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Dip and strike angles method for yield line

analysis of reinforced concrete slabs

A. K. H. Kwan*

The University of Hong Kong

Yield line analysis is a useful method for design of reinforced concrete slabs, but has been limited to slabs of simple

geometry, because up to now there has been no generally applicable and fully automatic computational procedure

for complex-shaped slabs. Herein, a new yield line method that can be applied to any convex polygonal-shaped slab

is developed. In this method, the deflections of the slab regions divided by yield lines are measured in terms of the

dip and strike angles of the slab surfaces, which can define the geometry of all kinematically admissible collapse

mechanisms or yield line patterns. The external work done and the internal energy dissipation at yield lines are

evaluated as functions of the dip and strike angles, and the principle of virtual work is used to determine the

corresponding load factor. The final solution is obtained by minimising the load factor with respect to the dip and

strike angles. A computer program based on this method has been produced. Its correctness is verified by checking

against results obtained by others for simple cases, and its versatility is demonstrated by applying it to complicated

slabs subjected to point, line, patch and uniformly distributed loads.

Notations

a, b, c coefficients in equation of deflection slab

surface

Fi magnitude of point load

gi geometric parameter being varied to minimise

º
(gi)o current value of gi
˜gi small change to be applied to gi to evaluate

variation of º with gi
(˜gi)9 change to be applied to gi to minimise º
Hi intensity of line load

Mi plastic moment along yield line

m number of line supports

NF number of point load

NH number of line load

NP number of patch load

NS number of negative yield lines at supported

edges

NY number of positive yield lines within the slab

n number of point supports

Pi intensity of patch load

U intensity of uniformly distributed load

Wext external work done

Wint internal energy dissipation along yield lines

z vertical displacement of slab surface

Ł dip angle

º load factor

ºo current value of º
º1 value of º when of gi ¼ (gi)o – ˜gi
º2 value of º when of gi ¼ (gi)o + ˜gi
� strike angle

ł plastic rotation angle at yield line

Introduction

There are several commonly adopted analytical

methods for design of reinforced concrete (RC) slabs.

For elastic design the finite-element method or grillage

method may be used, whereas for plastic design the

yield line method or strip method may be employed.
1,2

Among these, as RC design is nowadays based mostly

on the limit state design philosophy, the yield line and

strip methods, which give ultimate loads or load fac-

tors, are generally preferred. However, these two design

methods have been limited to relatively simple cases

because of their reliance on assumed yield line or strip

patterns, which up to now have had to be determined

on a case-by-case basis by means of engineering judge-
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ment. Generalised analytical or numerical procedures

applicable to RC slabs with complex geometry are still

lacking, and consequently computerisation of the yield

line and strip methods has proved to be a formidable

task. To resolve the problem, the author is pointing out

in this paper a new direction for the development of a

generalised numerical procedure for the yield line

method that may be applied to complex-shaped RC

slabs.

The yield line theory was actually developed long

before the classical limit state design philosophy ap-

peared in the 1950s. Two alternative forms had been

developed, one by Ingerslev
3

and the other by

Johansen.
4
Both forms lead to identical solutions, and

have been demonstrated to be equivalent to each other.
5

In either form, the yield line theory is based on as-

sumed collapse mechanisms, each defined by a pattern

of yield lines along which the slab has reached its

plastic moment capacity. It is generally assumed that

the slab is rigid-plastic in the sense that elastic de-

formation is relatively small and negligible, whereas

plastic deformation can be very large because of near-

perfect plasticity. Owing to the implicit assumption of

near-perfect plasticity, the theory is applicable only to

under-reinforced concrete slabs. For each assumed col-

lapse mechanism, the corresponding ultimate load is

evaluated using the principle of virtual work. By con-

sidering all kinematically admissible collapse mechan-

isms, the smallest ultimate load is taken as the final

solution. Such a solution is theoretically an upper-

bound solution, but in practice many investigators have

shown that the yield line theory is a conservative meth-

od for slabs with less than 1% steel reinforcement in

each layer when failure is due to bending.
6

Traditionally, yield line analysis starts by assuming

yield line patterns that are kinematically admissible,

and then proceeds by evaluating the corresponding ulti-

mate load of each assumed yield line pattern. While

ascertaining whether a yield line pattern is kinemati-

cally admissible, it should be noted that a yield line is

actually an intersection line between two adjacent slab

regions, each assumed to be rigid and rotating about an

axis of rotation. For a yield line pattern to be kinemati-

cally admissible, it has to satisfy the following kine-

matic conditions.

(a) Every yield line or its extension must pass through

the intersection point of the axes of rotation of the

two adjacent slab regions.

(b) Every line support (supported edge) is an axis of

rotation, and every point support (column) must lie

on an axis of rotation.

(c) Every yield line is a straight line ending either at a

nodal point where other yield lines meet or at a

free edge. Yield lines are not allowed to intersect

each other, but their ends may meet at common

nodal points.

A yield line pattern is usually defined in terms of the

positions, lengths and angles of the yield lines. How-

ever, as shown in Fig. 1, even for a simple rectangular

slab there could be different yield line patterns, which

bear no resemblance to each other. Each yield line

pattern has to be defined by a separate set of geometric

parameters (for example, in Fig. 1, pattern A may be

defined by Æ1, Æ2 and Æ3, and pattern B by �1, �2 and

�3). Up to now, there has been no way of defining all

the kinematically admissible yield line patterns by a

single set of geometric parameters.

Since the 1970s many researchers have attempted to

computerise the yield line method. However, although

the degree of automation has increased over the years,

most computational procedures developed
7–9

are still

based on assumed yield line patterns that are to be

input by the user. One common way of inputting a yield

line pattern is to enter the coordinates of the nodal

points where yield lines meet or end.
8,9

As the nodal

points are related to each other by the kinematic condi-

tions, they are not independent. If the coordinates were

not input correctly, the kinematic conditions would not

be satisfied. Some computer programs
8
provide rou-

tines for checking the kinematic conditions, but most
7,9

just rely on the user to ensure that the kinematic condi-

tions are satisfied. So far, there has been no simple way

of specifying the geometric parameters of a yield line

pattern that would always satisfy the kinematic con-

ditions.
10

There is also no generally applicable rule for

generating all the yield line patterns to be considered in

the analysis.

To overcome the above problem, Munro and Da

Fonseca
11

developed in 1978 a yield line method that

does not require the input of assumed yield line pat-

terns. In their method, no yield line pattern needs to be

input or generated. Instead, a finite-element mesh is

generated, and the linear programming technique is

employed to search for the yield line pattern, which

must follow the fixed and discrete element boundaries.

When the finite-element mesh contains the actual yield

lines of the collapse mechanism, the solution obtained

from this discrete model coincides with that from the

continuous model (the conventional model that permits

continuous variation of the yield line pattern). The

finite-element mesh need not be fine, but, if it does not

contain the actual yield lines, the solution may not be

reliable. Jennings et al.
12

had attempted to resolve this

problem by allowing the nodes of the finite-element

mesh to adjust their positions through geometric opti-

misation so that hopefully the element boundaries

would eventually contain the yield lines of the collapse

mechanism. However, the geometric optimisation may

run into convergence problems because of the presence

of slope discontinuities in the optimisation function.

Johnson
13,14

adopted a similar approach, and had devel-

oped a strategy of first identifying the critical yield line

pattern by means of a fine-mesh arrangement, which is

not subjected to geometry optimisation, and then apply-

ing geometric optimisation to a simplified net, which is

Kwan

488 Magazine of Concrete Research, 2004, 56, No. 8



established from the critical yield line pattern deter-

mined initially. Later, Thavalingam et al.
15,16

improved

Jennings et al.’s geometric optimisation technique by

using the conjugate gradient method to tackle the pro-

blems due to slope discontinuities. However, some ex-

pertise is still needed by the user in knowing what

topological configurations should be investigated for

any particular slab.

In this paper, a new method based on the continuous

model is developed. It is the author’s view that the main

hurdle in the computerisation of the yield line method

is the generation of all kinematically admissible yield

line patterns using a single set of geometric parameters.

Herein, it is proposed to remove this hurdle by defining

the yield line patterns in terms of the dip and strike

angles of the deflected slab surfaces instead of the

positions, lengths and angles of the yield lines.

Dip and strike angles

After yielding, the yield lines formed will divide the

slab into separate regions bounded by the edges of the

slab and the yield lines. It is postulated herein that, for

a convex polygonal-shaped slab with no internal col-

umn support, each slab region is associated with either

a line support (a simply supported or clamped edge) or

a point support (a column at a corner between two free

edges) and has an axis of rotation, as illustrated in Fig.

2. For a slab region associated with a line support, its

L2 L2

L1

α2L2 α3L2

α1L1

�3L2

�1L1

�2L1

Pattern A Pattern B

L2 L2

γ1L1

γ1L1

γ2L1

γ2L2

L1

Pattern C Pattern D

(a)

(b)

Fig. 1. Possible yield line patterns in a rectangular slab: (a) case 1, slab supported on all four edges; (b) case 2, slab supported

on three edges only
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axis of rotation is the same as the line support, whereas

for a slab region associated with a point support, its

axis of rotation is unknown but must pass through the

point support. The axes of rotation, together with the

angles of rotation of the slab regions, control the de-

flection mode of the slab. There is a one-to-one corre-

spondence between the yield line pattern and the

deflection mode. For any given kinematically admissi-

ble yield line pattern, the deflection mode may be

determined by considering the kinematic conditions.

On the other hand, for any given deflection mode, the

yield line pattern may be identified from the intersec-

tion lines of the deflected slab surfaces. Hence the

deflection mode of the slab may be used to define any

kinematically admissible yield line pattern of the slab.

It is noteworthy at this stage of theoretical development

that, in 1996, Jennings
17

had proved the theorem that,

for a convex polygonal-shaped slab supported on all

edges and with no internal column support, the yield

lines will divide the slab into regions, each associated

with a supported edge. Hence the above postulation

may be considered an extension of Jennings’ theorem.

The deflection of each slab region, which remains a

plane surface because of negligible elastic deformation,

may be defined in terms of its angle of rotation and the

orientation of its axis of rotation. In the field of geol-

ogy, an inclined stratum is mapped in terms of its dip

and strike angles,
18

as depicted in Fig. 3. The dip angle

is the maximum slope of the stratum (same as the angle

of rotation), and the strike angle is the bearing of a

horizontal line on the stratum (same as the orientation

of the axis of rotation). Borrowing these terminologies,

the deflection of each slab region is defined in terms of

its dip angle (angle of rotation) and strike angle (orien-

tation of axis of rotation). For a slab region associated

with a line support, its strike angle is predetermined

because its axis of rotation must be the same as the line

support, but, for a slab region associated with a point

support, its strike angle is an unknown parameter to be

determined.

For each line support there is a slab region associated

with it, and as the strike angle is predetermined, only

one unknown geometric parameter—the dip angle—is

needed to define the deflection of the slab region. Like-

wise, for each point support, there is a slab region

associated with it, but two unknown geometric para-

meters—the dip and strike angles—are needed to de-

fine the deflection of the slab region. If there are m

line supports and n point supports, a total of (m + n)

dip angles and n strike angles will be needed to define

the deflection mode of the slab. As yield lines are just

intersection lines between deflection slab surfaces,

these geometric parameters can also uniquely define

the yield line pattern. By varying the values of these

geometric parameters, the whole range of yield line

patterns can be generated. Moreover, the yield line

patterns so generated are always kinematically admissi-

ble. In other words, this single set of geometric para-

meters comprising (m + n) dip angles and n strike

angles is capable of generating all kinematically admis-

sible yield line patterns. With these geometric para-

meters used to define the yield line patterns and treated

as the unknowns to be solved, the main hurdle in the

computerisation of the yield line method can now be

removed.

Generation of yield line pattern

Yield lines are just intersection lines between de-

flected slab surfaces. Their positions, lengths and an-

gles may be determined if the equations of the

deflected slab surfaces are known. For a slab region

associated with a line support passing through (x1, y1)

or a point support at (x1, y1) and having dip and strike

angles of Ł and � (see Fig. 3 for sign convention), the

equation of its deflected surface may be derived as

z ¼ �Ł sin� x� x1ð Þ þ Ł cos� y� y1ð Þ (1)

in which z is the vertical displacement (downwards

positive). Note that, as the deflected surface is a plane

surface, z is a linear function of x and y. Repeating the

above procedure for every slab region, the equations of

all the deflected slab surfaces may be evaluated. They

are generally of the form z ¼ ax + by + c.

Let a yield line be the intersection line between the

Slab
region

Slab region

A
xi

s 
of

 r
ot

at
io

n

Li
ne

 s
up

po
rt

Line support

Point
support

Free edge

Simply supported edge

Clamped edge

Column

Yield line

Slab
region

Slab region

Line support

Fig. 2. Slab regions associated with line or point supports
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deflected slab surfaces of the ith and jth slab regions,

whose equations are given respectively by

z ¼ aixþ bi yþ ci (2)

z ¼ a jxþ b j yþ c j (3)

Equating the vertical displacements of the two de-

flected slab surfaces, the equation of the intersection

line may be derived as

ai � a jð Þxþ bi � b jð Þyþ ci � c jð Þ ¼ 0 (4)

For every pair of slab regions, one such intersection

line may be obtained. However, not all intersection

lines would materialise as yield lines. Moreover, inter-

section lines as given by the above equation are infi-

nitely long, whereas in reality yield lines have only

finite lengths. Therefore a special numerical procedure

is needed to pick up the yield lines from the set of

intersection lines, as explained below.

The yield line pattern is generated by considering

each slab region in turn. Let the slab region being

considered be the ith slab region. When the deflected

surface of the ith slab region intersects the deflected

surface of the jth slab region, an intersection line as

given by equation (4) is generated. At the beginning,

this intersection line is infinitely long. The points

where this intersection line crosses the slab boundary

are then evaluated. Let the two points where the inter-

section line crosses the slab boundary be P and Q and

their coordinates be (xp, yp) and (xq, yq) respectively. As

only the segment of the intersection line within the slab

area is relevant, the intersection line is cut to have a

finite length with end points P and Q. The z-coordi-

nates of P and Q are then evaluated using equations (2)

or (3). Denoting the z-coordinates of P and Q by zp and

Horizontal line
on stratum

Strike

Dip

Dip angle

Inclined
stratum

Axis of
rotation

Deflected
surface of

slab

Dip

 θ downwards �ve

y

x

Strike

Horizontal plan
of slab

 φ anticlockwise �ve

Strike

(a)

θ

(b)

φ

Fig. 3. Dip and strike angles: (a) mapping of an inclined stratum in geology; (b) sign convention for dip and strike angles
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zq, the coordinates of P and Q in space are obtained as

(xp, yp, zp) and (xq, yq, zq), respectively. The line PQ

cuts through the deflected surfaces of the other slab

regions (slab regions other than the ith and jth slab

regions). The parts of PQ that fall below any of the

deflected surfaces of the other slab regions are then

trimmed off, as they would not materialise as yield

lines. The remaining part of PQ (denoted by RS, where

R and S are the new end points), which stays above all

of the deflected surfaces of the other slab regions,

would become a yield line, whereas the end points R

and S of the yield line would become nodal points of

the yield line pattern.

Considering the ith slab region, all the yield lines

lying on its boundaries can be found by working out

the intersections between its deflected surface and the

deflected surfaces of all the other slab regions (slab

regions other than the ith slab region) and trimming off

those parts of the intersection lines that would not

materialise as yield lines. Repeating this procedure for

each slab region in turn until all slab regions have been

considered, the whole yield line pattern can be gener-

ated. The yield line pattern generated consists of the

three-dimensional coordinates (i.e. x, y and z) of the

nodal points where yield lines meet or end and

the vertical displacement everywhere in the slab (as

given by the equations of the deflected slab surfaces).

A flowchart of the procedure is presented in Fig. 4.

Virtual work equations

The principle of virtual work is employed to evaluate

the load factor of the slab under the given loading.

For the external loads, point load, line load, patch

load and uniformly distributed load are considered.

Their work done, Wext, is given by

Wext ¼
XNF

i¼1

Fizið Þ þ
XNL

i¼1

ð
Hiz x, yð Þds

� �

þ
XNP

i¼1

ð
Piz x, yð ÞdA

� �
þ
ð
Uz x, yð ÞdA (5)

where Fi is the magnitude of the point load; Hi is

the intensity per unit length of the line load; Pi is the

intensity per unit area of the patch load; U is the

intensity per unit area of the uniformly distributed load;

ds is the differential length along the line load being

considered; dA is the differential area within the patch

load or uniformly distributed load being considered;

and NF, NH and NP are the numbers of point load, line

load and patch load, respectively. When evaluating the

work done by the point load Fi, it is first necessary to

determine which slab region the point load is acting on.

Having determined the slab region that the point load is

acting on, the vertical displacement zi may then be

evaluated using the equation of its deflected surface.

Likewise, when evaluating the work done by the line

load Hi, it is first necessary to determine the slab

regions that the line load is acting on. The line load is

then separated into several parts, each acting on one

slab region. Afterwards, the work done on each slab

region is obtained by integration using the equation of

deflected surface of the slab region involved. The total

work done by the line load is then determined by

summing the work done on each slab region. Similarly,

when evaluating the work done by the patch load Pi, it

is first necessary to determine the slab regions that the

patch load is acting on. The patch load is then sepa-

rated into several parts, each acting on one slab region.

After obtaining the work done on each slab region by

integration, the total work done by the patch load is

then determined by summing the work done on each

slab region.

On the other hand, the internal energy dissipation

along the yield lines, Wint, is given by

BEGIN

Find intersection line between
ith and jth slab regions

Find points PQ where the
intersection line crosses the

slab boundary

Trim off parts of PQ that
would not become yield line
and find new end points RS

Have intersections
between ith slab region and

 all other slab regions
 been considered?

Have yield
 lines of all slab regions

been obtained?

END

Find all yield lines
on ith slab region

Find yield line between
ith and jth slab regions

Yes

Yes

No

No

Fig. 4. Procedure for finding yield lines
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Wint ¼
XNS

i¼1

ð
Miłidl

� �
þ
XNY

i¼1

ð
Miłidl

� �
(6)

in which the first term on the right-hand side is the

energy dissipation along negative yield lines at sup-

ported edges, and the second term is the energy dissi-

pation along positive yield lines within the slab; Mi is

the plastic moment per unit length along the yield line;

łi is the plastic rotation angle at the yield line; dl is

the differential length along the yield line being consid-

ered; NS is the number of negative yield lines at sup-

ported edges; and NY is the number of positive yield

lines within the slab. For a negative yield line at a

supported edge, the plastic rotation angle ł is the same

as the dip angle. For a positive yield line with end

points R and S formed between the ith and jth slab

regions, the plastic rotation angle ł can be shown to be

given by

ł ¼
ai � a jð Þ yr � ysð Þ � bi � b jð Þ xr � xsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xr � xsð Þ2þ yr � ysð Þ2
q (7)

in which xr and yr are the coordinates of R, and xs and

ys are the coordinates of S.

Having obtained the external work done, and the

internal energy dissipation along yield lines, the load

factor º may be evaluated as

º ¼ Wint

Wext

(8)

As both Wext and Wint are dependent on the dip and

strike angles of the slab regions, º is a function of the

dip and strike angles.

Determination of minimum load factor

The minimum load factor is obtained by minimising

º with respect to the dip and strike angles. Because of

slope discontinuities, the minimisation procedure can-

not be carried out using any numerical method that

relies on the differential coefficients of º with respect

to the variables. To overcome this difficulty, a succes-

sive parabolic minimisation technique, as explained

below, is employed.

The º-function is minimised with respect to each

geometric parameter—that is, each dip or strike angle

—in turn. If there are m line supports and n point

supports, there will be a total of (m + 2n) geometric

parameters, namely (m + n) dip angles and n strike

angles, that are to be varied to yield the minimum value

of º. These geometric parameters are first assigned

initial values. For each dip angle, an initial value of 1.0

is assigned, and for each strike angle, an initial value

equal to the mean of the bearing angles (measured

anticlockwise from the x-axis) of the two adjacent free

edges is assigned. After assigning initial values, the

geometric parameters are varied in turn to minimise º.

Let the geometric parameter being considered be de-

noted by gi, and the current values of gi and º be

denoted by (gi)o and ºo, respectively. The effect of a

small variation of gi on the value of º is then analysed

by applying small changes of �˜gi to gi and evaluating

the corresponding values of º after the value of gi is

changed. Let the value of º when gi ¼ (gi)o – ˜gi be
denoted by º1, and the value of º when gi ¼ (gi)o +

˜gi be denoted by º2. A parabolic curve is then fitted

to approximate the variation of º with gi, as shown in

Fig. 5. From the parabolic curve, the change (˜gi)9 to
be applied to gi that will yield a minimum value of º
may be derived as

˜gið Þ9¼ 1

2

º1 � º2
º1 � 2º0 þ º2

� �
˜gið Þ (9)

This equation for (˜gi)9 may be applied even when

there is slope discontinuity. When the magnitude of

(˜gi)9 is greater than 5˜gi its magnitude is reduced to

5˜gi, in order to avoid numerical instability due to

excessive extrapolation. On the other hand, when the

magnitude of (˜gi)9 is less than 0.5˜gi, ˜gi is halved

and the above procedure is repeated to have a new

value of (˜gi)9 evaluated. After settling with the value

of (˜gi)9, the change (˜gi)9 is applied to gi and the

updated value of º is evaluated. If the updated value of

º is not smaller than ºo, ˜gi is further halved and the

procedure is repeated until the new value of º is smal-

ler than ºo.
Having minimised the º-function with respect to gi,

as outlined above, the º-function is then minimised

with respect to the other geometric parameters in turn

until it has been minimised with respect to all the

geometric parameters. This completes one cycle of

minimisation. The minimisation cycle is repeated until

the change in º after one minimisation cycle is less

than 0.1% or any acceptable error in load factor. Nu-

merical trials indicated that this minimisation procedure

is stable and convergent. Although in some cases up to

50 minimisation cycles may be required, depending on

the complexity of the slab and how close the initial

values of the geometric parameters are to the correct

values, the actual computer time is generally less than

Minimum
value of λ

Parabolic
curve

λ

(∆gi)′

(gi)0 � ∆gi (gi)0 (gi)0 � ∆gi

λ1

λ0

λ3

gi

Fig. 5. Parabolic approximation of variation of º with gi
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1 min. A flowchart of the minimisation procedure is

presented in Fig. 6.

Application to simple cases

A computer program based on the above numerical

procedures has been developed. To verify the correct-

ness of the computer program, a number of examples

given in the literature are analysed and compared with

the load factors given by others. The examples analysed

are shown in Fig. 7.

Example 1 is an orthotropically reinforced rectangu-

lar slab simply supported on three sides and free on the

fourth, subjected to a uniformly distributed load. It has

been analysed by Jones and Wood using hand calcula-

tion in chapter 3 of Reference 5. The computer program

yields a load factor equal to 19.06M/UL2, whereas the

value of load factor obtained by Jones and Wood is

19M/UL2 (to two significant figures). These two results

agree closely with each other. In fact, the author has re-

evaluated the load factor to four significant figures

using the formula given by Jones and Wood (equation

3.126) and obtained a value of 19.06M/UL2.

Example 2 is an orthotropically reinforced rectangu-

lar slab simply supported on three sides and clamped

on the fourth, subjected to a uniformly distributed load.

It has been analysed by Jones and Wood using hand

calculation in chapter 4 of Reference 5. The computer

program yields a load factor equal to 0.1514M/U,

whereas the value of load factor obtained by Jones and

Wood is 0.150 M/U (to three significant figures). The

agreement is considered good. Nevertheless, the author

has re-evaluated the load factor to four significant

BEGIN

Updated value of λ
smaller than λ0?

 Has λ been
minimised with

respect to all gi?

Change in λ less
than 0·1%?

END

Reduce ∆gi
by half.

One minimisation cycle

Minimisation with

respect to gi

Yes

Yes

Yes

Yes

No

No

No

No

Apply small changes of �∆gi to gi
to find λ1 and λ2.

Evaluate (∆gi)′ using equation (9).
If (∆gi)′ � 5∆gi, set (∆gi)′ � 5∆gi

(∆gi)′ � 0·5∆gi?

Apply (∆gi)′ to gi and evaluate
updated value of λ

Fig. 6. Procedure for parabolic minimisation
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figures using the analytical formulas given by Jones

and Wood (equations 4.56, 4.59 and 4.62) and obtained

a value of 0.1514M/U.

Example 3 is an orthotropically reinforced triangular

slab simply supported on two sides and free on the

third, subjected to a line load along the free edge. It

has been analysed by Jones and Wood using the affinity

theorem in chapter 7 of Reference 5. The computer

program yields a load factor equal to 0.1414M/H,

whereas the value of load factor obtained by Jones and

M

L

0·4L

0·4M

Intensity of u.d.l. � U Intensity of u.d.l. � U

20

10

�M

0·3M

0·25M

M
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(d)

M

M

L

L

(e) (f)

M

M

M

M

Free edge
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Simply supported edge

Legend: Column

Yield line

L
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5

2·5

2·5

(a) (b)

Intensity of line load � H

(c)

Intensity of u.d.l. � U

Intensity of u.d.l. � U Intensity of u.d.l. � U

Fig. 7. Application to simple cases: (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4; (e) Example 5; (f) Example 6
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Wood is 0.141M/H (to three significant figures). Very

good agreement is achieved. The author has repeated

Jones and Wood’s calculations with four significant

figures retained at all times and obtained a load factor

of 0.1414M/H.

Example 4 is an isotropically reinforced trapezoidal

slab simply supported on three sides and free on the

fourth, subjected to a uniformly distributed load. This

example has been analysed by Thavalingam et al.
15

using a combination of finite-element meshing, linear

programming and geometric optimisation. The compu-

ter program yields a load factor of 0.2872M/U, whereas

the load factor obtained by Thavalingam et al. is

0.2850M/U. The load factor obtained by Thavalingam

et al. is slightly smaller and should be more accurate

because the corner lever effect has been considered in

their solution, whereas in the numerical procedure

developed herein the corner lever effect has not yet

been taken into account. Nevertheless, the difference in

load factor is very small, and the two results may be

considered to be in good agreement.

In Example 5 an isotropically reinforced square slab

supported on two simply supported edges and one

column is analysed. There are two free edges between

the column and the supported edges. The slab is sub-

jected to a uniformly distributed load over the whole

slab area. It has been analysed by Johansen
4
using

hand calculation. The computer program yields a load

factor of 10.67M/UL2, and the load factor obtained by

Johansen is also 10.67M/UL2. Exact agreement is

achieved.

In Example 6 an isotropically reinforced square slab

is supported on one simply supported edge and one

column. Apart from the simply supported edge, all the

other edges are free. The slab is subjected to a uni-

formly distributed load over the whole slab area. It has

been analysed by Jones and Wood using hand calcula-

tion in chapter 6 of Reference 5. The computer pro-

gram yields a load factor of 5.211M/UL2, whereas the

load factor obtained by Jones and Wood is 5.17M/UL2

(to three significant figures). As the agreement does

not appear to be good, the author has re-evaluated the

load factor to four significant figures using the formu-

lae given by Jones and Wood (equations 6.41 and 6.43)

and obtained a value of 5.211M/UL2.

Application to complicated cases

In order to demonstrate the versatility of the compu-

ter program, two more complicated examples are ana-

lysed, as shown in Fig. 8.

Example 7 is a five-sided polygonal slab supported

on two clamped edges and two columns. There are

three free edges between the clamped edges and the

columns. The slab is isotropically reinforced with plas-

tic moment M under both sagging and hogging condi-

tions, and is subjected to a uniformly distributed load

of U. The number of minimisation cycles required to

complete the analysis is six, and the minimum load

factor obtained is 0.1967M/U.

Example 8 is another five-sided polygonal slab sup-

ported on one clamped edge, two simply supported

edges and one column. There are two free edges be-

tween the column and the supported edges. The slab is

orthotropically reinforced with plastic moment 0.5M

about the x-axis and plastic moment M about the y-

axis. Equal amounts of reinforcement are provided at

the top and bottom of the slab, and thus the moment

capacities of the slab under sagging and hogging condi-

tions are the same. A point load of magnitude F and a

patch load of magnitude 10F evenly distributed over an

area of 2 3 2 are applied to the slab, as shown in the

diagram. The number of minimisation cycles required

to complete the analysis is 10, and the minimum load

factor obtained is 0.2325M/F.

Discussion

The numerical procedure developed herein has the

major limitation that it is at present applicable only to

polygonal-shaped slabs with no concave corners. Yield

line analysis of polygonal-shaped slabs with concave

corners can be quite complicated, for the following

reasons: (a) there may be more than one slab region

associated with a point support at a concave corner;

and (b) there will be both positive and negative yield

lines within the slab area, rendering the identification

of yield lines from the intersections between adjacent

slab regions much more difficult. Nevertheless, it is

believed that the same principle of using dip and strike

angles to define all yield line patterns can still be

applied. Further research to extend the dip and strike

angles method to polygonal-shaped slabs with concave

corners is recommended.

There is also the limitation that, like Jennings’ theo-

rem, which associates each slab region with a sup-

ported edge,
17

the proposed methodology of defining

the yield line pattern in terms of the dip and strike

angles of the slab regions, each associated with a sup-

port, is strictly applicable only to the areas of slab that

take part in the collapse mechanism—that is, the areas

that do deflect. In reality there are cases in which the

collapse mechanism does not encompass the whole area

of the slab. Examples are when corner levers are pre-

sent, or when there are circular fan mechanisms. In

such cases the proposed methodology should be re-

stricted to the areas that do deflect. Nevertheless, the

dip and strike angles method may be extended to deal

with these cases by introducing additional geometric

parameters to define the boundaries of the deflected

areas and applying the same parabolic minimisation

procedure to determine the values of the additional

parameters. The author has tried to take corner lever

effects into account by introducing the aforesaid addi-
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tional parameters, and has obtained very promising

results. Further work to deal with circular fan mechan-

isms is still under way. The results will be presented in

a later paper when completed.

Conclusions

A new yield line analysis method that defines the

collapse mechanism and yield line pattern in terms of

the dip and strike angles of the deflected surfaces of

the slab regions separated by the yield lines has been

developed. As there is a one-to-one correspondence

between any kinematically admissible yield line pattern

and the set of geometric parameters comprising the dip

and strike angles, this method has the major advantages

that any yield line pattern defined in terms of the dip

and strike angles is always kinematically admissible,

and that it is possible to generate all the kinematically

admissible yield line patterns to be considered in the

yield line analysis by just varying the values of the dip

and strike angles.

The required numerical procedures for the yield line

analysis, including the generation of yield line pattern

from a given set of dip and strike angles, and evalua-

tion of the external work done, internal energy dissipa-

tion along yield lines and load factor as functions of

the dip and strike angles, have been derived. The final

solution is obtained by minimising the load factor with

respect to the dip and strike angles. As there could be

slope discontinuities, the minimisation cannot be car-

ried out using any numerical method that relies on

gradients. To overcome this difficulty, a new minimisa-

tion technique based on successive parabolic minimisa-

tion that is applicable even when there is slope

discontinuity has been developed.

A computer program based on the above method-

ologies has been produced. It is fully automatic in the

sense that the user no longer needs to input any as-

sumed yield line pattern that is kinematically admissi-

ble. Its correctness has been verified by checking

against results obtained by others for simple cases, and

its versatility has been demonstrated by applying it to

more complicated cases. However, there are still the

limitations that it is not applicable to slabs with con-

cave corners, and that the corner lever effect is not yet

taken into account. Nevertheless, it is believed that the

general principles proposed herein should be applicable

to arbitrarily shaped slabs, and that it is only a matter

of further detailed studies to have the dip and strike

angles method extended to cover all slab configura-

tions, including those with concave corners, and to

incorporate the corner lever effect.
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