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People Counting and Human Detection
in a Challenging Situation

Ya-Li Hou, Student Member, IEEE, and Grantham K. H. Pang, Senior Member, IEEE

Abstract—Reliable people counting and human detection is an
important problem in visual surveillance. In recent years, the field
has seen many advances, but the solutions have restrictions: people
must be moving, the background must be simple, and the image
resolution must be high. This paper aims to develop an effective
method for estimating the number of people and locate each
individual in a low resolution image with complicated scenes. The
contribution of this paper is threefold. First, postprocessing steps
are performed on background subtraction results to estimate the
number of people in a complicated scene, which includes people
who are moving only slightly. Second, an Expectation Maximiza-
tion (EM)-based method has been developed to locate individuals
in a low resolution scene. In this method, a new cluster model is
used to represent each person in the scene. The method does not
require a very accurate foreground contour. Third, the number of
people is used as a priori for locating individuals based on feature
points. Hence, the methods for estimating the number of people
and for locating individuals are connected. The developed methods
have been validated based on a 4-hour video, with the number of
people in the scene ranging from 36 to 222. The best result for
estimating the number of people has an average error of 10%
over 51 test cases. Based on the estimated number of people, some
results of the EM-based method have also been shown.

Index Terms—Expectation-maximum, human detection, neural
network, people counting.

I. INTRODUCTION

P EOPLE counting is a crucial and challenging problem in
visual surveillance. An accurate and real-time estimation

of people in a shopping mall can provide valuable information
for managers. Automatic monitoring of the number of people
in public areas is also important for safety control and urban
planning.

In recent years, this field has seen many advances, but
the solutions have restrictions: people must be moving, the
background must be simple, or the image resolution must be
high. However, real scenes always include both moving and
stationary human beings, the background may be complicated,
and most videos in a visual surveillance system have a relatively
low resolution.

This paper aims to develop an effective method for estimat-
ing the number of people in a complicated outdoor scene, as
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Fig. 1. (a) Typical scene to be processed. (b) Binary foreground image after
background subtraction for (a).

shown in Fig. 1(a). A simple individual detection method based
on the estimated result has also been introduced for subsequent
video processing. The resolution of the target video is 640 ∗ 480
pixels. In this scenario, occlusions exist everywhere with people
walking, sitting, and standing. The video was taken by a static
camera overlooking a large area. This scene is very common,
but few results have ever been demonstrated for such events.

The paper is organized as follows. Related work is reviewed
in Section II. The methods for people counting and human
detection are introduced in detail in Sections III and IV presents
some evaluation results of our method on the target event.

II. RELATED WORK

Usually, the methods for people counting can be classified
into two categories: detection-based methods and map-based
methods. Detection-based methods determine the number of
people by identifying individuals in the scene. These methods
determine the number of people and their locations simultane-
ously. Map-based methods exploit the relationship between the
number of people and some features from the image. They can
only count the number of people in a scene.

The detection-based methods can be further classified into
two groups. Some methods try to segment the foreground blobs
into individuals based on prior knowledge of human shapes and
the characteristics of the foreground contour. The other methods
detect individuals directly from the image.

The work by Zhao [1], [2] and Rittscher et al. [3] are two
good examples of the first group. In [1], Zhao and Nevatia
established an ellipsoid to describe the 3-D human shape. They
detected heads by checking local vertical peaks on the fore-
ground contour. The detected persons were then removed from
the foreground blob, and peaks in the remaining foreground
were checked. In their later work [2], a more accurate 3-D
model composed of three ellipsoids was used. To deal with
the occlusion problem, a joint probability for multiple humans
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HOU AND PANG: PEOPLE COUNTING AND HUMAN DETECTION IN A CHALLENGING SITUATION 25

has been considered. Finally, the human detection and tracking
problem was formulated as a Maximum A Posteriori (MAP)
problem simultaneously. A sophisticated sampling algorithm,
Data Driven Markov Chain Monte Carlo, was employed to
find the best configuration for the MAP problem. Some pos-
itive results for a crowd of a dozen people were obtained.
To reduce the dependence on an accurate foreground contour,
which may be easily corrupted by noise, Rittscher et al. [3]
extracted some feature points from the contour. These features
were annotated as top, left, right, and bottom based on local
contour information. A variant of Expectation Maximum (EM)
was developed to group these features into some human-sized
rectangles. These methods work well even under low resolu-
tions. However, these methods rely on an accurate foreground
contour. When people are almost stationary, getting a good
foreground is difficult.

Recently, some significant results have also been obtained for
the methods detecting individuals directly from images [4]–[8].
Various features from a static image have been attempted: Haar
wavelets [4], SIFT-like features [5], Histogram of Oriented Gra-
dients [6], and contours [7], [8]. These methods may achieve
more accurate counting and detection results when the crowd
is small. However, most of them are time consuming and only
show results for a small crowd with few occlusions. They also
require high resolution images. In [4]–[6], detection results on
the MIT or INRIA data set are shown. In this data set, human
samples are images of 64 ∗ 128 pixels with few occlusions.
Wu and Nevatia [7] presented their results on the CAVIAR
data set, which includes more occlusions. However, the method
requires the size of a human to be at least 24 ∗ 58 pixels. Worth
mentioning is that back in 2001, Lin et al. [8] tried to estimate
the number of people in a large crowd by only detecting human
heads in the image. They achieved results for a crowd of
120 people in the model world and more than 1000 people in the
real world. However, due to the difficulty of getting the ground
truth for the real scene, no quantitative detection results were
reported. The smallest detectable head size in the paper was
16 ∗ 16 pixels. Furthermore, motion features have proven
effective for detecting individuals under various situations,
particularly in [9], [10]. However, in most events, people just
stand or sit, showing occasional articulated movements, which
is difficult to use for individual detection.

In the map-based methods, edge or foreground pixels
[11]–[15] and textures [16]–[21] inside the foreground are used
to estimate the crowd density or the number of people.

Davies et al. [11] maintained that there is a linear relation-
ship between foreground pixels and the number of people in
situations with trivial perspective distortions and occlusions.
Ma et al. [13] and Çelik et al. [14] investigated different strate-
gies for perspective correction to establish the linear relation-
ship under situations with serious perspective distortions. Using
an accurate camera calibration, Kilambi et al. [15] transformed
the foreground region to the projected area of the crowd on the
ground plane in world coordinates. The average projected area
for one person was learned at the initial training stage. Hence,
the number of people was estimated. An accuracy of over
75% was reported for a group consisting of up to 10 people.
The requirement for an accurate camera calibration limits the

application of this method. In summary, methods based on
foreground pixels can be easily implemented and developed for
real-time applications. However, up to now, only moving people
have been considered in this category.

Marana et al. [16] proposed a method for estimating crowd
density with the Grey Level Dependency Matrix (GLDM).
The GLDM is a texture measurement based on pixel distrib-
ution. In their later work [17], they obtained the Minkowski
Fractal Dimension (MFD) by performing dilation operations
on edge images using different sizes of structuring elements.
Rahmalan et al. [18] used a new texture descriptor, Trans-
lation Invariant Orthonormal Chebyshev Moments (TIOCM),
and compared its performance on a graduation scene with
the GLDM and MFD. The results show that TIOCM outper-
forms the MFD and costs less time than the GLDM. Recently,
Li et al. [19] transformed an image into multi-scale formats
with wavelet transform and used the Support Vector Machine to
classify them into different crowd density levels. They claimed
that this method performs better than previous methods. How-
ever, the above methods [16]–[19] only provide a crowd density
estimation. When textures from the background and human
clothing are complicated, these methods may not work well.

Instead of using the total number of edges or foreground
pixels, Kong et al. [20] used the edge orientation histogram
and the foreground blob size histogram. They also consid-
ered feature normalization such that the method is invariant
to different viewing angles. In a recent paper by Chan et al.
[21], Gaussian Process Regression was adopted to ascertain the
relationship between 28 different features and the number of
people. To get more accurate results, the crowd was segmented
into two components based on their moving directions before
estimation.

In this paper, some methods are developed for a very com-
plicated situation shown in Fig. 1(a). A method based on the
neural network is used to estimate the number of people in
Section III-A. To detect each individual person for subsequent
video processing, a method based on the EM algorithm [22] is
delineated in Section III-B.

III. METHODOLOGY

A neural network is used to estimate the number of people
in real time. Then, with the estimated number of people, a
method based on the EM algorithm is used to locate the
individuals. Fig. 2 shows the two parts: neural-network-based
people counting and EM-based individual detection.

A. People Counting

From Fig. 1(b), one can observe that even sitting people show
some foreground pixels. This is because people always exhibit
some movement whether they are standing or sitting. Motivated
by this observation, we try to estimate the number of people by
finding a relationship with the foreground pixels.

Due to illumination changes, camera movements, and objects
removed from or introduced into the scene, getting a fixed
background is usually difficult. A robust adaptive background
estimation method based on the Gaussian Mixture Model [23],
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Fig. 2. Block diagram of the method, which includes two main parts: people
counting and individual detection.

Fig. 3. Perspective correction method.

[24] is employed in this paper. To simplify the algorithm,
only grayscale images are applied in our method. After getting
the background image, a foreground image is obtained by
subtracting the current image from the background image. The
foreground image is then binarized based on a threshold to
obtain the foreground pixels. The threshold should be set such
that people moving slightly show some scattered pixels while
keeping the noise low. The threshold in our evaluation is 40.
When the intensity difference of a pixel between the current
image and the background image is larger than 40, the pixel is
viewed as a foreground pixel.

Perspective correction is an important step for foreground
pixels-based estimation. Before estimating the number of peo-
ple with foreground pixels, one must compensate for perspec-
tive distortion. We employ the same method as in [13]. We
assume that the size of an object varies linearly as a function
of the y-coordinate of the image. In this method, the objects at
different locations are brought to the same scale. Equation (1)
shows how to convert a scale at y to its scale at the reference
location, yref . Fig. 3 is a simple illustration for (1). Δx(y)
is the horizontal (vertical) scale of an object at y, and Δxref

is its horizontal (vertical) reference scale. q(y) is the ratio for
different locations

Δxref = Δx(y) ∗ q(y) and q(y) =
(yref − yv)
(y − yv)

. (1)

The extension of parallel lines intersects at a vanishing point,
which lies on yv in the image. yv can be easily estimated using
the same object at two different coordinates in (1).

Fig. 4. (a) Foreground pixels extracted using an adaptive background. (b) The
image after a closing operation is performed on (a). The maximum structuring
element is a disk with a radius of four pixels.

After perspective correction, the number of foreground pixels
is computed with (2), in which imgY is the height of the
processing image. N(y) is the number of foreground pixels in
the yth row

Npixel =
∑

y=1:imgY

N(y) ∗ q2(y). (2)

To determine the relationship between foreground pixels
and the number of people, some manually annotated training
images from a similar scene are needed. Several methods have
been attempted for people counting in this section.

Method 1) Based on Foreground Pixels: First, the relation-
ship between the number of foreground pixels after perspective
correction and the number of people will be found directly.
Suppose the number of foreground pixels after perspective cor-
rection is X , and the number of people is M . The relationship
between M and X is shown in

M = f1(X). (3)

The training set will be used to build a neural network to
ascertain the relationship f1. Then, the trained neural network
can be used to estimate the number of people.

Method 2) Based on Closed Foreground Pixels: From
the extracted foreground [Fig. 1(b)], one can observe that
some people show solid foreground blobs, while others only
show some scattered pixels in the foreground image. Further-
more, the solid blobs are mainly from the moving people,
and the scattered pixels come from the relatively stationary
crowd.

To reduce the difference between moving people and station-
ary people, a closing operation is employed. After performing
the closing operation, most areas occupied by people are cov-
ered with white pixels, while the other parts with black. An
example of the foreground pixel image and its corresponding
closing image is shown in Fig. 4. It should be noted that
perspective effects also need to be considered during the closing
operation. A smaller structuring element is used for image parts
with lower y-coordinates. The maximum structuring element
used in Fig. 4(b) is a disk with a radius of four pixels. Let C be
the number of foreground pixels after the closing operation and
M be the number of people. The relationship between C and M
will be found and used for estimation

M = f2(C). (4)
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Method 3) Based on Both Foreground Pixels and Closed
Foreground Pixels: To keep more information about the
original image, both foreground pixels and closed foreground
pixels will be injected into the neural network. The relationship
between the number of people and these two inputs is denoted
as f3

M = f3(C,X). (5)

B. Individual Detection

The methods based on foreground pixels can estimate the
number of people easily, but they cannot provide any infor-
mation on the location of each person. Individual detection
is important for subsequent video processing. This section
introduces a simple method for detecting individuals in such
situation.

Since the image has a low resolution (a frontal human closest
to the camera is only about 15 pixels wide in our test), human
detection methods based on edges or gradients in the image
will not work effectively. The methods based on segmenting
foreground blobs do not require a high resolution. However,
getting an accurate foreground contour for images with station-
ary people is almost impossible, as shown in Fig. 4(a).

As mentioned in the previous section, a closing operation can
extract most areas occupied by human beings from a foreground
image. The new image could be used as a rough foreground
mask. To avoid the dependence on accurate foreground extrac-
tion, some corner-like feature points will be extracted from the
whole image. After being filtered with the foreground mask,
most feature points from the background will be filtered out
while points from human beings remain. The key step for
human detection is to cluster these feature points with some
prior knowledge of human size. The details of this method will
be introduced in the following sections.

Feature Detection: Kanade-Lucas-Tomasi (KLT) [25] is a
popular corner detector and shows good performance for track-
ing. Briefly, the feature points are detected by examining the
minimum eigenvalue of a 2 ∗ 2 gradient matrix, Z, at each
location. Z is obtained with (6) and (7), in which I is the
intensity value of the image. W is a 7 ∗ 7 window centered
at the detected location in our test

Z =
∑

(x,y)∈W

g(x, y)g(x, y)T (6)

g(x, y) = [∂I/∂x, ∂I/∂y]T . (7)

In fact, any corner-like feature point can work in our eval-
uations. KLT features have been used due to KLT’s good
performance for tracking in subsequent video processing. Two
parameters are important during feature detection. The first pa-
rameter is the number of features to be detected. In our methods,
it is set to be large enough such that human beings show suffi-
cient evidence of their existence. The second parameter is the
minimum distance between two feature centers. For a human
being, the features may come from the contour or clothing. KLT
features from human clothing may not always appear, but points

due to human shape appear on almost all. Head-shoulder parts
offer crucial KLT features on human contours. Therefore, the
minimum distance of two KLT features should be set such that
the points from head-shoulder can be easily detected.

Foreground Mask: The foreground mask is obtained from
the foreground pixel image after a closing operation. With an
appropriate structuring element, the foreground image after a
closing operation can cover almost all the areas occupied by
human beings while cutting most of the cluttered background.
The size of the structuring element is related to the density
of scattered foreground pixels from the stationary people in
the image.

After filtering with the foreground mask, almost all feature
points from the background will be removed. The remaining
feature points are mainly from human contours and different
clothing. Hence, human detection is formulated as a problem of
clustering these feature points.

Cluster Model: Before clustering these feature points to
each individual person, a cluster model needs to be established.
In our test, each cluster has a distribution as described in (8).
To display it more clearly, the 2-D cluster model has been
illustrated in 3-D space in Fig. 5(a). A profile along its short
major axis is shown in Fig. 5(b)

h(s) =

{
m/(π ∗ eh ∗ ew) inside−ellipse
exp[−0.5(s−μ)T Σ−1(s−μ)]

2π|Σ|1/2 outside−ellipse.
(8)

In this model, a vertical ellipse with semi-major axis, eh,
and semi-minor axis, ew, is used to represent a prior human
shape. 2 ∗ eh and 2 ∗ ew are the average height and width of a
person. They can be estimated at one location in the image, and
the values at other locations can be obtained with Equation (1).
KLT features are assumed to be uniformly distributed over the
entire human body. This is reasonable since there is a variety
of clothing. m is a normalizing constant. It is set such that the
integral of the proposed distribution is 1.

Outside the ellipse, a Gaussian distribution with mean, μ, and
covariance matrix, Σ, is assumed. The center of the Gaussian
distribution is the same as the center of the ellipse. The co-
variance of the Gaussian distribution is related to the size of
the ellipse. When human beings to be detected are upright,
the covariance matrix, Σ, is diagonal and it can be written

as Σ =
[

σ2
x 0
0 σ2

y

]
, where σ2

x and σ2
y are variances along two

major axes.
To facilitate the computation, we assume the ellipse is co-

incident with the “30% ellipse” of the Gaussian distribution.
The “30% ellipse” is composed of all points with a probability
of 30% of the peak appearing in the Gaussian distribution, as
shown in Fig. 5(b). “30%” is an empirical selection. Under
these conditions, the total percentage of points falling inside
the ellipse is 0.773. Hence, the normalizing constant m in the
model is equal to 0.773. At the same time, the ellipse of size eh
and ew and the covariance matrix of the Gaussian distribution
Σ would satisfy the following relationship:

exp
[
−0.5 ∗ ew ∗ σ−2

x ∗ ew
]

= 0.3

exp
[
−0.5 ∗ eh ∗ σ−2

y ∗ eh
]

= 0.3.
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Fig. 5. (a) Three-dimensional illustration of our cluster model. (b) Profile along the short major axis of the ellipse. The blue curve is a standard Gaussian
distribution, and the red curve is our cluster model.

TABLE I
EM Clustering Method

This means that

ew2 = (−2 ln 0.3)σ2
x eh2 = (−2 ln 0.3)σ2

y. (9)

EM Clustering: The EM algorithm was first proposed by
Dempster et al. [22] and is widely used nowadays. In our
method, the EM algorithm is used to cluster the feature points
into each individual person. Table I shows the clustering al-
gorithm. The EM algorithm mainly includes two steps, the
E-step and the M-step, which are iteratively performed to obtain
an optimal result.

A difficulty in the EM algorithm is the determination of the
number of clusters. Usually, the number of clusters can be auto-
matically determined with Bayesian Information Criterion [26]

F = −2 log f(S|k, θ̂) + vk log n. (12)

In (12), k is the number of clusters, θ̂ is a vector including
all the model parameters in the k clusters, and f is the function

of the mixture model composed of k clusters. Each cluster has
a formulation as shown in (8) in our method. S represents all
the feature points, n is the total number of the points, and vk

is the total number of free parameters in the mixture model
with k clusters. The number of clusters should be the one that
can achieve the maximum of F . However, from (12), one can
observe that this criterion tends to use as few components as
possible to explain all the foreground feature points. This is
different from our application.

In our application, an ellipse that covers sufficient feature
points is supposed to reasonably represent a human individual.
We aim to cover almost all the feature points within those
ellipses. The number of clusters in our methods will be provided
before the EM algorithm starts. The estimation result obtained
in the previous section can be used to indicate the number of
clusters in the EM algorithm. However, more initial clusters are
preferred for two reasons. First, some initial ellipses may be
occupied by the unfiltered feature points from the background.
Second, sufficient initial clusters can help to reduce the sensi-
tivity of the EM algorithm to the initial cluster locations.

The clusters are initially placed on the KLT points with high
densities. In our evaluations, feature density is defined as the
number of feature points within a small neighborhood around
each point. In Evaluation 3, the neighborhood is a circle with a
radius of 8 pixels. Additionally, to avoid an overconcentration
of initial clusters, the distance between two initial clusters must
be larger than 8 pixels.

Postprocessing: After the EM clustering step, some post-
processing operations need to be performed.

a) The EM clustering results may contain some redundant
ellipses. The feature points falling in these redundant
ellipses are also included in other ellipses. It is reasonable
to remove the ellipses without sufficient evidence from
the feature points. In our test, the candidate ellipses are
checked one by one and the redundant ellipses removed.

b) A very simple occlusion analysis is performed in this step.
For people close to each other, it is reasonable to assume
that human beings with a low image y-coordinate would
be occluded by those with a high image y-coordinate
in most visual surveillance systems. In our evaluations,
“occlusion” is simply defined as a 30% overlap of two
ellipses. Humans not occluded by others should have
more than three feature points, while two feature points
are acceptable for those who are occluded.
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TABLE II
RESULTS OF PEOPLE COUNTING

IV. RESULTS AND ANALYSIS

Our focus is on a complicated scene, as described in the
introduction. Comparing our results with others is difficult, as
very little research has been done on complicated scenarios.
As we know, [8] has obtained results using a large crowd in
a scene similar to ours. Nonetheless, their methods require high
resolution. They used a 16 ∗ 16 head template in their test.
Human heads in our test set are only about five pixels wide.
Besides, they did not provide the ground truth of their tested real
images, so we are unable to compare the counting results. Some
evaluations of our own methods are described in this section.

The evaluations were performed on a four-hour video taken
at a public event. The video was taken at 10 fps, and the
image resolution is 640 ∗ 480 pixels. One image scene every
100 seconds was used for the evaluation, and a total of
153 images were extracted from the original four-hour video.
The ground truth, which is the actual number of people in
the scene, for each image was obtained manually. In the set
of images, the number of people in the scene ranges from
36 to 222. The training set consists of 102 images, which
were formed by taking the first two images out of every three
consecutive images. The test set is composed of the remaining
51 images. There is a wide range in the number of people for
both the training set and the test set. To increase the speed
of people counting, all the images were resized to 320 ∗ 240
pixels in Evaluation 1. The resolution of the image for human
detection evaluations is 640 ∗ 480 pixels.

A. Evaluation 1

All three methods for people counting in Section III-A were
tested. Their results are compared in Table II. The inputs were
normalized to avoid bias due to their scale range.

From the table, one can observe that the estimation per-
formance improved significantly after the closing operation.
In fact, the relationship between the foreground pixels and
the number of people becomes quite simple after the closing
operation, as shown in Fig. 6. Different sizes of disks have
been attempted in our evaluations. The results show that the
linear relationship is not very sensitive to the size of the disk.
However, when the disk size is too large, many areas without
people will also be identified as foreground pixels, which can
result in false estimations.

The best estimation results come from method 3, in which
both foreground pixels and closed foreground pixels are consid-
ered. The mean error percentage is around 10%. The percentage
of test cases with error less than 10% also increases when
compared with method 2.

Fig. 6. (a) Relationship between the number of people and the number of
foreground pixels. (b) Learned relationship between the number of people and
the number of pixels after the closing operation.

Fig. 7. Sudden decrease in the number of people results in false foreground
pixels. (a) The 30th sample in the test set and the extracted foreground pixels
from this sample. (b) The scene 100 seconds before (a) and its foreground
image.

One cause of errors in the test set is the sudden decrease of
people. Take the 30th sample [see Fig. 7(a)] in the test set as an
example; the scene 100 seconds before is shown in Fig. 7(b). A
large number of people were sitting in chairs for a long time
and were thus considered as the background. However, they
suddenly moved away. So in the 30th sample, the background
had not been adapted completely yet. The wrong foreground
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Fig. 8. After using a foreground mask, almost all the feature points from the
background are removed.

pixels at the back of the sitting area caused large errors in
the test.

The movement of non-human objects also results in wrong
foreground pixels. At the end of the four-hour video, the ground
truth of the number of people is relatively low. Hence, the
movement of some boxes caused large error percentages.

B. Evaluation 2

In this evaluation, a simple test of the human detection
method is shown on an image with two persons, as shown in
Fig. 8.

During the test, KLT feature detection was performed with
the implementation in [27]. Fig. 8 illustrates the process for
using a foreground mask. Initially, many KLT feature points
come from the railings behind. After using the foreground
mask, the feature points mainly come from the two human
beings.

After removing those background feature points, the EM
algorithm was used to cluster the remaining points. Clustering
with different numbers of initial clusters was tested, and the
results are shown in Fig. 9. Each cluster is indicated with an
ellipse. In this evaluation, the initial location of each cluster is
uniformly random in the image. Fig. 9(a), (d), and (g) show
the locations of 3, 5, and 8 initial clusters, respectively. The
corresponding clustering results after 15 iterations with the EM
algorithm are shown in Fig. 9(b), (e), and (h). Some clusters
overlap in these figures. Take Fig. 9(h) as an example. Five
initial clusters have converged to the left ellipse, and three
other clusters overlap on the right ellipse. They are so close
that differentiating them from the figure is difficult. After
the postprocessing operations introduced in Section III-B, the
results are shown in Fig. 9(c), (f), and (i). Although a large
number of initial clusters were provided, the clustering results
always converged to an accurate number of persons in the test
image after postprocessing.

C. Evaluation 3

Some human detection results on a typical outdoor scene will
be shown in this evaluation. Since our focus is upright human
detection, a scene with few sitting people, as shown in Fig. 10,
will be used as an example.

First, the most significant 1000 KLT feature points were
extracted from the image. The minimum distance between two
feature points is eight pixels. To include almost all the feature

Fig. 9. Clustering results for different initial numbers of clusters. Initial
clusters 3, 5, and 8 are shown in (a), (d), and (g); the corresponding clustering
results after 15 iterations with the EM algorithm are shown in (b), (e), and (h);
the final cluster results after removing unreasonable ellipses are shown in (c),
(f), and (i).

points from human beings within the foreground mask, a disk
with a radius of five pixels was used for the closing operation.
After using the foreground mask, the number of remaining
foreground feature points is 653.

The estimation result from the neural network method for
this image is 126. The number of clusters for the EM algorithm
was initialized as twice the estimate, which is 252. The initial
clusters were located according to the density of the feature
points, and the probability of each cluster was initially set to
be equal.

Fig. 10(a) shows the clustering results when the EM al-
gorithm converges. The ellipses indicate the location and the
size of each person. Some ellipses have a large overlap with
others, and some contain very few feature points. Hence, two
postprocessing measures introduced in Section III-B were taken
to remove those unreasonable ellipses. Fig. 10(b) is the result
after the postprocessing steps were performed. Overlapped el-
lipses were combined. Ellipses caused by scattered background
feature points were removed. Although the resolution of the test
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Fig. 10. Human detection results. (a) Results after EM clustering. (b) Results after postprocessing. The red dots show the feature points after using the foreground
mask, and the ellipses show each detected human being.

Fig. 11. (a) Result based on the Gaussian model. (b) Result based on our proposed model.

Fig. 12. (a) Result based on the Gaussian model. (b) Result based on our proposed model.

image is very low (about 15 pixels wide for a frontal person
closest to the camera), from Fig. 10(b), one can observe that
the method produces effective results in most areas. Human

beings lining up were detected correctly with our method, even
though they only show some scattered foreground pixels in the
extracted foreground.
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Fig. 13. (a) Result based on the Gaussian model. (b) Result based on our proposed model.

Fig. 14. (a) Result based on the Gaussian model. (b) Result based on our proposed model.

However, the detection results are still far from the ground
truth. The number of the remaining ellipses in Fig. 10(b) is
only 110. The difference between the estimated number of
people, 126, and the located people, 110, is mainly due to
the following: First, stationary people may be excluded from
the foreground. Second, some people show very few feature
points. Third, similar to the other methods based on foreground
segmentation, there may be some misdetections in very dense
areas. Additionally, since the foreground mask is not very
accurate, some background areas near the crowd may cause
false feature points and result in some false detections. To
improve the method, more texture features inside the crowd
need to be studied. However, this will require higher resolution
images.

Finally, for better comparison of our model to the Gaussian
model, more results based on our test sequence are shown in
Figs. 11 and 12. Additional results based on INRIA’s CAVIAR
scenarios are shown in Figs. 13 and 14. At the locations
indicated by the green ellipses, one can observe that with our
proposed method, the detection is more accurate, with less
overcounting.

V. CONCLUSION

The scenario analyzed in this paper is quite common in
public areas. Yet, little research has been carried out in such
scenes.

In this paper, foreground pixels from both moving people
and near stationary people have been considered to estimate
their number. After a closing operation over foreground pixels,
one can observe a linear relationship between the number of
people and foreground pixels. The best estimation results, with
a 10% average error, were achieved when both foreground
pixels and closed foreground pixels are learned in a neural
network.

With the estimated number of people, a human detection
method based on the EM algorithm has been attempted for
subsequent video processing. By clustering the KLT feature
points in a foreground mask, the requirement for an accurate
foreground contour has been reduced. The application of meth-
ods based on segmenting the foreground has been extended to
detection of people who are moving only slightly. This new
cluster model has been shown to be more accurate in both
counting and detection than the Gaussian model.
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In the future, texture inside the foreground region can be used
as another input for the neural network. This addition will be an
extension of the present paper. As for the detection algorithm,
foreground pixels will be combined with the feature point
clustering method to avoid the insufficiency of feature points on
some human beings. More detailed analysis of the distribution
of KLT features in each ellipse would help handle the non-
human moving objects. However, to distinguish human and
non-human objects more accurately, a high-resolution video is
needed to provide sufficient data. A high-resolution video is
also necessary to handle a denser crowd.
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