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Prediction of ultimate stress in unbonded

prestressed tendons

F. T. K. Au� and J. S. Du�

University of Hong Kong

The behaviour of prestressed concrete members with unbonded tendons is different from that of members with

bonded tendons. While the behaviour of prestressed concrete beams with bonded tendons is characterised by that

existing at individual sections, analysis of the entire member is necessary for beams with unbonded tendons. This

paper examines various design methods for the determination of ultimate tendon stress at flexural failure of

prestressed concrete beams with unbonded tendons. Two broad categories of deformation-based approaches have

been identified, namely those based on the span–depth ratio together with loading type, and those based on the

neutral axis depth. These methods are reviewed critically. A new design formula has been proposed in the light of

the available experimental data. It is applicable not only to the conventional high-strength steel prestressing

tendons, but also to those made of other materials such as fibre-reinforced polymer.

Introduction

The use of unbonded tendons in prestressing may be

in the form of internal tendons in beams and slabs.

They may also be in the form of external tendons both

in new construction as well as retrofitting of concrete

bridges. With the increasing use of unbonded tendons

in prestressed concrete structures, there is a need for an

examination of the design and analysis of such struc-

tures. Although prestressed concrete beams with

bonded and unbonded tendons behave in a similar

manner at the working stage, they behave much differ-

ently when overloaded. The behaviour of prestressed

concrete beams with bonded tendons is characterised

by that existing at individual sections, as there is bond-

ing between the tendons and the surrounding concrete.

However this is not the case for prestressed concrete

beams with unbonded tendons because the tendons and

the surrounding concrete generally move with respect

to each other. The stress increase in the tendons due to

external loading subsequent to prestressing depends on

the deformation of the whole member, and it cannot be

determined from the analysis of the cross section alone

as in the case of bonded tendons. Therefore an analysis

of the whole member is necessary. Many experimental

and analytical studies had been carried out within the

past five decades for prediction of flexural resistance of

prestressed concrete beams with unbonded tendons,

which is closely related to the ultimate tendon stress

f ps at flexural failure. As a result, formulae of different

sophistication have been suggested for the purpose.

This paper critically reviews the existing design formu-

lae and recommends a simpler approach in the light of

the available experimental results.

Existing literature

Baker
1
was one of the pioneers who worked on the

prediction of stress in unbonded tendons at the ultimate

limit state. Since then, research work on the topic pro-

liferated.
2–22

A comprehensive evaluation of the state-

of-the-art up to 1991 was carried out by Naaman and

Alkhairi,
13

while Allouche et al.
19

reported another

comprehensive literature review of the topic up to

1998. A common approach in the prediction of the

ultimate tendon stress f ps at flexural failure of a beam

with unbonded tendons is to start with the effective

prestress f pe and to determine the subsequent stress

increment ˜ f ps due to any additional load leading

to ultimate failure. Investigations over the past five

decades have identified the factors that influence this
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stress increment to include the concrete compressive

strength, amounts of prestressing tendons and non-

prestressed reinforcement, the span–depth ratio, etc.

Actually findings from these investigations have been

instrumental in the continuous improvements in the for-

mulae adopted in various design codes
23–27

for predic-

tion of the ultimate tendon stress f ps at flexural failure.

To predict the ultimate tendon stress f ps at flexural

failure, Baker
1
introduced the bond reduction coeffi-

cient º, which is defined as the ratio of average con-

crete stress adjacent to the steel to the maximum

concrete stress adjacent to the steel. For the ultimate

limit state, he suggested a safe limiting value of

º ¼ 0:1. After testing a number of simple prestressed

concrete beams with unbonded tendons, Janney et al.
2

suggested that the coefficient º be taken as the ratio of

neutral axis depth c at ultimate to the depth dp to

prestressing tendon, i.e. º ¼ c=dp. To investigate the

effects of the amount of reinforcement, the concrete

compressive strength and the type of loading on the

ultimate behaviour, Warwaruk et al.
3
tested 82 simply

supported partially prestressed beams. Apart from re-

cognising the role of supplementary reinforcement in

crack control, a prediction formula was also suggested.

Subsequently Pannell
4
carried out comprehensive in-

vestigations to study the effects of the span–depth

ratio, the effective prestress and the amount of reinfor-

cement on the flexural behaviour of prestressed con-

crete beams with unbonded tendons. He put forward

another prediction formula on the assumption that the

width Lp of the plastic zone at ultimate is 10·5 times

the neutral axis depth c at ultimate. To evaluate the

effects of the presence or absence of bond, the amount

of supplementary non-prestressed reinforcement, etc.,

Mattock et al.
5
tested a number of simple and contin-

uous partially prestressed concrete beams, and critically

examined the ACI design code prevalent at the time.

The design code was subsequently amended in the light

of such research findings. Later Tam and Pannell
6

reported their findings on the effects of the amounts of

prestressed and non-prestressed tensile steel, the span–

depth ratio L=dp and the effective prestress f pe. The

investigations by Mojtahedi and Gamble
7
identified the

significant effect the span–depth ratio L=dp had on the

ultimate tendon stress f ps at flexural failure. They also

put forward a strut-and-tie model to support these ob-

servations. The work of Burns et al.
8
on one-way pre-

stressed concrete continuous slabs suggested that the

loading arrangement, the pattern of plastic hinge for-

mation and the span–depth ratio all have effects on the

ultimate behaviour of such structures. The experimental

and analytical investigations by Cooke et al.
9

were

mainly to study the effect of the span–depth ratio and

the amount of prestressing steel on the stress f ps in

unbonded tendons at ultimate. They also critically re-

viewed various versions of the existing ACI design

code and recommended certain amendments. In a bid

to show the significance of non-prestressed reinforce-

ment and its effect on the ultimate tendon stress f ps at

flexural failure, Du and Tao
10

carried out an experi-

mental investigation and proposed a revised design for-

mula to take this into account. In the analytical

investigation undertaken by Harajli
11

to study the effect

of loading type and span–depth ratio on the ultimate

tendon stress f ps at flexural failure, the span–depth

ratio was incorporated into the design formula in ACI

318-83.
23

A revised design formula that could allow for

a continuous transition for various span–depth ratios

was proposed. Various research groups also focused on

the improvement of design formulae adopted in differ-

ent design codes. They include Campbell and

Chouinard,
12

Naaman and Alkahiri,
13,14

Harajli and

Kanj
15

and Chakrabarti.
16

Design approach based on span–depth

ratio together with loading type

Figure 1(a) shows a simply supported prestressed

concrete beam with unbonded tendons of span L, under

the action of a pair of symmetrically disposed point

loads separated by a distance La. The actual and ideal-

ised distributions of curvature developed at the nominal

flexural strength of the beam are shown in Fig. 1(b).

There are three major simplifying assumptions

adopted by various researchers.5,11,20

(a) Although the strain in the unbonded prestressing

steel is incompatible with that of the surrounding

concrete, the total elongation of the prestressing

steel between the end anchorages can be deter-

mined from the curvature distribution along the

beam length.

C
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 Φ

L0

Φ
u

Actual

Idealised

(b)

(a)

Lp Lp

Z Z
P PLa � L/f

L

Fig. 1. A simply supported prestressed concrete beam with

unbonded tendons under two symmetrically disposed point

loads: (a) arrangement of loading; (b) actual and idealised

curvature distribution along the beam
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(b) The total elongation of the prestressing steel be-

tween the end anchorages is mainly caused by the

plastic deformation occurring with of plastic region

of length L0 in the idealised curvature distribution

shown in Fig. 1(b), whereas the deformation within

the elastic regions is neglected.

(c) Any frictional stresses acting along the tendons are

negligible so that the stress in the unbonded ten-

dons is constant along the beam length.

In other words, it is assumed that the increase in

tendon elongation between the end anchorages, and

therefore the corresponding stress increment in the pre-

stressing tendons, is mainly due to the plastic deforma-

tion occurring within an equivalent plastic region

length L0 in the vicinity of applied load (Fig. 1(b)).

The strain distribution across the section depth of a

prestressed concrete beam with unbonded tendons is

shown in Fig. 2. Let ˜� be the ‘fictitious’ increase in

strain above decompressive strain in the concrete at the

level of prestressing tendon, �pe be the effective pre-

strain of the tendon, �ce be the precompressive strain in

the concrete at the level of prestressing tendon and �cu
be the ultimate concrete compressive strain in the top

fibre which is taken as 0·003 as specified in the ACI

Building Code.
23

Therefore the ‘fictitious’ strain incre-

ment ˜�, the total increase in tendon elongation be-

tween the end anchorages ˜l ps and the increase in

strain ˜� ps in the prestressing tendon above effective

prestrain can be expressed respectively as follows

˜� ¼ dp � c

c

� �
�cu (1)

˜l ps ¼ (˜�þ �ce)L0 (2)

˜� ps ¼ ˜l ps=L (3)

where L0 is the equivalent length of plastic region in

the member as shown in Fig. 1(a) and L is total span

length between the end anchorages. The strain � ps in

the prestressing tendon at nominal flexural strength can

be obtained by combining equations (1), (2) and (3) as

� ps ¼ �pe þ ˜� ps ¼ �pe þ �ce
L0

L

� �

þ �cu
dp � c

c

� �
L0

L

� �
(4)

The unbonded tendon usually remains elastic and there-

fore the stress f ps can be expressed as

f ps ¼ E ps� ps ¼ E ps�pe þ E ps˜� ps

¼ f pe þ E ps�ce
L0

L

� �
þ E ps�cu

dp � c

c

� �
L0

L

� �
(5)

where E ps is the modulus of elasticity of prestressing

tendon and f pe is the effective prestress. Generally the

value of �ce is negligible compared to the other terms.

Thus neglecting �ce, equation (5) can be written in

terms of the stress increment ˜ f ps caused by additional

loading to reach the ultimate moment condition as

f ps ¼ f pe þ ˜ f ps ¼ f pe þ E ps�cu
dp � c

c

� �
L0

L

� �
(6)

The neutral axis depth c at the critical section at

ultimate can be computed from equation (6) as

c ¼ E ps�cu(L0=L)dp
˜ f ps þ E ps�cuL0=L

(7)

If the member is of flanged section, the force equili-

brium equation at the critical section can be written as

A ps f ps þ As f y � A9s f 9y ¼ 0:85�1 f 9cbwcþ C f (8a)

C f ¼ 0:85�1 f 9c(b� bw)h f if �1c . h f

C f ¼ 0, bw ¼ b if �1c < h f

�
(8b)

�1 ¼ 0:85 if f 9c , 28 MPa

�1 ¼ 0:85� 0:05( f 9c � 28)=7
if 28MPa < f 9c < 56 MPa

�1 ¼ 0:65 if f 9c . 56MPa

8>><
>>:

(8c)

where A ps is the cross sectional area of prestressing

tendon; As and f y are respectively the cross sectional

area and yield strength of ordinary tension reinforce-

ment; A9s and f 9y are, respectively, the cross sectional

area and yield strength of ordinary compression rein-

forcement, f 9c is the cylinder compressive strength of

concrete; b and bw are, respectively, the breadths of

flange and web; C f is the compressive force carried by

c

εcu

d p

∆ε εpe � εce

Fig. 2. Strain distribution across the section depth of a pre-

stressed concrete beam with unbonded tendons

Prediction of ultimate stress in unbonded prestressed tendons
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the flange if applicable; and �1 is the concrete com-

pression block reduction factor.
23,25,27

The tendon stress

f ps at ultimate can be obtained by substituting the value

of c from equation (7) into equation (8a) and invoking

equation (6) as
11

f ps ¼
1

A ps

0:85�1 f 9cbw(L0=L)dpE ps�cu
f ps � f pe þ E ps�cu(L0=L)

þ (A9s f 9y � As f y)þ C f

A ps

(9)

The equivalent length L0 of the plastic region can be

obtained as shown in Fig. 1 as

L0 ¼ La þ 2Lp ¼ L= f þ 2Lp (10)

where f is a coefficient dependent on the arrangement

of loading. Harajli
11

suggested f ¼ 1 for single con-

centrated load, f ¼ 3 for two third-point concentrated

loads and f ¼ 6 for uniform loading. The second term

2Lp in equation (10) is the plastic hinge length meas-

ured outside the constant moment region. The para-

meter Lp is taken as

Lp ¼ 0:5dp þ 0:05Z (11)

where Z is the shear span or the distance between the

point of maximum moment and the point of contra-

flexure as shown in Fig. 1(a). An expression for L0 is

obtained by substituting the value of Lp from equation

(11) into equation (10)

L0 ¼ dp
L

dp

0:95

f
þ 0:05

� �
þ 1:0

" #
(12)

which appears in dimensionless form as

L0=L ¼ 0:95

f
þ 0:05þ 1

L=dp
(13)

Harajli
11

examined the validity of the above model

by comparing his results with the experimental results

of the tendon stress f ps at ultimate obtained by Warwar-

uk et al.,
3
Mattock et al.,

5
and Du and Tao10 conclud-

ing that equation (9) reproduced fairly accurately the

experimental results.

Further study of equivalent length of

plastic region L0

As the validity of the previous approach relies on the

determination of the equivalent length L0 of plastic

region, it is useful to verify this model by comparing

the theoretical value of L0=L from equation (13)

against the experimental values. Rearranging equation

(9), the experimental value of L0=L can be obtained as

L0

L

¼ (A ps f ps þ As f y � A9s f 9s � C f )( f ps � f pe)

(0:85 f 9c�1bwdp � A ps f ps � As f y þ A9s f 9c þ C f )E ps�cu
(14)

Based on the findings of Du and Tao
10

and Harajli

and Kanj
15

the theoretical values of L0=L from equa-

tion (13) are plotted against the experimental values

from equation (14) in Fig. 3. It is observed that there is

much disagreement between theoretical and experimen-

tal values of L0=L.
All test beams of Du and Tao

10
were 1603 280 mm

in cross section, 4400 mm in length, and were tested

with two symmetrical third-point loads over a 4200 mm

span. The span–depth ratio was kept constant at 20,

while the compressive strength of concrete, the cross

sectional areas of prestressing and ordinary steel were

varied. The theoretical values of L0=L for all specimens

were 0·42, whereas the experimental values ranged

from 0·17 to 0·88. The mean value of L0=L is 0·34

based on 20 beams, while the standard deviation is

0·16 with a coefficient of variation as high as 0·47. In

the experiment of Harajli and Kanj,
15

a total of 26

simply supported beams with rectangular cross section

were tested. The main input parameters included three

different contents of tension reinforcement, two differ-

ent amounts of ordinary steel relative to the prestres-

sing steel (fully prestressed and partially prestressed),

and three different values of span–depth ratio (20, 13

and 8). For each set of input parameters, two specimens

were tested, with one under single concentrated load at

midspan, and the other under two symmetrical third-

point loads. The theoretical values of L0=L for beams

with span–depth ratios 20, 13, and 8 under third-point

loads are 0·42, 0·44, and 0·48 respectively; whereas for

those under single concentrated load at midspan, they

are 0·10, 0·13, and 0·17 respectively. The experimental

values of L0=L lie between 0·02 and 0·25 with a mean

value of 0·14. The standard deviation is 0·06, while the

Perfect correlation line
Du and Tao
Harajli-single-point load
Harajli-third-point load

0·00 0·20 0·40 0·60 0·80 1·00

Experimental of value of L0/L

0·00
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1·00

T
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0/
L

Fig. 3. Comparision of theoretical values against experimen-

tal values of L0/L
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coefficient of variation is 0·43. In addition, the experi-

mental values of L0=L for members tested under single

concentrated load are comparable in magnitude to their

counterparts tested under two third-point loads. This

phenomenon is consistent with the measurements of

the tendon stress f ps at ultimate by Harajli and Kanj,
15

but in contradiction with those computed from equation

(13). This discrepancy is obviously caused by the use

of the coefficient f that relies entirely on the loading

type. On closer examination of Harajli’s model,
11

one

may discover that the factor L0=L is very much similar

to the bond reduction coefficient º which Baker
1
sug-

gested should be determined experimentally.

Recently, Lee et al.
20

further worked on Harajli’s

model
11

to derive another design equation for the eva-

luation of the tendon stress f ps at ultimate. In particu-

lar, the term 0·05Z in equation (11) was neglected. The

coefficient f to account for type of loading is also

different, i.e. f ¼ 10 for one-point loading, and f ¼ 3

for two-point loading or uniform loading. A moment

equilibrium equation was used to replace the force

equilibrium equation of the original model to take into

account the geometrical locations of tendons and

bonded reinforcement. An equation similar to equation

(9) was obtained as follows

f ps ¼
1

Æ pA ps

0:85�1 f 9cb(L0=L)dpE ps�cu
f ps � f pe þ E ps�cu(L0=L)

þ (A9s f 9y � ÆsAs f y)

Æ pA ps

(15a)

Æ p ¼ (dp � �1c=2)=(de � �1c=2) (15b)

Æs ¼ (ds � �1c=2)=(de � �1c=2) (15c)

de ¼ (A ps f psdp þ As f yds)=(A ps f ps þ As f y) (15d)

where ds is the depth from the concrete extreme com-

pressive fibre to the centroid of non-prestressed tensile

steel. Introducing four new coefficients K1, K2, K3 and

K4, Lee et al.
20

simplified equation (15) as follows

f ps ¼ K1 þ K2 f pe þ K3

(A9s f 9y � As f y)

A ps

þ K4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds

dp

f 9c

r p

1

f
þ 1

L=dp

� �s
(16)

The new coefficients K1, K2, K3 and K4 were found

by regression analysis using previous test results. Incor-

porating a suitable safety margin, a design equation

was obtained as

f ps ¼ 10000þ 0:8 f pe þ
1

15

(A9s f 9y � As f y)

A ps

þ 80

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds

dp

f 9c

r p

1

f
þ 1

L=dp

� �s
psi (17a)

f pe þ 10000 < f ps < f py psi (17b)

To ascertain the accuracy of equation (17), Lee

et al.
20

carried out regression analysis and worked out

the correlation coefficient R between the stress in-

creases ˜ f ps in the unbonded tendons predicted by

equation (17) and the experimental results available

then. Lee et al.
20

concluded that their design formula

(i.e. equation (17)) (R ¼ 0:77) was better than the

design formulae of the ACI 318-95 code
27

(R ¼ 0:64),
Harajli and Kanj

15
(R ¼ 0:55), Chakrabarti

16
(R ¼

0:64) and the AASHTO LRFD code
25

(R ¼ 0:71).
However one must bear in mind that the performance

of equation (17) relies on the values of the coefficients

K1, K2, K3 and K4 that have been determined by re-

gression analysis using previous test results as well.

Therefore using regression analysis alone as a selection

criterion is likely to obscure the validity of the support-

ing theory, as it may favour methods with input also

based on regression analysis.

Design approach based on neutral axis

depth

From the research work in the past five decades on

the ultimate behaviour of prestressed concrete beams

with unbonded tendons, it is indisputable that the ten-

don stress fps at ultimate depends mainly on the equiva-

lent length L0 of plastic region in the member. A main

school of thought is to determine L0 with input of

span–depth ratio together with loading type as de-

scribed in the previous sections. Another school of

thought is to relate L0 to the neutral axis depth c.

Actually as early as in 1969, Pannell
4
found that the

ratio j of equivalent length of plastic region L0 to

neutral axis depth at ultimate c, namely j ¼ L0=c, was
a constant value for prestressed concrete beams with

unbonded tendons even for different span–depth ratios.

He also suggested taking j as 10, i.e. L0 ¼ 10c for

design purpose. Since then, different investigators

around the world have conducted many tests on pre-

stressed concrete beams with unbonded tendons. It is

therefore useful to revisit this approach based on these

experiments.

According to this approach,
4,6

the extension of pre-

stressing tendon ˜l ps over the length of the equivalent

plastic region is given by

˜l ps ¼ L0�cu
dp � c

c

� �
¼ j�cu(dp � c) (18)

and therefore, assuming the unbonded tendons remain

elastic, the tendon stress f ps at ultimate appears as

Prediction of ultimate stress in unbonded prestressed tendons
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f ps ¼ f pe þ ˜ f ps ¼ f pe þ E ps

˜l ps

L

¼ f pe þ
jE ps�cu(dp � c)

L
(19)

Eliminating the neutral axis depth at ultimate c be-

tween equation (19) and the force equilibrium equation

of equation (8a) at the critical section, a general equa-

tion of j can be obtained as

j ¼ f ps � f peð ÞL

E ps�cudp 1� A ps fps þ As f y � A9s f 9y � C f

0:85�1 f 9cbwdp

� �
(20)

In other words, as long as the parameter j can be

determined, the value of the tendon stress fps at ultimate

can be obtained by rearranging equation (20) as follows

f ps ¼ f pe þ ˜ f ps

¼ f pe þ
jE ps�cu(dp � c pe)

L

�
1þ jE psA ps�cu

0:85�1 f 9cbwL

� �

(21a)

c pe ¼
A ps f pe þ As f y � A9s f 9y � C f

0:85�1 f 9cbw
(21b)

c ¼ c pe þ
A ps˜ f ps

0:85�1 f 9cbw
(21c)

C f ¼ 0:85�1 f 9c(b� bw)h f if �1c . h f

C f ¼ 0, bw ¼ b if �1c < h f

�
(21d)

In the study, Pannell
4
tested 38 simply supported

beams in three sets having span–depth ratios of 27, 40

and 12 respectively. Taking E ps as 212 kN/mm2 based

on tests of the prestressing steel and �cu as 0·325%,

values of the parameter j had been obtained for the

test series using equation (20). From results of the

parameter j for 32 beams, the mean was 12·4, and the

standard deviation was 3·6 with a coefficient of varia-

tion of 0·29 as listed in Table 1. He noted that j was

reasonably constant for the whole series of tests, if it

was borne in mind that inaccuracies in the measure-

ments of f ps and f pe would cause magnified inaccura-

cies in j. Strictly speaking the parameter j depends on

all variables on the right-hand side of equation (20) as

well as the type of loading. In the light of the test

results, it appeared reasonable to conclude that a single

value of j ¼ 12 was appropriate over the whole range.

As j ¼ 12 was close to the mean value of the test

results, Pannell suggested a safe value of j ¼ 10, to-

gether with �cu ¼ 0:0033 and E ps ¼ 210 kN=mm2 for

design purposes, which gave jE ps�cu ffi 7000 N=mm2.

Actually the work of Pannell
4
subsequently formed the

basis of the British Code BS 8110
24

and the Canadian

Code A23.3-94
26

for determination of the tendon stress

f ps at ultimate.

The Canadian Code A23.3-94
26

gives

f ps ¼ f pe þ 8000
(dp � c y)

le
< f py MPa (22a)

cy ¼
A ps f py þ As f y

Æ1 f 9c�0b
(22b)

Æ1 ¼ 0:85� 0:0015 f 9c (22c)

�0 ¼ 0:97� 0:0025 f 9c (22d)

where le is the length of the tendon between the end

anchorages divided by the number of plastic hinges

required to develop a failure mechanism in the span

under consideration, and f py is the yield strength of

prestressing tendons.

On the other hand, the British Code BS 8110
24

recommends the following equation

f ps ¼ f pe þ
7000

L=dp
1� 1:7 f puA ps

f cubd p

� �
< 0:7 f pu MPa

(23)

where f cu is the concrete compression strength taken

from cube and f pu is the ultimate strength of prestres-

sing tendons.

Comparing equations (22) and (23) with equation

(21), it is not difficult to identify the differences among

them. Equation (22) omits the term of jE ps�cuA ps=
0:85�1 f 9cbwL, and it increases the value of jE ps�cu
from 7000 N/mm2 to 8000 N/mm2. It also takes into

account the influence of indeterminate members. Equa-

tion (23) ignores the influence of ordinary reinforce-

ment and simplifies the calculation of neutral axis

depth c.

Table 1. Statistics of the parameter j based on results from different investigators

Authors No. of beams Mean Standard deviation Coefficient of variation

Pannell
4

32 12·4 3·6 0·29

Tam and Pannell
6

8 10·8 1·7 0·15

Cooke et al.
9

9 17·3 2·5 0·15

Du and Tao
10

20 21·4 3·3 0·16

Campbell and Chouinard
12

6 15·7 1·8 0·11

Harajli and Kanj
15

26 10·5 2·9 0·27

Chakrabarti
16

33 21·7 8·4 0·39

Tan and Ng,
17

and Tan et al.
21

10 19·4 4·6 0·24

Aparicio et al.
22

4 10·1 0·42 0·04

All 148 16·1 6·8 0·42

F. T. K. Au and J. S. Du
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Later in 1976, Tam and Pannell
6
tested eight par-

tially prestressed concrete beams with unbonded ten-

dons having span–depth ratios between 20 and 45

under single concentrated load at midspan. The values

of j obtained from the tests were still fairly constant.

The mean value of j for eight beams was 10·8, with a

standard deviation of 1·7 and a coefficient of variation

of 0·15. Based on such results, they suggested taking j
as 10·5 for practical use.

Further investigation of the parameter j

A crucial issue to address then is whether the para-

meter j can be effectively treated as constant, as sug-

gested by Pannell
4
and Tam and Pannell.

6
Therefore

the parameter j is further studied by examination of

the test results from different investigators. In the

analysis using equation (20), �cu is taken as 0·003, and

Eps of the prestressing tendon is either taken as the test

value in specific experiment or assumed to be

E ps ¼ 200 000 N=mm2 in the absence of test data. The

statistics of the parameter j, which include the mean,

standard deviation and coefficient of variation, are cal-

culated for various sets of available experimental re-

sults. The standard deviation and the dimensionless

coefficient of variation are both a measure of the

spread of distribution. The statistics of the parameter j
for experimental results from nine investigators are

summarised in Table 1, while the relative frequency

histogram is shown in Fig. 4. All these specimens are

simply supported beams and slabs, reinforced with or

without supplementary bonded reinforcement, and hav-

ing a wide range of member span–depth ratios ranging

from 8 to 45. It should be mentioned that the tests of

Tan and Ng,
17

and Tan et al.
21

consisted of two sepa-

rate parts. The first part focused on the effects of

deviators and tendon configuration on the behaviour of

externally prestressed beams. The second part focused

on the behaviour of simple–span reinforced concrete

beams locally strengthened with external tendons. Five

under-strength reinforced concrete beams were

strengthened with steel or carbon fibre-reinforced poly-

mer tendons and tested to failure under third-point

loading. In the study by Aparicio et al.
22

three were

externally prestressed monolithic beams, and one was

an externally prestressed segmental beam.

It can be observed from Table 1 and Fig. 4 that,

although variation of the parameter j does exist, gen-

erally speaking the values are stable and they tend to

be constant in a specific series of tests. The mean,

standard deviation and coefficient of variation of the

parameter j for 148 simply supported specimens are

16·1, 6·8 and 0·42 respectively. It should be pointed out

that the mean value, standard deviation and coefficient

of variation of parameter j obtained by Chakrabarti’s

test
16

are excessively larger than those of other tests.

The difference of techniques and methods of measure-

ment, variation of material properties as well as failure

criteria of specimens adopted by different investigators

may also cause the spread of results. In view of the

above, it is not unreasonable to take the parameter j as

a constant value in prestressed concrete flexural mem-

bers with unbonded tendons.

Rearranging equation (19), the parameter j can be

expressed in terms of the others as

j ¼ ˜ f ps

E ps�cu dp=L
� 	

1� c=dp
� 	 (24)

It can be observed that, if the relationship between

the stress increment ˜ f ps and the parameters (L=dp)
and (1� c=dp) is linear or approximately linear, the

parameter j could be a constant. Actually the para-

meter c=dp has already reflected the information on the

design, with the exception of the span–depth ratio

L=dp. The tests conducted by Du and Tao,
10

and Camp-

bell and Chouinard
12

indicted that the stress increment

˜ f ps increases with the decrease of c=dp. Du and Tao
10

also introduced the parameter q0 ¼ (A ps f pe þ As f y)=
bd p f 9c that was a measure of steel content including

prestressed and non-prestressed steel. For a rectangular

section and neglecting the contribution from compres-

sion reinforcement, q0 somehow reflects the force equi-

librium across the depth of the section and it is

approximately proportional to c=dp. Based on regres-

sion of their experimental data, Du and Tao
10

estab-

lished a linear relation between the stress increment

˜ f ps and the parameter q0. In the tests of Du and

Tao,
10

Campbell and Chouinard
12

and Aparicio et al.,
22

the span–depth ratios were kept constant, while para-

meter q0 was varied. As shown in Table 1, the coeffi-

cients of variation of the parameter j are relatively

small, which are 0·16, 0·11, and 0·04 respectively.

Regarding the influence of the span–depth ratio on

the stress increment ˜ f ps, Mojtahedi and Gamble
7
pro-

posed a strut-and-tie model, which showed that the

strain, and hence the stress, of unbonded tendons de-

creased as the span–depth ratio L=dp increased. Harajli

and Kanj
15

worked on a similar topic and found it
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difficult to draw accurate conclusions because of the

dependence of the stress increment ˜ f ps on other de-

sign parameters such as the content of tension reinfor-

cement and concrete strength. However, an overall

global reduction in the stress increment ˜ f ps with in-

creasing span–depth ratio could indeed be observed.

Analysis of the parameter j from the results of Harajli

and Kanj
15

shows that it drops slightly with the de-

crease of span–depth ratio. However in the tests by

Tam and Pannell,
6
and Cooke et al.,

9
no clear trend of

variation with the span–depth ratio is observed. This

may be caused by different testing techniques such as

load arrangement, use of strands or wire enclosed in

large steel ducts or small plastic ducts, prestress load

measuring techniques and tendon profiles.

Proposed method

This paper advocates the adoption of Pannell’s ap-

proach
4
with the determination of a reasonable value

for the parameter j. Three different values of j are

studied here, namely (a) the mean value of the para-

meter j in Table 1 (j ¼ 16:1), (b) the original value of

Pannell
4
(j ¼ 10), and (c) the mean minus one stan-

dard deviation of the parameter j in Table 1

(j ¼ 16:1� 6:8 ¼ 9:3). Values of the tendon stress f ps
at ultimate are again calculated by equation (21) with

the above three values of j together with the limit

f ps < f py. Correlation analyses of the tendon stress f ps
at ultimate were subsequently carried out between the

experimental results and the calculated values based on

the three cases of j values. The correlation coefficients

for the three cases are: (a) 0·83, (b) 0·79, and (c) 0·79.

Case (a) does produce better correlation between the

calculated and experimental values of f ps. However

from the statistical point of view, case (c) with j ¼ 9:3
can give a conservative estimate with about 84% of the

population above it, and therefore this paper suggests

adopting this value for design. In most cases, the quan-

tity (jE ps�cuA ps=0:85�1 f 9cbwL) in the denominator of

the second term on the right-hand side of equation

(21a) ranges from 0·01 to 0·05. Omitting this quantity

will not have significant effect on the final result. In

addition, the formula in equation (21b) for evaluation

of c pe is not too practical. As the tendon stress f ps at

ultimate is not known in advance, it is not convenient

to judge whether the compression reinforcement

reaches its yield strength and whether the neutral axis

depth c at ultimate is greater than the depth of com-

pression flange h f . In view of these, the value of c pe is

redefined as c pe ¼ A ps f pe þ As f yð Þ=0:85�1 f 9cb where

b is the width of compression zone. In addition, meas-

ures must be taken to ensure that equation (21) is

applicable to continuous beams.

Using case (c) for the parameter j, taking the ulti-

mate concrete compressive strain in the top fibre as

�cu ¼ 0:003 and adopting the new definition for the

parameter c pe, equation (21) is rewritten as follows

f ps ¼ f pe þ
9:33 0:0033 E ps(dp � c pe)

le

¼ f pe þ
0:0279E ps(dp � c pe)

le
< f py (25a)

c pe ¼
A ps f pe þ As f y

0:85�1 f 9cb
(25b)

where b is the width of compression zone, and le is the

length of the tendon between the end anchorages di-

vided by the number of plastic hinges n required to

develop a failure mechanism in the span under consid-

eration.

It is seen that equation (25) is similar in form to

equation (22), which is the design formula in the Cana-

dian Code A23.3-94.
26

Using both equation (25) and

equation (22), the tendon stress f ps at ultimate for the

specimens examined is again calculated. Correlation

analyses of these calculated tendon stress f ps at ulti-

mate were then carried out with the experimental re-

sults. Results of the correlation analyses for equations

(25) and (22) are respectively plotted in Figs 5 and 6.
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Fig. 5. Comparison of calculated values of fps based on equa-

tion (25) against experimental values of fps
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Fig. 6. Comparison of calculated values of fps based on equa-

tion (22) against experimental values of fps
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The correlation coefficients for equations (25) and (22)

are respectively 0·79 and 0·81. Although the correlation

coefficient of equation (22) is a little bit better than

that of equation (25), it can be observed in Fig. 6 that

many of the predicted values of the tendon stress f ps at

ultimate are on the unsafe side. Apart from being

provided with reasonable safety, equation (25) is given

explicitly in terms of the Young’s modulus of tendon

E ps. Therefore it may also be applied to other types of

tendons such as those made of fibre-reinforced polymer.

In the application of equation (25) to simply sup-

ported beams, the number of plastic hinges is n ¼ 1,

and le is equal to the total span length between the end

anchorages L. In the corresponding analysis of contin-

uous prestressed concrete beams with unbonded ten-

dons, the number of plastic hinges n depends on the

loading pattern, namely the number and locations of

spans loaded. Fig. 7 shows a two-span continuous pre-

stressed concrete beam with unbonded tendons under a

concentrated load on each span. Following the same

arguments as before, the extension of the unbonded

tendons is largely determined by the deformations of

the beam at the plastic regions. The total length of

equivalent plastic region in a continuous beam where

prestressing tendons are only anchored at two ends is

the sum of the equivalent lengths of the component

plastic regions where plastic hinges form, as shown

schematically in Fig. 7. Therefore the stress increment

˜ f ps in the tendon is proportional to the number of

plastic hinges that can develop under a given pattern of

loading between the anchors, as reflected in equation

(25). For design purposes, the evaluation of the stress

increment ˜ f ps in the tendon is often worked out

assuming that a single end span is loaded, as this will

give a lower bound value for ˜ f ps. Thus in the design

of such continuous beams, taking n ¼ 2 for evaluation

of the stress increment ˜ f ps is on the safe side.

On the investigation of continuous members, Burns

et al.
8
tested two half-scale models of prototype one-

way slab, continuous over three equal spans. The speci-

mens, designated as slab A and slab B, were loaded

with different loading patterns. The experimental values

of the parameter j for these specimens under different

loading patterns are calculated using equation (20) and

listed in Table 2. If these experimental values of j are

divided by 9·3 (i.e. the value for one plastic hinge), the

parameter n reflecting the number of plastic hinges is

worked out and tabulated in Table 2. These calculated

values of n are all greater than 2. It therefore reaffirms

that taking n ¼ 2 is on the safe side.

Comparison with the results of the

Workshop on External Prestressing in

1993

In 1993, the Association Francaise Pour la Construc-

tion (AFPC) organised the Workshop on Behaviour of

External Prestressing in Structures in France. In addi-

tion, participants were invited to study numerically two

cases using non-linear calculation methods of pre-

stressed structures. The conference organisers gave de-

tails of a single-span beam and a continuous beam to

be analysed, and participants were asked to provide

prescribed forms of output, including curve of load–

deflection responses. Fourteen answers were received

from all over the world, and a synthesis of the results

received was presented in as an appendix volume of the

proceedings.
28

As the present study is focusing on the

determination of ultimate tendon stress at flexural fail-

ure of prestressed concrete beams with unbonded ten-

dons, only the ultimate loads of the beams in the AFPC

workshop are calculated based on equation (25) and

they are compared with the AFPC results.

Provided that the second-order effects of tendon ec-

centricity variation due to member deformation are

small or negligible, equation (25) is still valid for exter-

nally prestressed concrete beams. The calculated ulti-

mate load for the cast-in-place simple beam with 100%

external prestressing is 2835 kN, and the comparison

with the AFPC results is shown in Fig. 8. Generally

speaking, the ultimate load based on equation (25) is

around the middle of the AFPC results. For the cast-in-

place continuous beam with 100% external prestressing,

the calculated ultimate load is 1994 kN, and Fig. 9

shows the comparison with the AFPC results. Although

the ultimate load for the continuous beam based on

equation (25) is smaller than some of the AFPC results,

it is still within the range spanned by them.

Conclusion

This paper examined various design methods for

the determination of ultimate tendon stress at flexural

L01 L02

L03

L0 � L01 � L02 � L03

Fig. 7. Total length of equivalent plastic region L0 in a con-

tinuous beam

Table 2. Possible number of plastic hinges n in the tests of

Burns et al.
8

Slab ID Test no. Parameter j Parameter n

Slab A 108 31·1 3·3

109 39·0 4·2

110 21·0 2·3

Slab B 208 41·0 4·4

209 27·0 2·9

210 25·0 2·7
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failure of prestressed concrete beams with unbonded

tendons. Two broad categories of deformation-based

approaches have been identified, namely those based

on the span–depth ratio together with loading type

represented by Harajli’s model
11

and those based on the

neutral axis depth represented by Pannell’s model.
4

These methods are reviewed critically. A new design

formula has been proposed in the light of the available

experimental data. The following conclusions are

drawn.

(a) Harajli’s model places much emphasis on the ef-

fects of loading type on stress increment in un-

bonded tendons at flexural failure of the beam.

The ratio of equivalent length of plastic region to

the total span length between end anchorages,

namely L0=L, is in essence another form of Baker’s

bond reduction coefficient º.

(b) In Pannell’s model, the ratio of equivalent length

of plastic region to neutral axis depth, namely the

parameter j, is taken as a constant after analysis of

test results conducted by different investigators.

Differences of the parameter j do exist in specific

series of experiments as well as among experi-

ments by different investigators. However such dif-

ferences could also be attributed to different

measurement methods, different failure criteria,

etc. adopted by different investigators. Therefore

provided that the predictions by taking the para-

meter j as a constant are supported by experimen-

tal results, this assumption is not unreasonable.

(c) In the search for a suitable value for the parameter

j, three values including 16·1, 10 and 9·3 have

been considered. Taking j ¼ 16:1 produces rela-

tively better correlation between the calculated and

experimental values of the tendon stress f ps at
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ultimate than the other two values. The other two

choices of j ¼ 10 and j ¼ 9:3 predict f ps on the

safe side. From the statistical point of view, choos-

ing j ¼ 9:3 can ensure that about 84% of the

predicted values of f ps to be on the safe side.

Therefore this paper suggests adopting j ¼ 9:3 for

practical use.

(d) Equation (25), which was obtained from simplifi-

cation of equation (21), can be adopted to predict

the value of the tendon stress f ps at ultimate in

design. It is applicable not only to the conventional

high-strength steel prestressing tendons, but also to

those made of other materials such as fibre-rein-

forced polymer.
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