM

A. ZF-DPC

Consider a N -user vector GBC with M(≤ N) trans-
mitters. The relationship between the received signals y =
[y1 . . . yN ]T and transmitted signals x = [x1 . . . xM ]T can be
written as

y =

⎡
⎢⎣

hH
1
...

hH
N

⎤
⎥⎦x + n � Hx + n, (1)

where hH
i ∈ C1×M (i = 1, . . . , N) is the channel vector

denoting the path gain from the transmit antennas to the
ith user, and n ∼ N(0, σ2

nI) is the circularly symmetric
complex Gaussian noise. The power-constrained dirty-paper
coding (DPC) can be implemented as follows. Assuming
rank(H) = K(≤ M), we can perform a QR factorization
of (strictly speaking, the transpose of) H, so that

H = GQ, (2)

where G ∈ CN×K is lower triangular and Q ∈ CK×M has
orthonormal rows.
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We wish to transmit information to a number of users with
maximal sum rate (throughput) under the constraint of total
transmitting power P . It is shown in [7] that to achieve the
maximal sum rate we should transmit information to K users.
Let the information to be transmitted to the users be u =
[u1 . . . uK ]T , then we can transform this information as x =
QHu and transmit x through the channels of H. From Eq (1)
and (2) we have

yk = Gkkuk +
∑
j<k

Gkjuj + nk, k = 1, 2, · · · , K, (3)

while there is no information sent to users K +1, . . . , N . This
is called zero-forcing dirty-paper coding (ZF-DPC) because
for the k-th user the signal of all other users with index greater
than k are forced to zero in the k-th channel. In this scheme, if
we encode the information in the order of u1,u2, . . . , uK , then
for the k-th user the interference

∑
j<k Gkjuj is noncausually

known at the transmitter, and according to the result of [6]
codewords can be designed in a way that the capacity of the
channel is the same as if

∑
j<k Gkjuj, k = 1, 2, . . . , K , were

not present.
The sum rate for this ZF-DPC program can be maximized

when the power is optimally allocated across the first K
channels. This maximal sum rate is determined in [7], [8]
as

R =
K∑

k=1

[log(ξdk)]+ (4)

where dk = |Gkk|2, [x]+ � max(x, 0), and ξ is decided by
the following total power constraint

K∑
k=1

[ξ − 1/dk]+ = P. (5)

B. Greedy ZF-DPC Algorithm

Notice that the sum rate determined by Eq (4) depends on
dk, k = 1, 2, · · · , K , which in turn are determined by the QR
factorization (2). If we permute the rows of the channel matrix
H by a permutation matrix Π to ΠH, which is equivalent to
re-ordering the receivers (users), and perform ZF-DPC on the
permuted channel matrix ΠH, then we get a different sum
rate. This has been noted in [7]. Hence there is a need to find
an optimal user order, i.e. an optimal permutation matrix Πo,
so that ZF-DPC based on ΠoH will give the maximal sum
rate.

Obviously it is not easy to solve this combinatorial op-
timization problem especially when N and K are large.
Therefore, in [8] a sub-optimal approach to this optimal
user ordering (scheduling) problem called greedy ZF-DPC
scheduler is proposed. This algorithm finds the sub-optimal
permutation vector π = [π(1), . . . , π(K)] for the first K rows
of Πo, outlined as follows.

Greedy ZF-DPC Scheduler Algorithm

1) Initialization: Let K = 0.
2) For k = 1, . . . , M

Let π̃k = {π(i)|i < k}. (π̃1 = ∅)
Project all the hH

j , j ∈ {1, · · · , N}\π̃k, onto the
orthogonal complement of the subspace spanned

by {hH
π(i)|i < k}, and denote the 2-norm of these

projected vectors as γj , j ∈ {1, . . . , N}\π̃k.
Let k∗ = argmax

j
γj .

If γk∗ = 0
go to step 3

else

Let π(k) = k∗ and K = K + 1.

End
3) Output the scheduling represented by the permutation

vector π = [π(1), . . . , π(K)].
This algorithm also serves as the basis of the scheduler

employed in [9]–[11]. As we will see later, the computational
complexity of this scheduler is of the order O(NM3) flops
(floating operations), while the computational complexity of
the factorization of the channel matrix H in Eq (2) is of
the order O(NM2). Therefore this scheduling algorithm is
the bottleneck in the computation of the ZF-DPC. In the
following, we propose an efficient scheduling algorithm to
substantially reduce its computational complexity.

III. EFFICIENT GREEDY SCHEDULER FOR ZF-DPC

A. QR factorization of the channel matrix by Householder
transformation

Given two vectors aH ,bH ∈ C1×m with ‖a‖ = ‖b‖, the
Householder transformation H(aH ,bH) ∈ Cm×m reflects aH

to bH and is given by [12]

H(aH ,bH) = I− zzH

aHz
= I +

zzH

zHb
, (6)

where z = a − b. It can be readily checked that
aHH(aH ,bH) = bH and H(aH ,bH) is unitary.

The QR factorization of the channel matrix H in Eq (2) can
be implemented by means of the Householder transformation.
First we reflect hH

1 to ‖h1‖eH
1 , where eH

1 = [1 0 . . . 0], by
H(hH

1 , ‖h1‖eH
1 ), so that

HH(hH
1 , ‖h1‖eH

1 ) =
[ ‖h1‖ 0

× HN−1

]
. (7)

Then we reflect ĥH
1 , the first row of HN−1, to ‖ĥ1‖eH

1 by
H(ĥH

1 , ‖ĥ1‖eH
1 ), so that[ ‖h1‖ 0
× HN−1

] [
1 0
0 H(ĥH

1 , ‖ĥ1‖eH
1 )

]

=

⎡
⎣ ‖h1‖ 0 0

× ‖ĥ1‖ 0
× × HN−2

⎤
⎦ . (8)

Applying this procedure recursively to HN−2, we get after
at most M steps the QR factorization of H as in Eq (2).
Details of the Householder QR can be found in [13].

B. Efficient Greedy Scheduler

The greedy ZF-DPC as proposed in [8] consists of two
independent steps, namely the greedy scheduling and the
QR factorization. We note that if the QR factorization is
performed recursively by the Householder transformation de-
scribed above, then the scheduler can be incorporated very
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efficiently within the Householder QR factorization. The key
observations in our proposed method are:

• The subspace projection of step (2) of the greedy sched-
uler is automatically performed as part of the House-
holder QR and therefore to perform this scheduling
separately is a duplication of computational effort.

• The size of the subspace projection problem gets progres-
sively smaller in the recursive procedure of the House-
holder QR factorization, and since the 2-norm of the
original projection is equal to the 2-norm of the projection
onto the space of progressively reduced dimension, the 2-
norm in turn can be inferred very efficiently in a recursive
manner.

According to the Greedy Scheduler Algorithm described
in the previous section, the first user selected is the one
whose channel has the maximal 2-norm, so we permute H
accordingly to Π1H with the first row associated to the
selected user, and we denote this channel as hH to simplify
the presentation. Applying Householder transformation to the
first row of Π1H gives

Π1H =
[ ‖h‖ 0

× HN−1

]
Q1, (9)

where QH
1 is the unitary Householder transformation matrix

for the first row of Π1H.
We now proceed to select the (k+1)-th user by an induction

argument. Suppose the previous k users have already been
selected by the greedy scheduler, whereby H is permuted to
ΠkH whose first k rows are associated with the selected k
users in an ordered way. Also assume that we have applied
Householder transformation to the first k rows of ΠkH so
that

ΠkH =
[

R 0
X HN−k

]
Qk, (10)

where R is a lower triangular matrix, and Qk is unitary since
QH

k is a product of k Householder transformation matrices.
Partitioning the matrices in Eq (10) accordingly, we have

[
Ĥ1

Ĥ2

]
=

[
R 0
X HN−k

] [
Qk,1

Qk,2

]
. (11)

To select the (k + 1)-th user in the greedy scheduling
algorithm, we need to project rows of Ĥ2 onto the orthogonal
complement of the subspace spanned by rows of Ĥ1, and order
the users by the 2-norm of these projections. To show that the
greedy scheduling scheme can be incorporated into the QR
factorization, we need the following result.

Theorem 1: Let rows of Ĥp
2 be the projection of corre-

sponding rows of Ĥ2 onto the orthogonal complement of
the subspace spanned by rows of Ĥ1, where Ĥ1 and Ĥ2 are
defined by Eq (11). Then the 2-norm of the rows of Ĥp

2 are
equal to the 2-norm of the corresponding rows of HN−k, i.e.,
diag{Ĥp

2(Ĥ
p
2)

H} = diag{HN−kHH
N−k}.

Proof: Since Ĥ1 = RQk,1 and R is nonsingular, the
row space of Ĥ1 is the same as the row space of Qk,1. As
Qk,2QH

k,1 = 0, the row space of Qk,2 is just the orthogonal

complement of the row space of Ĥ1. Then we have

Ĥp
2 = Ĥ2QH

k,2Qk,2

= (XQk,1 + HN−kQk,2)QH
k,2Qk,2

= HN−kQk,2, (12)

Ĥp
2(Ĥ

p
2)

H = HN−kQk,2QH
k,2H

H
N−k

= HN−kHH
N−k. (13)

This proves that diag{Ĥp
2(Ĥ

p
2)

H} = diag{HN−kHH
N−k}.

By Theorem 1, we can select the (k +1)-th user as the one
whose corresponding row in HN−k has the maximal 2-norm
among all the rows of HN−k, which is equivalent to Step 2
of the greedy ZF-DPC scheduler given in Section II-B. Then
we have the following algorithm of efficient ZF-DPC with
greedy scheduling.

Efficient ZF-DPC with Greedy Scheduling

1) Let K = 0, HN = H, and G be a zero matrix with the
same size as H.

2) For k = 1, . . . , M

Compute the 2-norm of the rows of HN−(k−1).
Permute the rows of HN−(k−1) to H∗ so that its
first row, denoted as hH , has the maximal 2-norm
among all its rows.
If ‖h‖ = 0

go to step 3

else

Let H(hH , ‖h‖eH
1 ) = I − h−‖h‖e1

hH(h−‖h‖e1)(h −
‖h‖e1)H � I− vkwH

k .
Perform the Householder transformation

H∗H(hH , ‖h‖eH
1 ) =

[ ‖h‖ 0
g HN−k

]
. (14)

Define the kth column of G to be

⎡
⎣ 0(k−1)×1

‖h‖
g

⎤
⎦.

Let K = K + 1.

End
3) Output the lower triangular matrix G, and Q =∏K

k=1 Qk, where Qk =
[

Ik−1 0
0 I − vkwH

k

]H

. We

note that Q needs not to be obtained explicitly since
it is used only for coding x = QHu and this can be
calculated by using vk and wk, k = 1, . . . , K , with
complexity of the same order as that of calculating QHu
directly.

IV. COMPLEXITY EVALUATION

In practice, the number of users (receivers) N is always
much greater than the number of transmitting antennas M , i.e.
N ≥ M . If the channels are not degenerate, which is assumed
in this section, the rank of the channel matrix H is M so that
the number of selected users K = M . In the following, we
calculate the number of real multiplications and the number
of real additions separately, which are required by different
algorithms. Note that one complex multiplication takes 4 real
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multiplications and 2 real additions, and one complex addition
needs 2 real additions. Unless otherwise specified, multiplica-
tions and additions refer to complex operations throughout this
section.

A. Complexity of Householder QR for channel matrix factor-
ization

For each iteration of the QR factorization, we need to
calculate H∗H = H∗(I − vkwH

k ) = H∗ − (H∗vk)wH
k ,

where the size of H∗ is (N − k + 1) × (M − k + 1). To
calculate vk and wk we need 3(M−k+1) multiplications and
2(M−k)+1 additions, and we need 2(N−k+1)(M−k+1)
multiplications and (2M − 2k + 1)(N − k + 1) additions
for the remaining calculation. Therefore the number of real
multiplications needed in total is

C×
QR = 4NM2 − 4

3
M3 + O(NM), (15)

and the number of real additions is

C+
QR = 4NM2 − 4

3
M3 + O(NM). (16)

B. Complexity of Greedy ZF-DPC Scheduler

For each iteration, we need 2kM multiplications and
2kM −M −k additions for Gram-Schmidt orthogonalization,
kM(N −k+1) multiplications and kM(N −k)+M +k−N
additions for projection, and 2M(N − k) real multiplications
and (M − 1)(N − k) + M(N − k) real additions for 2-norm
calculation. Thus, the total number of real multiplications is

C×
S = 2NM3 − 4

3
M4 + 5M3 + 2NM2 + O(NM), (17)

and the total number of real additions is

C+
S = 2NM3 − 4

3
M4 + 4M3 + 2NM2 + O(NM). (18)

C. Complexity of Efficient Greedy Scheduler

In our efficient greedy scheduler, scheduling is performed
inside the QR factorization loop. The overhead of scheduling
is to compute the 2-norm of rows of HN−k at each iteration
k + 1. From Eq (14) we have

H∗HH
∗ =

[ ‖h‖ 0
g HN−k

] [ ‖h‖ gH

0 HH
N−k

]

=
[ ‖h‖2 ‖h‖gH

‖h‖g ggH + HN−kHH
N−k

]
. (19)

The diagonal of H∗HH
∗ and diagonal of HN−kHH

N−k are
the squared 2-norm of rows of H∗ and rows of HN−k,
respectively. So the squared 2-norm of i-th row of HN−k can
be calculated as

(HN−kHH
N−k)ii = (H∗HH

∗ )ii − |gi|2, (20)

where gi is the i-th entry of g. Since (H∗HH∗ )ii has
been calculated in the previous step, only 2 real multipli-
cations and 2 real additions are needed for the calculation
of (HN−kHH

N−k)ii. The initial calculation of the squared
2-norm of rows of H requires 2NM real multiplications
and N(M − 1) + NM real additions, so the additional real

multiplications and real additions needed in our proposed
scheduling are

C×
ES = 2NM +

M−1∑
k=1

2(N − k) + O(N)

= 4MN − M2 + O(N), (21)

C+
ES = N(M − 1) + NM +

M−1∑
k=1

2(N − k) + O(N)

= 4MN − M2 + O(N). (22)

Let α = M/N , which tends to 0 when N >> M , then we
have

CES

CQR
=

1 − α/4
1 − α/3

M−1 + O(M−2), (23)

CS

CQR
=

1 − 2α/3
2 − 2α/3

M + O(M0). (24)

Note that the superscript (“ × ” or “ + ”) is dropped because
of the approximately equal number of multiplications and
additions in each algorithm.

By using our proposed efficient greedy scheduling algo-
rithm, we can thus reduce the overhead of scheduling from
being the bottle neck of ZF-DPC to being negligible.

V. CONCLUSIONS

Zero-forcing dirty paper coding (ZF-DPC) is used in vector
Gaussian broadcast channel. To maximize the sum rate, a
greedy scheduling is proposed in [8] to get a sub-optimal
user ordering. In this paper we propose an efficient algorithm
for this greedy scheduler by doing the scheduling within the
QR factorization of the channel matrix, which is a necessary
step in ZF-DPC. Thus, for a N receiver M transmitter
system the computational complexity of scheduling is reduced
from O(NM3) to O(NM), i.e., from being the bottleneck
of ZF-DPC to being negligible. Our algorithm can also be
employed by related greedy schedulers described in [9]–[11],
but the computational complexity should be recalculated if the
number of selected users is 1 ≤ K < M .
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