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Method for direct calculation of quadratic turning
points

Z. Yan, Y. Liu, F. Wu and Y. Ni

Abstract: For a given one-parameter nonlinear system, the simplest bifurcation is the quadratic
turning bifurcation where the Jacobian matrix becomes singular due to rank deficiency 1. To
overcome the difficulty in solving the quadratic turning point caused by the singularity of the
Jacobian matrix, the conventional Newton method can be applied to the so-called Moore-Spence
determination system to solve for the quadratic turning point. However, the Moore-Spence system
has much higher dimensions and causes much more complexity in factorisation of the extended
Jacobian matrix. In the paper, by introducing an auxiliary variable and an auxiliary linear equation
into Newton iterations in solving the Moore-Spence determination system, a matrix reduction
technique can be worked out to solve the Moore-Spence extended equations much more efficiently.
The high dimensions of the matrix can thus be reduced and the complexity involved in matrix
factorisation can be reduced noticeably. The technique is proposed for general nonlinear systems.
Formulation is derived for applying this technique to solving quadratic turning points, or say nose
points, on load-flow solution curves of power systems. Computer tests on the IEEE 30-busbar
system and a 2416-busbar East China power system are reported to show the effectiveness of the
suggested technique.

1 Introduction

Many real world problems can be abstracted as nonlinear
systems, in the form of either differential equations and/or
algebraic equations. Free parameters may be presented in a
nonlinear system in order to study the influence of para-
meter changes on the system behaviour. In analysing the
overall behaviour of a nonlinear system containing free
parameters, a commonly encountered phenomenon is bifur-
cation, where any small change of one parameter may
induce completely different behaviours representing loss of
structural stability of the system. Calculation of bifurcation
points is of extreme importance in comprehensive under-
standing of the behaviours of the studied systems [1, 2].
The simplest bifurcation phenomenon is the occurrence

of quadratic turning bifurcation attributed to nonlinear
systems containing only one free parameter. The theoretical
significance of calculating quadratic turning bifurcation
points is in that it constitutes the basis for investigating
more complicated bifurcation phenomena, and it is a bridge
leading to studying more complex systems containing
multiple parameters. This paper is devoted to the calcula-
tion of quadratic turning points (QTP) with applications to
power systems.
A major difficulty in calculating turning points is that the

Jacobian matrix of the nonlinear system becomes singular

at these points, and, hence, the efficient Newton method
cannot be applied directly. The current methods for
computing QTPs can be roughly divided into two categories
[1]: indirect methods and direct methods. Indirect methods
detect the neighbouring points of a turning point based on
certain kinds of test functions and then approximate the
turning point through algebraic interpolation or extrapola-
tion. An indirect method cannot reach the bifurcation point
exactly and, hence, results in an approximate solution.
Direct methods treat a turning point as the solution of a

so-called determination system, whose extended Jacobian
matrix at the turning point is not singular, and thus the
difficulty of the original Jacobian singularity is overcome.
The Moore-Spence extended system is one of the most
frequently used determining systems [1, 2, 3]. Once a
neighbour point of the QTP has been reached, it can
be solved accurately by applying Newton method to the
corresponding determination system. Both the indirect and
direct methods require certain kinds of initialisation that
can be accomplished by calculating the regular points along
the solution curve through usual continuation methods.
In power system voltage stability analysis, a typical

parameter of interests is the system loading factor; while, in
available transfer capability (ATC) calculation, a typical
parameter of interests is the transfer power from sending
area (one generator busbar or a group of generator busbars)
to receiving area (one load busbar or a group of load
busbars) [4–6]. Turning bifurcation points are frequently
encountered in these studies and the QTP has been named
as limit point, nose point, saddle-node point, maximum
loadability point or point of collapse etc. in power system
literatures [4–15]. Both direct and indirect methods have
been applied to the QTP solution in power systems.
In [7], voltage instability phenomenon is observed in

calculation of multiple power flow solutions while increas-
ing loading factors. It is found that, with the increase of
load, two equilibria of the power flow equations coalesce to
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each other at a critical point and then disappear after it. In
[8–12], continuation power flow (CPF) methods are applied
to systematically trace the power flow solution curve with
respect to the changing parameter. The continuation
method traces the solution curve by a series of predictor-
corrector steps. Each step is embedded with a parameter-
isation procedure. In the CPF method, the number
of equations is the same as the number of unknowns,
and the Jacobian singularity can be overcome properly. In
[9], a comprehensive production-stage package named
CPFOLW, for tracing the power flow solution curve, is
developed. CPF method is used together with the arc-length
parameterisation technique. Although CPFLOW can auto-
matically trace the power flow solution curve without
failure at the turning point, it cannot calculate this point
directly and is still an indirect method.
In [10–12], the QTP is named as point of collapse (POC)

to reflect its physical nature in the voltage stability problem.
The so-called Moore-Spence determination system (MSDS)
is formed and an accurate POC is solved accordingly. The
method is known as the POCmethod and can solve directly
the extended MSDS to obtain the POC by the traditional
Newton method. Special sparse matrix solver is required in
implementation due to the high dimensions and the
complexity of the extended Jacobian matrix.
The turning point calculation can also be formulated as

an optimisation problem and be solved by optimisation
methods [4, 13, 14, 15]. Similar to the POC and MSDS
methods mentioned here, the optimisation method may
encounter difficulty in identifying binding inequalities.
Moreover, the information along the solution curve is lost
because such a curve is never calculated in optimisation
methods.
In this paper an efficient matrix reduction method is

proposed to solve the MSDS efficiently. In the new method,
the linear system derived from the Moore-Spence system
can be decomposed into two smaller subsystems through
introduction of one auxiliary variable and one auxiliary
equation within the Newton iterations. The technique can
be applied to general nonlinear systems to calculate QTPs.
Formulas are presented to apply this technique to solving
QTP, or say nose point, on load flow solution curves of
power systems. Computer tests on the IEEE 30-busbar
system and an East China 2416-busbar power system show
the effectiveness of the suggested technique.

2 Mathematical fundamentals

2.1 Quadratic turning bifurcation point
definition
Consider the following dynamical system [2]:

_xx ¼ f ðx; lÞ; f :U�R!V ð1Þ
whereUCRn,VCRn, and l is a free parameter of particular
interests. Let (x(l), l) be a time-invariant solution curve, i.e.
any point on this curve satisfies f(x(l), l)¼ 0.

Definition 1: (x, l) is called a turning point, if there exist
two nonzero vectors jAU, cAV, such that

f ðx; lÞ ¼ 0 ð2aÞ

NðfxÞ ¼ spanfj; j 6¼ 0g ð2bÞ

RðfxÞ ¼ fn 2 V ; cT n ¼ 0; c 6¼ 0g ð2cÞ
(x, l) is called a QTP if we also have

cT fl 6¼ 0 ð2dÞ

cT fxxjj 6¼ 0 ð2eÞ

Furthermore, (x, l) is called simple QTP, if (2f) is satisfied,

cTj 6¼ 0 ð2f Þ
where fx and fl are the first derivatives of f with respect to x
and l, respectively; fxx denotes the second derivative of f
with respect to x; and j and c are the right and left
eigenvectors of the Jacobian matrix fx, respectively. The
condition (2f) means the zero eigenvalue of fx is a simple
eigenvalue.

2.2 Brief review on Moore-Spence determining
system
TheMSDS was developed in [3] and used to solve for QTPs
with an exact mathematical formulation. From the view-
point of numerical methods, the Jacobian matrix fx

becomes singular at the turning points. Hence, Newton
methods cannot be employed to solve the algebraic
equation f(x, l)¼ 0 directly under ill conditions when the
parameter l is near its bifurcation value. For a real
nonlinear system, such as a power system, a key task in
calculating the solution curve with respect to parameter l
change is to overcome the singularity of the Jacobian at the
turning point. An effective way for overcoming the
singularity problem of the Jacobian matrix is to construct
the Moore-Spence system defined at the turning point, i. e.
to choose an arbitrary vector lARn with lTja0 and to
construct the following extended system:

f ðx; lÞ ¼ 0 ð3aÞ

fxðx; lÞy ¼ 0 ð3bÞ

lT y ¼ 1 ð3cÞ
where yARn is a right singular vector. This is a system of
2n+1 equations with 2n+1 unknowns x, l, y. The
following theorem depicts the property of (3).

Theorem 1: (x, l) is a QTP, if and only if (x, l, y) is a regular
solution of (3).

Proof: The proof of this theorem can be found in [2, 3].

Remarks:

1. Theorem 1 shows that the following Jacobian:

M ¼
fx fl 0
fxxy fxly fx
0 0 lT

0
@

1
A ð4Þ

of (3) must be nonsingular at the QTP, even though the
Jacobian matrix fx is singular at that point. This means that
theMoore-Spence system can overcome the singularity of fx

at the QTP. The ‘0’ in (4) is of proper dimension, i. e. it may
be a scalar, a proper zero row or column vector or a zero
matrix, respectively, depending on its location in the matrix.
And this notation will be adopted throughout this paper.

2. If any of the conditions (2d) or (2e) is not satisfied, then
the Jacobian matrix M of (3) will become singular, and,
hence, (3) cannot be solved by Newton method. Theorem 1
clearly asserts that any QTP can be solved from (3) by
Newton method, once a suitable initial point is given, and
that any solution solved from (3) by Newton method must
be a QTP.

3. Equation (3) can be applied to solve for QTP where the
Jacobian matrix fx has rank deficiency 1 indicated in (3b).
However, (3) cannot be used to compute the regular points
in the solution curve where fx has full rank, because (3b)
conflicts with (3c).
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4. In references [11] and [12], the same formulation has been
used in the context of voltage stability analysis and the
associated direct solution method is named as POC (point
of collapse) method.

5. A set of equations with similar structure as (3) can be
obtained by solving an optimisation problem built around
the QTP. In this case, (3b) will be replaced, equivalently, by

wTfxðx; lÞ ¼ 0 ð3b0Þ

where the w-vector is a left singular vector and can be
interpreted as the Lagrangian multiplier vector correspond-
ing to (3a). This formulation may be more useful
in practice, because it contains information for sensiti-
vity analysis. The details in this aspect can be found in
[4, 13, 15].

6. In a variant of Moore-Spence system, (3c) is replaced by

yT y ¼ 1 ð3c0Þ

Theorem 1 also holds for this system [2, 3].

2.3 Direct solution of the quadratic turning
point by solving the Moore-Spence
determination system
The MSDS provides a direct way to calculate the QTP, due
to its sound and clear mathematical basis. When Newton
method is employed to solve (3), we have to solve a set of
linear equations at each Newton iteration step. This set of
linear equations can be written as (for clarity of expression,
the Newton iteration superscripts are omitted here):

fx fl 0
fxxy fxly fx
0 0 lT

0
@

1
A Dx

Dl
Dy

0
@

1
A ¼ �

f ðx; lÞ
fxy

1� lT y

0
@

1
A ð5Þ

It should be noted that the dimension of the coefficient
matrix of (5) is (2n+1)� (2n+1). For a large-scale power
system with N busbars, the dimension of this coefficient
matrix is (4N+1)� (4N+1), with a solution that may be
time consuming and may create additional complexity to
the program. In this paper, a novel matrix reduction
algorithm is proposed to solve (5) efficiently.

3 Novel matrix reduction method for solving
MSDS

The key point of the proposed method is to expand (4) by
introducing one auxiliary variable m and adding one
auxiliary equation of the following form to (5):

lTDx� m ¼ 0 ð6Þ
Insert (6) into (5) as the second block row and expand the
Jacobian matrix by one column corresponding to the
auxiliary variable m, we obtain the following equivalent
equation:

fx fl 0 0
lT 0 0 0
fxxy fxly fx fl
0 0 lT 0

0
BB@

1
CCA

Dx
Dl
Dy
m

0
BB@

1
CCA�

0
1
fl
0

0
BB@

1
CCAm

¼ �

f ðx; lÞ
0
fxy

1� lT y

0
BB@

1
CCA ð7Þ

The significant features of (7) as compared with (5) are that
the upper right (2� 2) block matrix is a zero matrix, and
that the two (2� 2) block diagonal matrices are equal to

each other, which leads to the following efficient way to
calculate the QTP:
Defining matrices A and B as

A ¼ fx fl
lT 0

� �
; B ¼ fxxy fxly

0 0

� �
ð8Þ

Then (7) can be decomposed into two equations:

A
Dx
Dl

� �
� 0

1

� �
m ¼ � f ðx; lÞ

0

� �
ð9aÞ

and

A
Dy
m

� �
þ B

Dx
Dl

� �
� fl

0

� �
m ¼ � fxy

1� lT y

� �
ð9bÞ

Equation (9) shows that if matrix A is nonsingular, then
Dx and Dl can be obtained from (9a) once the auxiliary
variable m is available, and Dy can thus be calculated from
(9b). Fortunately, the following proposition guarantees that
matrix A is nonsingular. With this property, a straight-
forward way to calculate m can be derived.

Proposition 1: Matrix A is nonsingular at the QTP.

Proof: See the Appendix, Section 9.
Now that matrix A is nonsingular, (9a) can then be

rewritten as

Dx
Dl

� �
¼ rx

rl

� �
� sx

sl

� �
m ð10aÞ

where rx 2 Rn; rl 2 R; sx 2 Rn and slAR are solutions of
the following equations:

A
rx
rl

� �
¼ � f ðx; lÞ

0

� �
ð10bÞ

A
sx
sl

� �
¼ � 0

1

� �
ð10cÞ

Substitute (10a) into (9b), we have

A
Dy
m

� �
þ B

rx
rl

� �
� B

sx
sl

� �
m� fl

0

� �
m

¼ � fxy
1� lT y

� �

which can be rearranged as

Dy
m

� �
¼ ry

rm

� �
� sy

sm

� �
m ð11aÞ

where ry 2 Rn; rm 2 R; sy 2 Rn and smAR are solutions of
the following equations:

A
ry
rm

� �
¼ � fxy

1� lT y

� �
� B

rx
rl

� �
ð11bÞ

A
sy
sm

� �
¼ � fl

0

� �
� B

sx
sl

� �
ð11cÞ

From the last equation of (11a) the auxiliary variable m can
be calculated as

m ¼ rm
1þ sm

ð12Þ

By substituting m into (10a) and (11a) we finally get the
solution of Dx, Dl and Dy. The aforementioned algorithm
for each iteration of Newton’s method can be implemented
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through following procedure:

Step 1. Calculate f(x, l), fx, fl, fxxy, and fxly at initial
point (x(0), l(0), y(0)) (Section 4 will discuss how to obtain the
initial values in real application.)
Step 2. Form matrix A and B and factorise matrix A and

store its factor table.

Step 3. Solve (10b) and (10c) for
rx
rl

� �
and

sx
sl

� �
by

using the factor table of matrix A.

Step 4. Solve (11b) and (11c) for
ry
rm

� �
and

sy
sm

� �
by

using the factor table of matrix A and solved
rx
rl

� �
and

sx
sl

� �
.

Step 5. Calculate the auxiliary variable m from (12).
Step 6. Substitute m into (10a) and (11a) to calculate the

current Newton increment step of Dx, Dl, Dy.

Remarks:

1. The auxiliary variable m and the auxiliary equation (6) are
introduced in each Newton iteration, which does not alter
the original MSDS (3). Their function is to facilitate the
solution of the co-ordination equation in Newton iteration.
Once we have finished using (10a) and (11a) to calculate
Dx
Dl

� �
and

Dy
m

� �
, m will be discarded. The convergence

of the Newton iterative process is checked by the original
Moore-Spence system and is independent to the auxiliary
equation.

2. In each Newton iteration, only the (n+1)� (n+1) matrix
A is to be factorised, which is much smaller in size than the
(2n+1)� (2n+1) Jacobian matrix of the original Moore-
Spence system. CPU time can be significantly reduced for
large-scale problems.

3. At each Newton iteration, the matrix A is only factorised
for one time and its triangular factor tables are repeatedly
called for four times in the forward and backward
substitutions, for solving the four linear equations (10b),
(10c), (11b) and (11c) that have matrix A as their coefficient
matrix. The programming complexity has been simplified
greatly and the triangular factorisation is extremely efficient
and reliable.

4. The proposed technique is designed for general nonlinear
systems to calculate the QTPs. The technique is particularly
suitable to large-scale power systems, because the number
of power flow equations is twice as many as the number of
system busbars, and the latter might be in thousands.

5. Matrices fxxy and fxly, that are relatively complicated in
evaluation, do not appear in matrix A. Their influence on
the solution of (5) is reflected in the right-hand side of
equations (11b) and (11c), where only simple multiplication
of sparse matrices with vectors is involved. This property
removes the complexity incurred in direct factorisation of
the coefficient matrix of (5).

4 Applications to power systems

4.1 MSDS model for QPTs on power flow
solution curve
In power flow study and voltage stability analysis, a cluster
of problems of increasing interests is to trace the power flow
solution curve and find its QTP with respect to a specific
parameter change. For a given power system containing N

busbars, the power flow equation, corresponding to (3a),
can be expressed as:

P ðV ; yÞ ¼P ð0Þ þ lbP

QðV ; yÞ ¼Qð0Þ þ lbQ ð13Þ

where P, QARN are real and reactive power equations,
expressed as functions of busbar voltage magnitudes
(VARN) and phase angles (yARN). P(0), Q(0)ARN are real
and reactive-power net injections in base case, bP, bQARN

are predefined change pattern for real and reactive power
injections, l is a scalar parameter reflecting the change along
the predefined pattern.
Equation (13) is a unified form for various research

purposes. The change pattern vectors bP and bQ can be
constructed in various different ways to emphasise the
research focus. The maximum value of l in equation (13) is
its bifurcation value at the QTP, where the eigenvector

y ¼ ðyT
P yT

QÞ
T , yP, yQARN, corresponding to the zero

eigenvalue of the Jacobian matrix will satisfy

@P
@y

@P
@V

@Q
@y

@Q
@V

0
@

1
A yP

yQ

� �
¼ 0 ð14Þ

Equation (14) corresponds to (3b). To obtain a unique
solution of the eigenvector, the following equation (corre-
sponding to (3c)) is imposed:

lTP yP þ lTQyQ ¼ 1 ð15Þ

where lP, lQARN and ðlTP ; lTQÞ
T 6¼ 0 (lP and lQ can be set as a

vector composed by elements of 1). Equations (13)–(15)
constitute the MSDS to calculate the QTP of power flow
solutions.
A variant of (15) with the following form:

yT
P yP þ yT

QyQ ¼ 1 ð150Þ

has also been tested in the research. However, (15) is found
to be more reliable than (15)0 and, hence, (15) is adopted in
the prototype program.

4.2 Implementation
The technique proposed in Section 3 has been implemented
in an existing Newton power flow program. The program
has been further enhanced by incorporating a continuation
method with natural parameterisation technique, so that
(13) can be solved along the solution curve, when the
Newton method can converge, and that an initial point for
equations (13)–(15) can be obtained for QTP solution using
the proposed method, once the Newton method diverges. In
the program, the load is treated as a combination of
constant power, constant current and constant impedance
loads. The base-case power flow corresponds to l¼ 0.

5 Simulation results and discussions

Test results for two systems, i. e. the IEEE 30-busbar system
and an East China 2416-busbar system, are reported in this
Section. The computer used is a Compaq Presario Mobile
with 1200MHz Intel Pentium-III CPU. The source code of
the prototype programwas written in Fortran and compiled
by Microsoft Fortran PowerStation 4.0. In order to test the
method, system constraint violations such as overflow of
lines, undervoltage of busbars and generator reactive power
limits are ignored. The test target is to verify the efficiency
of the method for QTP solution. In all tests, we set lp¼ 1
and lQ¼ 1.
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5.1 Simulation results of the IEEE 30-busbar
system
The IEEE 30-busbar system is composed of 30 busbars and
41 branches. In this test, the generation at generator busbar
2 and the load at load busbar 30 are changed simulta-
neously for the following predefined pattern:

bP ðbusbar� 2Þ ¼ 10MW; bQðbusbar� 2Þ ¼ 1:79Mvar

bP ðbusbar� 30Þ ¼ �10MW; bQðbusbar� 30Þ ¼ �1:79Mvar

All the other elements of vectors bP and bQ are zeros. The
step-by-step simulation begins from the base-case power
flow with l¼ 0, until the power flow diverges at l¼ 4.75.
The program automatically switches to calling the QTP
subroutine to calculate the QTP. Table 1 lists the conver-
gence process of lmax in 5 iterations.

Table 2 lists major results of busbar voltage magnitudes
and phase angles at three points during the continuation

process: (1) the starting point (base case) of solution curve
with l¼ 0; (2) the ending point of solution curve after l
reduced back to 0; (3) the QTP. The Newton power flow
program converges very well in the whole computation
process, including the ending point, where the voltage of
busbar 30 drops to zero, with an exception at the turning
point where the MSDS has to be used to get QTP due to a
power flow Jacobian singularity. After the turning point is
calculated, the program switches back to the step-by-step
continuation power flow calculation with decreased l until
l¼ 0. The 8th and 9th columns of Table 2 are normalised
right eigenvectors y ¼ ðyT

P yT
QÞ

T corresponding to the zero

eigenvalue of the power flow Jacobian matrix at the QTP.
Figures 1 and 2 show the voltage magnitude and phase
angle curves of busbars 29 and 30 with respect to l change,
respectively.
The total CPU time for tracing the solution curve is 0.04 s

for this case, most of which is used for calculating 40 points
along the solution curve by the Newton power flow
program, and the time for QTP solution is less than 0.01 s.

5.2 Simulation results of the East China
2416-busbar system
The East China system is composed of six areas, five
provincial areas plus one large city (see Fig. 3). Area 1 is the

Table 1: Iteration process of kmax at QTP

Iteration 0 1 2 3 4 5

lmax 4.7500 4.9912 4.6919 4.6943 4.6933 4.6931

Table 2: Computational results for IEEE 30-busbar system

Busbar number Results for l¼ 0 Results for lmax¼ 4.6931

Voltage at starting point Voltage at ending point Voltage at turning point Eigenvector of zero eigenvalue

V y V y V y yP yQ

1 1.05 0 1.05 0 1.05 0 0 0

2 1.034 �2.73 1.034 �3.44 1.034 �2.63 0.0077 0

3 1.03 �4.65 1.016 �5.61 1.021 �5.75 0.0105 0.0089

4 1.025 �5.58 1.008 �6.75 1.015 �6.92 0.0129 0.0107

5 1.006 �8.99 1.006 �10.23 1.006 �9.91 0.0136 0

6 1.022 �6.47 1 �7.8 1.009 �8.21 0.0147 0.0133

7 1.007 �8.02 0.995 �9.31 1 �9.43 0.0141 0.0078

8 1.023 �6.47 1.023 �8.22 1.023 �8.58 0.0193 0

9 1.046 �8.11 1.017 �10.36 1.033 �10.76 0.025 0.0178

10 1.045 �9.97 0.997 �12.81 1.025 �13.13 0.0314 0.0293

11 1.091 �6.23 1.091 �8.43 1.091 �8.87 0.0244 0

12 1.054 �9.25 1.03 �11.92 1.044 �12.02 0.0294 0.0147

13 1.088 �8.06 1.088 �10.71 1.088 �10.82 0.0291 0

14 1.04 �10.14 1.007 �12.95 1.026 �13.11 0.0309 0.0205

15 1.036 �10.25 0.992 �12.97 1.017 �13.33 0.0302 0.0269

16 1.043 �9.83 1.009 �12.55 1.029 �12.75 0.03 0.0208

17 1.039 �10.14 0.996 �12.93 1.021 �13.23 0.0309 0.0266

18 1.027 �10.85 0.982 �13.61 1.008 �13.96 0.0306 0.0275

19 1.025 �11.01 0.98 �13.8 1.005 �14.14 0.0309 0.0278

20 1.029 �10.81 0.983 �13.61 1.01 �13.95 0.031 0.0282

21 1.033 �10.44 0.971 �13.44 1.006 �13.91 0.0335 0.0383

22 1.034 �10.43 0.966 �13.49 1.005 �14 0.0341 0.0413

23 1.027 �10.69 0.945 �13.65 0.99 �14.45 0.0336 0.0503

24 1.024 �10.92 0.89 �14.29 0.963 �15.67 0.0399 0.0817

25 1.026 �10.82 0.708 �15.89 0.883 �19.44 0.0742 0.1931

26 1.009 �11.23 0.696 �16.3 0.868 �19.85 0.0742 0.1898

27 1.036 �10.5 0.601 �17.45 0.844 �21.97 0.1123 0.2608

28 1.017 �6.88 0.954 �7.79 0.982 �9.18 0.0109 0.0393

29 1.017 �11.69 0.312 �17.68 0.698 �29.79 0.2138 0.4143

30 1.005 �12.55 0 �69.44 0.567 �41.95 0.5264 0.5507
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largest load centre in the entire system, and Area 2 is the
next. Figure 3 shows the inter-area power exchanges at base
load flow.
The computer test is to evaluate the maximum available

transfer capability between Area 1 and Area 4 with other
area generations and loads fixed to their base load flow
values. A group of generators in Area 4 increase genera-
tions, while a group of loads in Area 1 increase demands
simultaneously. At the QTP, the maximum parameter
lmax¼ 9.8479 is calculated using the proposed method.
Figures 4 and 5 present the solution curves of voltages
magnitudes and phase angles of two busbars. Similar to the
IEEE 30-busbar test case, the Newton power flow program
runs without any difficulty except at the turning point.
The QTP is then calculated by resorting to the proposed
new method.

In the numerical simulation for this 2416-busbar system,
most of the computational time is consumed in calculating
the initial point of QTP. A good initial point is very
important for convergence of QTP solution. In the current
prototype program, the initial point is calculated by a
continuation power flow method with natural parameter-
isation technique. The increment step size of the parameter
l will affect the total computational time significantly.
However, once the initial point is obtained, the time used
for calculating the QTP itself is very short. Table 3 lists the
CPU time allocation for QTP calculation with different step
sizes. In all tests, the load flow convergence tolerance is 10�5

per unit for maximum busbar power mismatch. From
Table 3 it can be seen that the CPU time for QTP
calculation is much smaller than that for initial point
calculation and also it is not affected by the step size used in
tracing the load flow curves. It can also be seen that a larger
step size may save noticeable time for calculating the initial
point. More efficient methods such as fast decoupled power
flow should be used for initial point searching.

5.3 Discussions
It should be pointed out that in all the tests conducted by
the prototype program, constraints of line flows, voltage
limits and generator reactive power limits are neglected. The
tests are thus done with respect to simple cases, for given
sets of power flow equations without inequalities. However,
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Table 3: CPU time for the East China 2416-busbar system

Step size, p.u. 0.01 0.1 0.5 1.0 2.0

CPU time for initial point, s 24.44 4.52 1.43 1.04 0.86

CPU time for QTP, s 0.16 0.16 0.16 0.16 0.16
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in a real-world power system, these inequality constraints
are always presented. Specifically, generator reactive power
limits must be observed in real power system operation.
Hence, the calculated QTPs without considering reactive
power limits may not be realistic ones. More practical QTPs
can be obtained by taking generator reactive power limits
into account.
Another point worthy of attention is that more complex-

ity can be introduced due to the presence of generator
reactive power limits. For example, [4] and [15] described a
case where a maximum loading point of the systemmay not
necessarily occur at a singular point (Figure 10 of [4]). This
type of specific cases needs particular and detailed
consideration when the proposed technique will be
implemented in a production-grade software package.
In all the tests, the QTPs can be calculated very quickly

when proper initial points are available without ill
condition. In more complex applications, for example when
there are two free parameters and a large number of QTPs
are to be solved, the proposed method will be better than
the CPF method, because it can calculate QTP directly,
hence it is more flexible and efficient.

6 Conclusions

In this paper, an efficient matrix reduction method is
proposed to solve the MSDS defined at the QTPs of a
general nonlinear system with one changeable parameter.
The method has sound mathematical foundation and can

be easily implemented by slightly modifying an existing
nonlinear equation solver. An extremely important feature
of the method is that it eliminates the requirement of a
specific sparse matrix solver that may degrade the efficiency
of solving the MSDS and may increase the complexity of
the program.
The method has been successfully applied to solve QTP

in power flow solution curves. The computer tests on IEEE
30-busbar and East China 2416-busbar systems show that
the proposed method is very efficient and computationally
reliable. It is clear that, by including this method into an
existing continuation power flow program, the QTP
calculation can be more efficient and more reliable.
Further research and development is ongoing to apply

the method to sensitivity analysis around a solved turning
bifurcation point and to extend the method to systems
consisting of two or more parameters.
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9 Appendix:

Proof of proposition 1
To prove that matrix A is nonsingular, it is sufficient to
prove that the following equation:

fx fl
lT 0

� �
w
d

� �
¼ 0

0

� �
; w 2 Rn; d 2 R ð16Þ

has a unique zero solution. We will use conflict method to
prove the proposition. Suppose that (16) has a nonzero
solution, then we have the following two possible cases:

Case 1: Suppose da0. In this case the first block equation
of (16) can be written as:

fxwþ fld ¼ 0 ð17Þ
this means

fl 2 RðfxÞ ð18Þ
and from (2c) we obtain

cT fl ¼ 0 ð19Þ
which contradicts (2d). Hence we certainly have d¼ 0.

Case 2: Suppose wa0. Now that Case 1 asserts d¼ 0, then
from (16) we have:

fxw ¼ 0 ð20Þ

lT w ¼ 0 ð21Þ
Because rank(fx)¼ n�1, (20) means w is a right eigenvector
of the zero eigenvalue of fx. This obviously results in a
contradiction between (21) and (3c). Therefore we certainly
have w¼ 0.
The analysis on the two cases shows that (16) has a

unique zero solution. The proposition is proven.
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