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Design of FIR Digital Filters With Prescribed Flatness
and Peak Error Constraints Using Second-Order

Cone Programming
K. M. Tsui, S. C. Chan, Member, IEEE, and K. S. Yeung

Abstract—This paper studies the design of digital finite impulse
response (FIR) filters with prescribed flatness and peak design
error constraints using second-order cone programming (SOCP).
SOCP is a powerful convex optimization method, where linear
and convex quadratic inequality constraints can readily be in-
corporated. It is utilized in this study for the optimal minimax
and least squares design of linear-phase and low-delay (LD) FIR
filters with prescribed magnitude flatness and peak design error.
The proposed approach offers more flexibility than traditional
maximally-flat approach for the tradeoff between the approxima-
tion error and the degree of design freedom. Using these results,
new LD specialized filters such as digital differentiators, Hilbert
Transformers, th band filters and variable digital filters with
prescribed magnitude flatness constraints can also be derived.

Index Terms—Constrained finite impulse response (FIR) filter
design, digital differentiators, low-delay (LD), magnitude and
group delay flatness, peak error constraints, second-order cone
programming (SOCP).

I. INTRODUCTION

RECENTLY, convex optimization methods such
as semidefinite programming (SDP) [1]–[3] and

second-order cone programming (SOCP) [4]–[6] have been
widely employed in designing digital finite impulse response
(FIR) and infinite impulse response (IIR) filters. An important
advantage of such methods is its ability to satisfy multiple
objectives expressed in terms of a set of linear and convex
quadratic constraints. Since SDP and SOCP are convex prob-
lems, the optimality of the solution, if it exists, is guaranteed.
This motivates us to study in this paper the design of digital
FIR filters with more general constraints such as magnitude
flatness (such as multiple zeros in magnitude response) and
peak design error constraints. More specifically, we shall for-
mulate these design problems as a SOCP [4]–[6]. Alternatively,
SDP, which is a generalization of SOCP, can also be used at the
expense of higher arithmetic complexity. Conventionally, linear
programming has been proposed [7] as a general framework
for handling the additional linear equality and inequality con-
straints for designing linear-phase (LP) FIR filters. Since SOCP
is an extension of linear programming, the SOCP-constrained
FIR filter design method proposed in this paper can be viewed
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as its generalization to handle convex quadratic constraints,
which allows optimal minimax and least-squares (LS) passband
LP FIR filters subject to linear equalities and convex quadratic
inequalities to be designed. There were also previous attempts
in incorporating linear equality constraints in LS design of
FIR filters [8]–[10]. The design problem is usually formulated
as a quadratic programming problem with linearly equality
constraints (QPLC), generally known as the eigenfilter design
method. Advantages of these approaches are their good per-
formance and low design complexities. On the other hand, the
SOCP approach is capable of handling more general types of
quadratic constraints and design criterion, including the QPLC,
as we shall demonstrate in the design example section.

In this paper, we mainly focus on prescribed flatness and peak
error constraints [11]. Magnitude flatness and multiple zeros are
desirable in designing sample rate converters in order to sup-
press the alias components and the design of wavelet basis. On
the other hand, peak error constraints are useful to limit the side-
lobe and undesirable peaks in filters with wide unconstrained
transition band. Both the LS and minmax design criteria will
be considered. The magnitude flatness constraints are derived
through a simple relation between the derivatives of the filter
response and its ideal counterpart. This yields a set of linear
equality constraints, which can readily be solved using SOCP.
A similar set of linear equality constraints can also be derived
for a prescribed flatness in the group delay response. In addi-
tion, since the FIR filters are not limited to LP, the system delay
can further be reduced. Using these results, new low-delay (LD)
specialized filters such as digital differentiators (DDs) with the
magnitude and/or group delay flatness constraints are derived.
The proposed method is also applicable to the design of other
specialized filters such as Hilbert transformers, th-band fil-
ters, complex coefficient FIR filters and variable digital filters
with magnitude and group delay flatness, and peak error con-
straints. Interested readers are referred to [3] and [12] for more
details. Within the SOCP framework, these linear equalities and
convex quadratic inequalities such as peak design error can be
integrated together to yield FIR filters in the minimax and LS
design errors. This gives a better tradeoff between magnitude
and group delay flatness and passband and stopband ripples
over conventional LP maximally flat DDs [13], [14]. Design
results show that the SOCP method offers an attractive alter-
native to traditional design methods because of its optimality,
generality, and flexibility. The paper is organized as follows.
Section II is devoted to the SOCP formulation of the design
problem. Methods for deriving the magnitude flatness, group
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delay flatness, and peak design error constraints are also intro-
duced. Design examples are presented in Section III. Finally,
conclusions are drawn in Section IV.

II. CONSTRAINED FIR FILTER DESIGN USING SOCP

A. Problem Formulation

Let be the transfer function of a
FIR filter of length , where ’s are the filter coefficients to
be determined. The frequency response of is given by

(1)

where
, and

. To approximate the
desired response by in the minimax sense, we
solve the following min-max problem:

(2)

where is a positive weighting function, and
is the frequency interval of interest. Letting and

be the real and imaginary parts of , (2) can be
reformulated as

subject to (3)

for , where
and . By digitizing the
frequency variable over a dense set of frequencies

on the frequency of interest, (3) can be cast to the
following standard SOCP problem:

subject to (4)

where

and is an row
zero vector and denotes the Euclidean norm. Alternatively,
(2) can be formulated as an SDP problem [1]–[3], [12], which
might provide more flexibility but requires a longer design time.
For simplicity, only the SOCP formulation is considered below.
Instead of using the minimax criterion, the following LS error
criterion can be minimized:

(5)

where
, and

. The optimal LS solution is given
by , which can also be solved by a SOCP as
follows:

subject to (6)

where and . The advantage of
employing a convex programming such as SOCP or SDP in the
formulation is that the resulting problem is a convex optimiza-
tion and the optimal solution, if it exists, can be found. In addi-
tion, other linear equalities or convex quadratic constraints can
be incorporated.

B. Imposing Linear Equality Constraints

When designing digital filters, it is often required to im-
pose certain constraints on the frequency characteristics. One
commonly encountered constraint is the linear equality con-
straints, which includes magnitude and group delay flatness at
certain frequency points in the passband. Constraints such as a
prescribed number of zeros at the stopband also belong to this
category. To incorporate these magnitude flatness constraints
into SOCP, the following relation between the derivatives of
the design frequency response and its ideal counterparts is
employed:

(7)
Equation (7) tells us that the filter to be designed, ,
should approximate the desired response at up to the

th derivatives. Two simple examples are given below.
1) Magnitude Flatness Constraint at the Pass-

band: Suppose that the desired passband response is of the
form for any , where
is the group delay, and is the delay reduction parameter. To
impose a magnitude flatness of order on at
in the passband, , we have

(8)

or in matrix form

(9)

where and
. Here, denotes the th entry

of matrix . The constraints in (7) can also be applied to
other forms of desired passband response, say DD, as we shall
illustrate in Section III-B.

2) Magnitude Zero Constraint at the stopband: Similarly, to
impose zeros on at (say in the stopband),
we have

(10)

or in matrix form

(11)
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where . These constraints can be com-
bined and written in the following matrix representation:

(12)

where is an matrix and is an vector. The
problems in (4) and (6) can then be solved subject to these linear
equality constraints using SOCP.

C. Group Delay Flatness Constraints

Other than the magnitude flatness constraints, a prescribed
group delay flatness at the passband can also be imposed. Let
us consider the phase response of

(13)

The error in approximating the ideal phase response can
be written as follows:

(14)

To impose a group delay flatness of order on at in
the passband is equivalent to

(15)

Substituting (14) into (15), one obtains

(16)

where

and . Again, (16) can be readily incor-
porated into the SOCP formulation. Moreover, it is interesting
to note that the group delay flatness constraints are related to
magnitude flatness constraints. Comparing (16) with the first or
higher order magnitude flatness constraints in (9), it can be ob-
served that either the real or imaginary part of (9) can satisfy
the group delay flatness in (16) of the same order. Therefore, if
a magnitude flatness constraint up to at least the first order is im-
posed, the same order of group delay flatness is automatically
satisfied.

D. Peak Error and Convex Quadratic Constraints

Apart from linear equality constraints, linear and convex
quadratic inequality constraints can easily be incorporated
in the SOCP formulation. As an illustration, we shall con-
sider the optimal design of LD FIR filters with LS stopband
attenuation and a prescribed peak ripple constraints. Letting

be the peak stopband ripple to be imposed in a frequency

Fig. 1. Design results of fractional delay LPFs in example 1 (design criterion:
minimax): verification of the relation between magnitude and group delay
flatness for LPFs. (a) Frequency response (passband details in smaller figure).
(b) Group delay response.

Fig. 2. Design results of fractional delay LPFs in example 1 (linear equality
constraint: U = 10; V = 1 and G = 5). (a) Frequency response (passband
details are in the smaller figure). (b) Group delay response.

band (a collection of frequency bands is also
feasible), then the peak error constraint can be written as

. Similar to the minimax case, one
obtains

where (17)

Discretizing (17), the resulting constraints on the peak ripples
can be augmented to the existing constraints in (4) and (6) for
the minimax and LS criteria, respectively.

III. DESIGN EXAMPLES AND RESULTS

In this section, LD FIR filters including low-pass filter (LPFs)
and DDs are considered. All of the design problems were solved
by the SeDuMi Matlab Toolbox [15] on a Pentium 4 PC.

A. Low-Delay FIR LPFs

Example 1: In this example, fractional passband delay FIR
filters with prescribed magnitude flatness and group delay flat-
ness at and a prescribed number of zeros at
are designed. The number of sample points at the passband
and stopband are 100. The specifications are as follows:

, and . According to the dis-
cussion in Section II-C, if a prescribed group delay flatness at

of order is imposed, then (15) reduces to

(18)

for , where and
denotes the integer just less than or equal to . Equation

(18) can be written more compactly in matrix form as
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TABLE I
SPECIFICATIONS AND DESIGN RESULTS OF THE LD LPFS IN EXAMPLES 1 AND 2. � : PASSBAND ERROR (dB); � : STOPBAND ERROR

(dB); � : GROUP DELAY ERROR (SAMPLES)

Fig. 3. Design results of LD odd-length DDs in example 3 (design criterion:
minimax). Comparison with different orders of magnitude linearity for
odd-length DDs. (a) Magnitude response. (b) Passband errors. (c) Group delay
response. (MF-LP-DD: maximally flat linear-phase digital differentiator.)

, where . The dotted line in Fig. 1
shows the frequency and group delay responses of the LPFs
with , and . As mentioned earlier,
if magnitude flatness constraints at (i.e., the
first or higher order of the magnitude flatness) are imposed,
then (18) will also be satisfied for where

. Therefore, if , then a group
delay flatness of order will also be satisfied. To verify
this, an LPF with the same specification, but different flatness
parameters of , and , is designed and
plotted as the solid line in Fig. 1. It can be seen from the group
delay responses in Fig. 1(b) that both filters achieve the same
degree of group delay flatness at . As a comparison, frac-
tional delay LPFs with and are
also designed using the LS criterion and the technique recently
proposed in [16]. It can be seen from Fig. 2 that the deviation at

, the stopband, and the group delay errors in this approach
are relatively higher. One advantage of our approach over the
method in [16] is that the relation between magnitude and group
delay flatness is explored so that the remaining freedom can be
used to improve the stopband and passband responses. More-

Fig. 4. Design results of LD even-length DDs in example 3 (design criterion:
minmax). Comparison with different orders of magnitude linearity for
even-length DDs. (a) Magnitude response. (b) Passband errors. (c) Group delay
response. (MF-LP-DD: maximally flat linear-phase digital differentiator.)

over, the worst-case passband deviation and stopband attenua-
tion can further be improved by applying the peak error con-
straints to the LS solution or using the minmax criterion, as we
shall demonstrate in next example.

Example 2: In this example, LD LPFs with magnitude and
group delay flatness are designed. Both minimax and LS stop-
band criteria are minimized. The specifications are identical to
example 1 except that and the constraint parameters are

and . Note that the LS design is a quadratic
programming problem with linear equality constraints, which
can be solved either by the eigenfilter method [8], [9] or
the SOCP method. The worst-case stopband attenuation is
42.183 dB for the LS design, as compared to 50.951 dB for
the minimax design. To further illustrate the flexibility of the
SOCP method, peak stopband constraints, which are convex
quadratic inequality constraints, are imposed to limit the side-
lode at to 50 dB. From its frequency response
and pole-zero plot (not shown here due to page limitation),
it is noticed that both equality and inequality constraints are
satisfied. The parameters and results of the LPFs in examples 1
and 2 are summarized in Table I.
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TABLE II
SPECIFICATIONS AND DESIGN RESULTS OF THE LD DDS IN EXAMPLE 3

B. Low-Delay Digital Differentiators

Example 3: In this example, LD DDs with prescribed mag-
nitude linearity at are designed. Due to space limitation,
only the minimax design is considered. The desired frequency
response of a DD [7] is given by

, where is an additional group
delay term over the passband . When ,
the proposed DDs with odd and even lengths correspond to
the traditional type-3 and type-4 LP DDs, respectively. By
choosing , DDs with low system delay can be obtained.
From (7), a magnitude flatness constraints in its error response
(or magnitude linearity constraints) of order at
can be written as , where and

for . As an illus-
tration, LD DDs with are designed. The odd-length
low-delay DD has a filter length of and the pass-
band is from 0 to whereas the even-length LD DD has
a filter length and its passband is from 0 to .
No stopband sample is required and the number of passband
sample is 200. Different degrees of magnitude linearity for

and are imposed at . Figs. 3 and 4 show
the corresponding magnitude and group delay responses of
the odd- and even-length LD DDs, respectively. Note that the
new odd-length LD DDs do not necessarily have a zero at

, unlike its LP counterparts, and this gives rise to a
larger possible passband. From Table II and Figs. 3 and 4,
it can be seen that the passband ripples are smaller for the
designs with a lower order of magnitude linearity, which is
to be expected. Also, although the group delay of the design
with appears to be rather large around ,
its magnitude response is close to zero and it has a better
linearity at . As a comparison, the conventional type-3
and type-4 maximally flat LP DDs (MF-LP-DD) [13] are also
designed with the same group delay as the proposed DDs. It
can be seen from Figs. 3(b) and 4(b) that the passband errors
of the maximally flat solutions increase as increases, and
they are much higher than that of the proposed DDs at the
band edges. This suggests that the prescribed flatness approach
offers more flexibility and freedom than the maximally flat
solution in satisfying different passband and stopband require-
ments. The design results in this example are summarized in
Table II.

IV. CONCLUSION

A design approach for LD FIR filters with prescribed flat-
ness and peak design error constraints using SOCP has been
presented. Design results show that the SOCP method is an at-
tractive alternative to traditional design methods in tackling a
wide range of filter design problems, because of its optimality,
generality, and flexibility.
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