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Extraction of Moving Objects From Their
Background Based on Multiple Adaptive

Thresholds and Boundary Evaluation
Lu Wang and Nelson H. C. Yung, Senior Member, IEEE

Abstract—The extraction of moving objects from their back-
ground is a challenging task in visual surveillance. As a single
threshold often fails to resolve ambiguities and correctly segment
the object, in this paper, we propose a new method that uses
three thresholds to accurately classify pixels as foreground or
background. These thresholds are adaptively determined by con-
sidering the distributions of differences between the input and
background images and are used to generate three boundary
sets. These boundary sets are then merged to produce a final
boundary set that represents the boundaries of the moving objects.
The merging step proceeds by first identifying boundary segment
pairs that are significantly inconsistent. Then, for each inconsistent
boundary segment pair, its associated curvature, edge response,
and shadow index are used as criteria to evaluate the probable
location of the true boundary. The resulting boundary is finally
refined by estimating the width of the halo-like boundary and
referring to the foreground edge map. Experimental results show
that the proposed method consistently performs well under differ-
ent illumination conditions, including indoor, outdoor, moderate,
sunny, rainy, and dim cases. By comparing with a ground truth in
each case, both the classification error rate and the displacement
error indicate an accurate detection, which show substantial im-
provement in comparison with other existing methods.

Index Terms—Boundary evaluation, change detection, curva-
ture, edge, foreground extraction, thresholds.

I. INTRODUCTION

NATURAL IMAGE sequences often contain one or more
moving objects performing a series of actions in front

of a background scene that is almost stationary. It could be
a human walking across the camera’s field of view, a group
of players in a football game, or vehicles traveling along a
highway. In terms of computer vision, a moving object is a set
of foreground pixels that is not part of the static background
pixel set and changes its position between frames. If we can
accurately extract these moving objects from their background,
the subsequent object recognition or tracking would be enor-
mously simplified. The way in which these moving objects
are extracted is commonly known as foreground extraction
in applications such as visual surveillance [1] and intelligent
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user interfaces [2]. Conceptually, assuming that the background
is stationary, if we have a copy of the background, then the
foreground can be determined by taking the difference between
the background image and the input image. Unfortunately, the
problem is not so straightforward in practice.

Conventionally, the foreground extraction problem is dealt
with by change detection techniques, which can be pixel based
or region based. Simple differencing is the most intuitive by
arguing that a change at a pixel location occurs when the
intensity difference of the corresponding pixels in two images
exceeds a certain threshold. However, it is sensitive to pixel
variation resulting from noise and illumination changes, which
frequently occur in complex natural environments. More robust
methods [2]–[4] handle noise and lighting change issues by
maintaining an adaptive statistical background model. Recently,
Tsai and Lai [5] have proposed using independent component
analysis to deal with illumination changes without background
model updating.

On the other hand, region-based change detection methods
take advantage of interpixel relations, measuring the region
characteristics of an image pair at the same pixel location. For
instance, the likelihood ratio test [6] uses a hypothesis test to
decide whether statistics of two corresponding regions come
from the same intensity distribution. Although this method is
more immune to noise, it is still fairly sensitive to illumina-
tion changes. The shading model (SM) [7] exploits the ratio
of intensities in the corresponding regions of two images to
cope with illumination changes. Liu et al. [8] suggested a
change-detection scheme that compares circular shift moments
(CSMs), which represent the reflectance component of the
image intensity, regardless of illumination. However, both the
SM and CSM methods poorly perform over dark regions,
as the denominator of the ratio becomes insignificant. Local
structural features that are less affected by illumination changes
have also been employed to represent the difference of two
corresponding regions. Li and Leung [9] proposed an algorithm
that combines intensity and texture differences, which is based
on the argument that texture is less sensitive to illumination
changes, whereas intensity is more representative of homoge-
neous regions. Unfortunately, an exception occurs under weak
illumination when intensity is strongly affected by noise and
texture is poorly defined. Instead, Heikkilä and Pietikäinen
[10] modeled each pixel as a group of adaptive local binary
pattern histograms that are calculated over a circular region
around the pixel. It is tolerant against illumination changes and
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simple to compute. The drawback is that it introduces many
parameters that need to be empirically set, making it difficult
to correctly apply in real scenarios. Although region-based
methods are generally more robust than pixel-based methods,
one common problem with them is that the object’s boundary
becomes inaccurate because the pixel in question may not have
changed, whereas its neighborhood may have.

Whether the method is pixel based or region based, thresh-
olding of the difference image always presents itself as most
challenging. In many cases, the threshold is selected empiri-
cally or by trial and error. Obviously, a threshold chosen in
this way is ineffective for images with significantly different
distributions. As a result, several adaptive threshold selection
methods have been proposed. Some of these methods are based
on histograms. For example, Otsu’s method [11] calculates
the best threshold by minimizing the ratio of intraclass and
interclass variations, the isodata algorithm [12] searches for the
best threshold by an iterative estimation of the mean values of
the foreground and background pixels, the triangle algorithm
[13] particularly deals with unimodal histograms, Kita [14]
analyzes the characteristics of the ridges of clusters on the joint
histogram, and Sen and Pal [15] select the threshold by using
the fuzzy and rough set theories. Another set of approaches
is to assume that the distributions of the changes and the
noise of the difference image are Gaussian or Laplacian. For
example, Bruzzone and Prieto [16] modeled the difference
image as a mixture of two Gaussian distributions, representing
changed and unchanged pixels. The means and variances of
the class-conditional distributions are then estimated using
an expectation–maximization algorithm. Rosin and Ellis [17]
exploited the simple statistics of the median and the median
absolute deviation by assuming that less than half the image is
in motion. Kapur et al. [18] selected thresholds by virtue of the
entropy of the image. Gray [19] considered the Euler number,
and O’Gorman [20] used image connectivity.

The major shortcoming of the single-threshold (ST) ap-
proach is that it often ends up with a foreground that is either
oversegmented or undersegmented. This comes as no surprise
because the foreground and background pixels intertwine in
the measurement space, which makes it impossible to have a
global threshold that segments well. To alleviate the problem,
it appears logical to instead consider multiple thresholds. Rosin
and Ellis [17] perform thresholding with hysteresis, where the
difference image is first thresholded by two levels, and regions
in the intermediate range are not considered to be changed
unless they are connected with regions generated by the higher
threshold. This method scratches the surface of the problem
and stops short of tackling the real issue. Zhou and Hoang [21]
proposed a bithreshold method in which pixels in the interme-
diate range of difference are further evaluated to decide whether
they are shadow pixels or not. Reference [22] is similar to [21],
except that a silhouette extraction technique is applied on the
foreground extraction result to smooth the boundary.

From a classification point of view, applying P thresholds
results in P + 1 classes. For P = 2, we have background, fore-
ground, and ambiguous pixel classes. These ambiguous pixels
belong to either the foreground or the background and need to
be further classified. In this paper, we adopt this line of ap-

proach. In principle, we first select a low threshold τL, a middle
threshold τM , and a high threshold τH by separately applying
the triangle algorithm on the (texture, luminance, and chromi-
nance) difference distributions, from which the boundaries of
three masks BL, BM , and BH , corresponding to τL, τM , and
τH , respectively, are obtained. Then, corresponding points from
BL and BM are evaluated to see if they are consistent or not.
The connected inconsistent points constitute the inconsistent
boundary segments (IBSs). For each IBS pair, the segment
characterized by being unassociated with a shadow region and
having a lower curvature and a larger edge response is chosen as
the resulting boundary. The resultant intermediate boundary set
BI (from merging BL and BM ) and BH are subjected to the
same IBS identification and evaluation as described above to
give a representative boundary set BR. Next, from the fact that
real holes always result in similar shapes in the three masks,
whereas false holes do not, the IBS identification result is used
to verify whether a hole is real or not. Finally, BR is refined to
give a final boundary set that encloses the extracted objects.
Experimental results show that the proposed method consis-
tently performs well under different illumination conditions,
including indoor, outdoor, normal, sunny, rainy, and dim cases.
By referring to a ground truth in each case, the classification
error rate, which is 6.8%, indicates an accurate detection, which
is a substantial improvement over other existing methods.

II. PROPOSED METHOD

A. Overview

The proposed method aims at extracting the moving objects
in an input image from their background, where the background
image is estimated by median filtering along the temporal
direction. As depicted in Fig. 1, the proposed method consists
of five steps: 1) difference image calculation; 2) thresholds
selection; 3) IBS identification and evaluation; 4) verification;
and 5) boundary refinement. Details of these steps are described
in the following sections.

B. Difference Image Calculation

In this paper, three differences, namely, texture (ΔT ), lumi-
nance (ΔY ), and chrominance (ΔC), between the input image
and the background, as proposed in [23], are calculated. The
texture T of an image is measured by the autocorrelation of
each square image block of size (2N + 1) × (2N + 1) in the
intensity space, and ΔT is calculated as the square difference
of the texture of the two corresponding blocks. ΔT is insensi-
tive to illumination changes as it measures the local structure
difference. ΔY is given by the difference of the Y channel,
while ΔC is determined by the sum of the square differences
in the Cb and Cr channels of the YCbCr color space. ΔY and
ΔC are complements to ΔT , and they are effective in detecting
untextured inner regions of the moving objects where color or
brightness significantly changes relative to the background. For
outdoor scenes, all three differences are considered, whereas
for indoor scenes, as the light source(s) may be flickering, only
ΔT is considered, as it represents the most stable feature that is
insensitive to illumination changes.
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Fig. 1. Overview of the proposed multiple-threshold object extraction.

C. Thresholds Selection

As a general requirement, the selection of thresholds should
be systematic and adaptive to a variety of images. In this paper,
we propose to use three thresholds for each image difference.
Specifically, the low threshold should enable the detection of
nearly all the foreground pixels, even if it results in false
detection of the background pixels, the high threshold should
enable the exclusion of nearly all the background pixels, even
if it results in leaving some foreground pixels undetected, and
the middle threshold should be approximately optimal in terms
of the error rate. The following paragraphs describe how these
thresholds are determined.

Since all the distributions of the three differences are uni-
modal, the triangle algorithm is the most suitable to apply
[24]. The original triangle algorithm works as follows. Given a
histogram function h(v), a line is constructed between the peak
of the histogram h(v) (at v = v1) and the largest nonzero value
of v (at v = v2). Then, the perpendicular distance between
this line and the histogram is evaluated. The value of v that
corresponds to the maximum distance is taken as the threshold
value τ .

To select the needed three thresholds for each difference
image, we propose the following method. Given the his-
togram function hx(v) of the difference image Δx (for x =
T, Y, or C), the triangle algorithm is used to select the middle

Fig. 2. Thresholds selection using the triangle algorithm.

threshold τx,M . Then, the low threshold τx,L is estimated by ap-
plying the triangle algorithm over [vx,1, τx,M ] of the histogram,
whereas the high thresholds τx,H for ΔY and ΔC are estimated
by applying the triangle algorithm over [τx,M , vx,2] of the
histogram, as shown in Fig. 2. For τT,H , we propose a different
way to select it. As ΔT is calculated over a (2N + 1) ×
(2N + 1) image block, the thresholded ΔT using τT,M , i.e.,
MaskT,M , typically includes background pixels outside the
boundaries, which, according to our requirement for the high
threshold, should be removed as much as possible. To achieve
this, MaskT,M is eroded by a disk-shaped structuring element
of radius N , from which the pixels that are eroded off form one
class (P1), and the remaining pixels form another class (P2).
Pixels in P1 are likely to be false positives, whereas pixels in
P2 are likely to be true positives. If we call the modes (i.e., the
value that occur the most frequently) of the distributions of P1

and P2 as c1 and c2, respectively, then τT,H would lie between
c1 and c2. Thus, τT,H is calculated by

τT,H =
c1N2 + c2N1

N1 + N2
(1)

where N1 is the number of pixels in P1, and N2 is the number
of pixels in P2. Given the thresholds (τx,L, τx,M , τx,H ) for
x = T, Y, or C, the thresholded masks MaskL, MaskM , and
MaskH are calculated by

Maskj(x, y) =

⎧⎨
⎩

1, if ΔT (x, y)>τT,j ∨ ΔY (x, y)>τY,j

∨ΔC(x, y) > τC,j

0, otherwise
(2)

where j = L,M,H , “1” represents the foreground, and “0”
represents the background.

It is noted that the area around the boundaries between the
shadowed and unshadowed regions still survive in MaskH ,
because although the texture difference does not respond to
the inner area of moving shadows, it has a strong response
to shadow boundaries. Therefore, a morphological opening
operation of radius N is applied to MaskH to ensure that
shadow boundaries are removed as well. Then, from MaskL,
MaskM , and MaskH , respective boundaries BL, BM , and
BH are calculated, including both the exterior boundaries of
objects and the interior boundaries of holes. Fig. 3 depicts an
example of the input image I , the estimated background image
B, MaskL, MaskM , MaskH (after the opening operation),
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Fig. 3. Example image and the associated masks and boundaries. (a) I . (b) B.
(c) MaskL. (d) MaskM . (e) MaskH . (f) BL. (g) BM . (h) BH .

Fig. 4. IBS identification and evaluation.

BL, BM , and BH . Note that BL, BM , and BH may appear to
be slightly larger than the original object(s), which is caused by
the region-based texture difference. This problem will later be
dealt with in the boundary refinement step (see Section II-F).

D. IBS Identification and Evaluation

Fig. 4 depicts the IBS identification and evaluation proce-
dure. Let the two boundary sets involved in the merging process
be known as Blow (corresponding to the lower threshold)
and Bhigh (corresponding to the higher threshold) and their
corresponding masks be Masklow and Maskhigh. For the first
merging step, we have Blow = BL, Bhigh = BM , Masklow =
MaskL, and Maskhigh = MaskM , and for the second merg-
ing step, we have Blow = BI (result of merging BL and BM ),
Bhigh = BH , Masklow = MaskI , and Maskhigh = MaskH .

Fig. 5. Two examples of IBS pairs (red and blue lines). (a) Bhigh consists of
one boundary. (b) Bhigh consists of two boundaries.

Fig. 6. IBS pairs (red and blue lines) from a boundary pair in Fig. 3(a).

If Blow consists of multiple closed boundaries, each boundary
is separately evaluated. It is possible that an exterior boundary
of Blow does not have a correspondent in Bhigh (i.e., all the
difference values inside this boundary are lower than the higher
threshold) or that an interior boundary of Bhigh does not have
a correspondent in Blow (i.e., all the difference values inside
the boundary are higher than the lower threshold). In these two
cases, we do not have the presumed two boundaries to compare;
thus, the boundary concerned is simply discarded.

1) IBS Pair Identification: This step identifies boundary
points that produce a significant inconsistency between Blow

and Bhigh. Let the ith boundary in Blow be Bi
low and its

correspondent be Bi
high. Two points, i.e., pi,k

low = (xi,k
low, yi,k

low)
and pi,l

high = (xi,l
high, yi,l

high), from Bi
low and Bi

high, respectively,
are consistent (i.e., they come from the same object bound-
ary point) only if 1) they have similar orientations, and the
line connecting them has the direction similar to their normal
vectors, i.e., v(pi,k

low) · v(pi,l
high) ≈ 1 and v(pi,k

low) · (pi,k
low −

pi,l
high)/‖pi,k

low − pi,l
high‖ ≈ 1, where v(·) represents the unit nor-

mal vector of a boundary point, and ‖ · ‖ denotes the Euclidean
norm, and 2) their chessboard distance is smaller than N + 1,
i.e., max(|xi,k

low − xi.l
high|, |yi,k

low − yi.l
high|) ≤ N , because the de-

viation of a boundary point from the original object boundary
point (caused by the texture difference) should not be larger
than N .

Once the consistent boundary points and their correspon-
dents are found, the remaining boundary points are considered
to be inconsistent, as illustrated in red and blue in Figs. 5 and 6.
The connected inconsistent points then form the IBS pairs [e.g.,
AB and A′B′ in Fig. 5(a)].

Note that the inconsistency may involve multiple segments
[e.g., AB and CD versus A′C′ and B′D′ in Fig. 5(b)]. In such a
case, we take the segments from Bi

low (e.g., AB and CD) as one
segment and the segments from Bi

high (e.g., A′C′ and B′D′) as
the correspondent.
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2) Boundary Evaluation: Given the IBS pairs, the two seg-
ments in each IBS pair are evaluated with respect to the edge
response, curvature, and shadow to identify which one of the
two is more likely to represent the true boundary. This is
based on three assumptions: 1) The true boundary segment is
associated with a large edge response; 2) the objects’ shapes
are usually smooth; and 3) long and convoluted segments are
unlikely to be a true boundary. The following sections describe
how each IBS pair is evaluated according to these assumptions.

a) Evaluation of IBS edge response: To evaluate the IBS
edge response, we propose a method for extracting the fore-
ground edge map by performing edge subtraction between the
input and background images. First, the edge map EMI of the
input image I is obtained by the Canny edge detector, and
the gradient maps ∇I = (∇xI,∇yI) and ∇B = (∇xB,∇yB)
of I and B are calculated as well. Then, the normalized gradient
maps GMI and GMB of I and B are computed as

GMa(x, y) =

{(
∇xa(x,y)
‖∇a(x,y)‖ ,

∇ya(x,y)
‖∇a(x,y)‖

)
if ‖∇a(x, y)‖ �= 0

(0, 0) otherwise
(3)

where a = I , B, and

‖∇a(x, y)‖ =
√

(∇xa(x, y))2 + (∇ya(x, y))2.

Next, the background edges are subtracted from the input edges.
Intuitively, the edge points caused by the moving objects would
significantly be different from its corresponding background.
To capture this characteristic, we define the following gradient
difference:

fg_diff (x, y) = |‖∇I(x, y)‖ − ‖∇B(x, y)‖|
− GMI(x, y) · GMB(x, y) (4)

for the nonzero EMI pixels. In (4), the magnitude and direction
differences of gradients are combined to improve the ability
of fg_diff in discriminating moving edges from background
edges. We then apply the triangle algorithm to the fg_diff

histogram to determine a threshold τg , which enables the fore-
ground edge map EMF to be determined as

EMF (x, y) =
{

1, if EMI(x, y) = 1 ∧ fg_diff (x, y) > τg

0, otherwise
(5)

and the corresponding foreground gradient map can be ob-
tained as

GMF (x, y) =
{

GMI(x, y), if EMF (x, y) = 1
0, otherwise.

(6)

The EMF of the input image in Fig. 3(a) is shown in Fig. 7(a).
Given EMF , we can calculate the edge response of the IBS

pairs. As texture difference is calculated using pixels in blocks,
the IBS points may not exactly be where their corresponding
edge points are. Therefore, to find the edge point that corre-
sponds to an IBS point, a search along the negative normal

Fig. 7. (a) EMF of Fig. 3(a). (b) Moving shadow detection of Fig. 3(a).

direction of each IBS point within N pixels is performed. Then,
the edge response of a boundary segment C is calculated by

ER(C) =
1

Nc

Nc∑
n=1

v (C(n)) · GMF (p(n)) , (7)

where Nc is the number of points on C, C(n) denotes the nth
point of C, v(C(n)) denotes the unit normal vector of C(n),
and p(n) denotes the foreground edge point corresponding to
C(n). If there is no foreground edge point that corresponds
to C(n), then p(n) is empty, and GMF (p(n)) = (0, 0). In the
calculation of ER(C), the dot product operation is applied
to consider the edge orientation information because a true
boundary point is expected to have a direction similar to that
of its corresponding edge point.

b) Curvature evaluation: Curvature is a measure of the
smoothness of the curve at a certain point. The curvature of
each point C(n) = (x(n), y(n)) is given by

κ(n) =
|ẋ(n)ÿ(n) − ẏ(n)ẍ(n)|

(ẋ(n)2 + ẏ(n)2)3/2
(8)

where each dot denotes a differentiation with respect to n. The
total curvature of C is calculated as the sum of curvature at each
point

κc =
Nc∑

n=1

κ(n). (9)

We consider the total curvature instead of the mean curvature
as it is more representative in that a small κc indicates a concise
length and a smooth C, which are the characteristics of a true
boundary.

c) Shadow detection: Although it is argued that, in gen-
eral, the segment corresponding to a large ER and a small κc

is more likely to be the true boundary, there is, however, an
exception: Cast shadows caused by strong illumination tend
to produce a regular outline (i.e., small κc) and a strong edge
response (i.e., large ER). In addition, shadows are likely to
appear in MaskL [see Fig. 3(c)] but not in MaskH [see
Fig. 3(e)]. Therefore, shadows need to be explicitly dealt with.

To detect shadows, we adopt the method proposed by
Cucchiara et al. [25]. It transforms I and B into the hue–
saturation–value space and detects a shadow map S as given
in (10), shown at the bottom of the next page.
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In (10), the first condition refers to the value component.
The use of β (less than one) prevents background points that
are slightly corrupted by noise to be identified as shadows,
whereas α takes shadow intensity into account, i.e., the stronger
the light source, the lower the α that is chosen. The second
condition assumes that shadows reduce the saturation of points,
and the third condition assumes that hue is not affected by
shadows too much. Fig. 7(b) depicts the S(x, y) of I given in
Fig. 3(a), which appears reasonable overall, except that some
true foreground pixels are falsely detected as moving shadows.

d) Decision rules: Given an IBS pair (Clow, Chigh), with
Clow coming from Blow and Chigh coming from Bhigh, and the
associated ER, κc, and S, the decision about whether Clow

or Chigh is the true boundary can be made according to the
following rule set.

1) For the region enclosed by Clow and Chigh, if it contains
a high percentage (we chose 80% in our experiment) of
nonzero S pixels, then Chigh is chosen.

2) If ER(Clow) = ER(Chigh) = 0, the segment with
smaller κc is chosen.

3) If ER(Clow) ≥ ER(Chigh) or ER(Clow) ≥ ER, then
Clow is chosen.

4) If ER(Clow) = 0 and ER(Chigh) > 0, then Chigh is
chosen.

5) If ER(Chigh) − ER(Clow) > ER, then Chigh is chosen;
otherwise, Clow is chosen.

ER is the estimation of the average edge response of the
foreground boundaries and is used to measure whether an edge
response is significant or not. It is calculated according to (7) by
replacing C with the aggregation of the exterior boundaries of
MaskM (excluding those exterior boundaries of MaskM that
have neglectable edge responses, e.g., smaller than 0.1, as they
are quite likely to be the boundaries of false-positive regions
and should not be involved in the estimation to avoid estimation
bias).

Rule 1 states that if the region enclosed by an IBS pair
contains a large percentage of shadow pixels, the region is
considered to be a shadow region and discarded. Rule 2 deals
with those cases where the foreground edge response is unavail-
able, in which the segment with a smaller sum of curvature is
selected. Rule 3 reflects the preference for Clow when it has a
stronger or significant edge response. However, if the contrary
is true, i.e., ER(Clow) < ER(Chigh) and ER(Clow) < ER,
we cannot simply choose Chigh because the difference between
ER(Chigh) and ER(Clow) may not be significant. Rule 4
states that if Clow has zero edge response and Chigh does not,
then Chigh is preferred. Rule 5 states that when ER(Chigh) is
significantly larger than ER(Clow), we choose Chigh. If none
of the five conditions is met, we choose Clow.

Fig. 8. Foreground extraction results. (a) BI—After merging BL and BM .
(b) BR—After merging BI and BH . (c) After boundary refinement.

For those consistent boundary points, the merged boundary
point is decided to be the midpoint between the two matched
boundary points. Fig. 8(a) depicts BI after merging BL and
BM , and Fig. 8(b) depicts BR after merging BI and BH . It
can be seen from BR that the shadow has effectively been
suppressed, without sacrificing the accuracy of extracting other
foreground pixels. However, there are still halo-like false-
positive pixels along BR, which will be dealt with later.

E. Result Verification

After the boundaries are merged, the resulting boundary is
usually a reasonable estimation of the ground truth. However,
false-positive regions may still be present in the result. We use
the foreground edge map as a measure to remove these regions.
For each detected foreground region, its exterior boundary’s
ER is calculated according to (7). If it is substantially smaller
than ER, this region is considered as a false-positive region. As
the ER of a false-positive region is usually significantly smaller
than ER, we select ER/2 as the threshold. Furthermore, each
detected foreground region is also checked to see if it is a
shadow region (i.e., it contains a large percentage of shadow
pixels), and if it is, it is removed from the detection result.

In addition, to increase the foreground extraction accuracy,
we need to differentiate real holes in the foreground region (part
of the background) from false holes (part of the foreground).
Usually, this problem is solved by optimizing an energy func-
tion in which the Markov–Gibbs random field is applied as a
knowledge prior [26]. Instead, we solve it within the multi-
thresholding framework. The difference between real holes and
false holes is embodied in the following three aspects. First, real
holes are always consistently characterized in the three masks,
i.e., most of the boundary points are consistent, as illustrated
in Fig. 9(b)–(d); on the contrary, false holes tend to produce
inconsistent characterizations in the three masks, as depicted
in Fig. 9(g)–(i). Second, real holes are normally supported by
a large ER, whereas false holes are not, as they might be
parts of homogeneous regions. Third, real holes do not contain
foreground edge points because they are background regions,

S(x, y) =

⎧⎨
⎩

1, if α ≤ IV (x,y)
BV (x,y) ≤ β ∧ |IS(x, y) − BS(x, y)| ≤ γS

∧min (1 − |IH(x, y) − BH(x, y)| , |IH(x, y) − BH(x, y)|) ≤ γH

0, otherwise

(10)
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Fig. 9. Example of real holes (first row) and false holes (second row).
(a) and (f) I . (b) and (g) MaskL. (c) and (h) MaskM . (d) and (i) MaskH .
(e) and (j) EMF .

but false holes may contain foreground edge points. Therefore,
real holes are differentiated from false holes as follows.

For each resulting interior boundary, we have the following
conditions.

1) If in any of the two boundary-merging stages more than
half of the higher boundary points are determined to be
inconsistent, the hole is false.

2) If the ER of the resulting interior boundary is smaller
than ER/2 or if the region inside the resulting inte-
rior boundary contains more than (ER × length of the
boundary) foreground edge points, the hole is false;
otherwise, the hole is true.

F. Boundary Refinement

It is evident that the texture-based method applied here
consistently introduces false-positive errors along the object
boundary. The thickness introduced will be no more than N
pixels if the block size is (2N + 1) × (2N + 1). On the other
hand, because the foreground edge map has accurate localiza-
tion of the object boundary, i.e., the deviations of the foreground
edge points from their expected true locations are very small,
the foreground edge map can be taken as a reference when
performing the boundary refinement. Therefore, we erode the
detected foreground boundaries by a disk-shaped structuring
element with a changeable radius, ranging from 0 to N . For
each boundary point, the radius is the smaller one of N , and
the maximum radius that ensures that the structuring element
would not have overlapping points with the foreground edge
map. After performing the erosion, the resultant foreground is
likely to be affected by noise introduced in the foreground edge
map. Thus, a median filter of size 3 × 3 is applied to remove the
noise. The foreground after boundary refinement of the example
image is shown in Fig. 8(c).

G. Computational Complexity

The calculation of the luminance difference and the chromi-
nance difference are trivial as they are pixel-based. However, as
a region-based method, direct calculation of the texture differ-
ence requires thousands of operations for each pixel, which is
unacceptable. To avoid repeated computations, the Integral Im-
age technique [27] is applied to reduce the number of operations
needed for calculating the region sums of the texture difference,

resulting an improvement of the computational complexity for
nearly one order. On the other hand, the cruxes of the proposed
method, i.e., multiple-threshold selection, IBS identification,
and boundary evaluation, require moderate computational cost.
Except for a few operations that are performed on the whole im-
age, such as morphological operations, Canny edge detection,
and color space transform, most calculations are in proportion
to the length of the objects’ boundaries, which are much smaller
than the size of the image.

III. EXPERIMENTAL RESULTS

The results presented below focus on human beings, as
human shapes are among the most complicated moving objects.

A. Parameter Settings

In our experiment, the size of the block used to compute
texture difference is 9 × 9, i.e., N = 4, which is a tradeoff
between the stability of the change detection result (stability
of change detection result ∝ N ), the computation time (com-
putation time ∝ N2), and the halo-like boundary error intro-
duced (displacement boundary error ∝ N ). The parameters
for shadow detection are selected as β = 0.9, γs = 0.25, and
γH = 0.4 as they perform well on all the test images. To make
α adaptive to different illuminations, we model α as a linear
function of illumination

α = −0.31 × lum + 0.63 (11)

where lum denotes the illumination and is approximated by the
background mean intensity, and the two coefficients 0.31 and
0.63 are learned through experiments.

B. Comparative Analysis

The proposed method has been evaluated on images of vari-
ous illumination conditions, including indoor, outdoor, moder-
ate, sunny, rainy, and dim cases. Some other change detection
methods, including the minimum description length (MDL), the
SM [7], the derivative model (DM) [7], and Li’s texture-based
approach [9], are chosen for comparison. The block size for the
first three methods is selected as 9 × 9, and 5 × 5 is chosen
for Li’s method. The Matlab code of the MDL, SM, and DM
methods are obtained from the Andra and Al-Kofahi website
(http://www.ecse.rpi.edu/censsis/papers/change/). MDL and
Li’s method adaptively select their thresholds, whereas the
thresholds for SM and DM need to be manually set. In our
experiment, it is found that the threshold of the DM method can
properly be determined by the triangle algorithm, and hence,
we use this threshold. For the SM method, we first found
the range of thresholds that can produce a complete contour,
and then, within this range, we chose the one that produced
the lowest error rate when compared with the ground truth
in the foreground. The segmentation results are displayed in
Figs. 10–16 with the following layout: (a) input image I , (a′)
enhanced I , (b) estimated background B, (b′) enhanced B,
(c) ground truth, and (d) the result of MDL, (e) the result
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Fig. 10. Case 1—Moderate illumination over a group of people.

Fig. 11. Case 2—Strong illumination resulting in strong shadow.

of SM, (f) the result of DM, (g) the result of Li’s method,
(h) the result of ST, (i) the result of the proposed method
without refinement, and (j) the result of the proposed method.
The ST result is displayed to demonstrate the problems of using
just one threshold (τM ) for the extraction, and the proposed
method without refinement is shown to study the impact of
not performing refinement at the end. The results are also
quantitatively evaluated in terms of the error rate, which is
characterized by the Jaccard distance and is defined by

Error Rate = (FP + FN)/(TP + FP + FN) × 100%
(12)

where FP stands for the number of no-change pixels incor-
rectly detected as change, FN stands for the number of change
pixels incorrectly detected as no-change, and TP represents the
number of change pixels correctly detected. All the ground-
truth foregrounds are accurately determined by hand in ad-

vance. The error rates for the proposed method (without or with
refinement), ST, and other existing methods are summarized in
Table I.

In case 1 (see Fig. 10), the input image contains a group of
humans with some insignificant shadows cast on the ground.
Note that the ground consists of rectangular patterns con-
structed by slightly reflective bricks. As can be seen, all four
other methods and ST are badly affected by the shadows,
whereas the proposed method successfully removes them. Al-
though the MDL method claims to be able to automatically se-
lect the threshold, the change detection result is not satisfactory,
because the description length is arbitrarily set. The SM method
is not able to detect the inner regions of the foreground well
enough when both the inner region area and the corresponding
background are homogeneous; this is because this method is
designed to be insensitive to illumination changes. The DM
method is also designed to be illumination invariant; it performs
better at the inner flat regions because the intensity values of
a block are modeled as a quadratic function, giving it higher
discriminability. Li’s method can detect the foreground objects
reasonably well, which is due to the high discriminability of the
texture difference, but the shadows are also taken as change.
The ST also responds to the shadows, and without using the
proposed multithreshold strategy, the shadows are impossible
to delete from the foreground. However, the proposed method
fails to detect two holes, i.e., one on the left and one close to
the middle, because the holes are not large enough and their
boundaries merged in MaskL. On the other hand, Li’s method
is able to detect one of them, due to the use of a block of
smaller size.

In case 2 (see Fig. 11), the shadow is strong. The MDL
result is noisy and heavily affected by the shadow. The results
of all the methods, except those of the proposed method, are
affected by shadow boundaries, and only Li’s method and
ST can potentially delete the shadow edges by performing a
morphological opening operation, whereas SM and DM cannot
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Fig. 12. Case 3—High contrast with strong illumination and cast shadow.

Fig. 13. Case 4—Rain with reflection on the ground.

because the other foreground pixels will be removed at the same
time. The superiority of the proposed method over Li’s method
and ST is that it removes more shadow pixels, e.g., the shadow
region at the left side of the woman.

Case 3 (see Fig. 12) contains a scene where the upper part is
under the sun and the lower part is in the shadow of a flyover,
forming a high-contrast scenario. Li’s method performs quite
well, except for the shadow and the hole formed by the arm and
shoulder of the young man. ST poorly performs with some false
holes and parts of the contours missing. The proposed method
successfully extracts the contour, removes the shadow, and
detects the only hole. The proposed method without refinement
has a higher error rate (15.3%) than Li’s method (14.7%). This
is mainly because the 9 × 9 block used in the proposed method,
compared with the 5 × 5 block used in Li’s method, results
in a thicker boundary. After refinement, the error rate of the
proposed method is reduced to 5.3%.

Case 4 (see Fig. 13) is taken in the rain. The ST result is
degraded by the raindrops, and part of the contour is missing.
Due to the use of a high threshold, which is insensitive to the
raindrop reflections, the proposed method effectively ignores
the raindrops, and owing to the low threshold, the proposed
method produces the complete contour. All the other methods
are severely affected by the raindrops. MDL, SM, and DM are
also affected by the shadow, which is enhanced by the water on
the ground.

Case 5 (see Fig. 14) is taken at night. The ST result has some
false holes inside the moving objects, and many background
pixels are falsely detected as foreground. The proposed method
successfully fills in the false holes, detects one real hole, and
removes all the background regions. All the other four methods
could not detect the inner part of the foreground well, and the
SM method also produces a large amount of false positives. Al-
though Li’s method performs quite well under normal outdoor
conditions, this case illustrates that it poorly performs under
weak-illumination situations, where the intensity is strongly
affected by noise, and the texture difference becomes less
discriminative.

The sixth case (see Fig. 15) is an indoor moderately il-
luminated image obtained from the PETS database (ftp://ftp.
pets.rdg.ac.uk). The difficulty of this case is caused by the
flickering illumination, which leads to a large percent of the
background pixels being mistakenly detected by MDL, SM,
Li’s method, and ST. The proposed method gives a much more
accurate result (error rate: 6.0%) over the others (error rate:
46.3%–88.8%) in this case.

Case 7 (see Fig. 16) is taken in a hall under weak illumina-
tion. From the results, it can be seen that the proposed method
again produces the best result. All the other methods leave some
interior regions undetected, and MDL, SM, and Li’s method
also detect the boundaries of the shadow.

We have also carried out similar experiments on 300 images
taken under various conditions. However, manually marking all
the ground truth is time consuming. Therefore, we only evaluate
the results of 60 images, whose distribution over different
illumination conditions is similar to that of the 300 images.
The average error rate of the proposed method is 6.8%, which
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Fig. 14. Case 5—At night with very weak illumination.

Fig. 15. Case 6—Indoors and moderate illumination.

is consistent with the seven cases depicted above and demon-
strates the robustness of the proposed method. The respective
number of images, average error rate, and standard deviation of
the error rate within each illumination condition are tabulated
in Table II.

C. Displacement Error

The proposed boundary refinement step can remove the halo-
like boundaries produced by the region-based change detection
methods, and the effect can be measured by the displacement
error. If a detected boundary point is exactly on the ground-

truth boundary, its displacement error is zero; otherwise, if it
overlaps with a point on the dilated (or eroded) ground-truth
boundary with the dilation (or erosion) radius being r, it has a
displacement error of r (or −r) pixels. The displacement error
distributions before and after boundary refinement of case 2
are shown in Fig. 17, from which we can see that the mode
of the distribution has shifted from 4 to 0 pixels. To quantify
this improvement, the mean displacement error (MDE) of an
extraction result is defined as

MDE =
mpd∑

r=mnd

|r|p(r) (13)
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Fig. 16. Case 7—Indoors and weak illumination.

TABLE I
ERROR RATE OF THE PROPOSED METHOD COMPARED

WITH SOME EXISTING METHODS

TABLE II
ERROR RATE OF THE PROPOSED METHOD UNDER

DIFFERENT ILLUMINATION CONDITIONS

Fig. 17. Displacement error distributions of case 2. (a) Before refinement.
(b) After refinement.

where mnd is the maximum negative displacement, mpd is the
maximum positive displacement, and p(r) is the percentage of
the detected boundary points with displacement r. The MDEs
of the above seven cases before and after boundary refinement
are summarized in Table III. We can see that the average MDE
reduction is 3.48 pixels, which is quite significant, and the

TABLE III
MEAN DISPLACEMENT ERROR BEFORE

AND AFTER BOUNDARY REFINEMENT

actual MDE is smaller than 2 pixels at worst and less than
1 pixel at best.

D. Computational Cost

Our algorithm is currently implemented in Matlab, and it
needs about 30 s on the average to process a 1200 × 1600 image
on a 3.2-GHz personal computer. If the method is implemented
in C/C++/C# with code optimization and hardware accelera-
tion, we believe the proposed method can potentially run in real
time, particularly if the image size is reduced.

IV. CONCLUSION

A novel foreground-extraction method based on multiple
adaptive thresholding and boundary evaluation has been pro-
posed in this paper. By using multiple thresholds, image pixels
can be divided into multiple classes, and the problem is re-
duced into classifying a smaller set of ambiguous pixels into
foreground and background pixels. Although thresholding is
globally performed, the use of edge response and curvature
helps to improve local boundary accuracy during the evaluation
stage. Furthermore, true shadows always appear in the regions
associated with IBS pairs and can largely be removed from the
foreground. This way of shadow removal is statistical, which is
better than first extracting changes and then removing shadows
from the changes, because shadow detection can hardly be
accurate and can potentially produce many faults. By applying
a boundary-refinement method, the halo-like regions along the
boundary are effectively removed. The classification error rate
compares well with the ST approach and other existing change-
detection methods.
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