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Abstract

Glutamate excitotoxicity is involved in many neurodegenerative diseases including 

Alzheimer’s disease (AD). Attenuation of glutamate toxicity is one of the therapeutic 

strategies in AD treatment. Wolfberry (Lycium barbarum) is a common ingredient in oriental

cuisines. In recent years, there is a trend of using dried Wolfberry as food supplement and 

health product in U.K. and North America. A number of studies suggest that wolfberry has 

anti-aging properties. Previously, we have demonstrated that a fraction of polysaccharide

from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid 

peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate

whether LBA can protect neurons from other pathological factors such as glutamate found in 

Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in 

primary cultured neurons. The glutamate-induced cell death as detected by lactate 

dehydrogenase (LDH) assay and caspase-3-like activity assay was significantly reduced by 

LBA at concentrations ranged from 10 to 500 μg/ml. Protective effects of LBA were 

comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided 

neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA 

attenuated N-methyl-D-aspartate (NMDA)-induced neuronal damage. To further explore 

whether LBA might function as antioxidant, we used hydrogen peroxide (H2O2) as oxidative 

stress inducer in this study. LBA could not attenuate the toxicity of H2O2. Furthermore, LBA 

did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis 

indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was 

reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective 

effects on cultured cortical neurons exposed to glutamate.
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1. Introduction

Glutamate is an excitatory amino acid and plays important roles in neurotransmission. 

It is also involved in a wide array of physiological processes including synaptogenesis, 

neuronal plasticity, learning and memory (Miyamoto, 2006; Shigeri et al., 2004). In 

physiological conditions, the concentration of glutamate in synapses is tightly controlled. 

Abnormal high concentrations of glutamate result in neuronal cell damage, which can be 

found in brain injury, hypoxia, ischemia, Alzheimer’s disease (AD), Parkinson’s disease and 

Huntington’s disease (Arundine and Tymianski, 2004; Coyle and Puttfarcken, 1993; Won et 

al., 2002).

Two major mechanisms have been proposed for the neurotoxicity of glutamate. The 

first one is glutamate-receptor mediated excitotoxicity, which is mainly contributed by the 

activation of ionotropic glutamate receptors. The subsequent influx of Ca2+ can cause both 

necrotic and apoptotic cell death (Choi et al., 1987; Hyrc et al., 1997). The second mechanism 

is the induction of oxidative stress by glutamate (Shih et al., 2006; Schubert and Piasecki,

2001). High concentrations of glutamate in synapses can inhibit the cysteine/glutamate 

antiporter xc
-; and therefore attenuating uptake of cysteine. Since cysteine is required for the 

synthesis of glutathione (GSH), depletion of glutathione by extracellular glutamate results in 

accumulation of oxidative stress and programmed cell death (Schubert and Piasecki, 2001;

Tan et al., 1998; Tan et al., 2001).

As glutamate neurotoxicity is involved in the pathogenesis of AD, reduction of 

glutamate-toxicity is one of the possible therapeutic targets (Pietrzik and Behl, 2005; Gardoni 

and Di, 2006). Several drugs targeting glutamate toxicity are under development for the 

treatment of AD. An example is memantine, a non-competitive NMDA antagonist, for the 
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treatment of moderate to severe AD (Golde, 2006). In fact, some compounds or extracts from 

daily food can also protect neurons against glutamate-toxicity. Curcumin is a principle 

polyphenol which is responsible for the yellow color of the Indian curry spice turmeric. 

Studies have shown that it protects primary cultured neurons from glutamate-induced cell 

death, probably by inhibiting PKC activity, and subsequent phosphorylation of NR1 of the 

NMDA receptor (Yazawa et al., 2006). The green tea extract EGCG may also provide 

protection against glutamate by enhancing glutamate uptake and S100B secretion from

astrocytes (Abib et al., 2008). It is therefore possible to develop disease-modifying agent that 

have neuroprotective function against glutamate excitotoxicity from daily food.

Wolfberry, the fruits of Lycium barbarum, has long been used as a common ingredient 

in oriental cuisines. It has a high content of zeaxanthin, which probably enable it to improve 

and maintain vision. In recent years, there is a trend of using Wolfberry as food supplement 

and health product in U.K. and North America. For example, the juice of Wolfberry, called 

Goji juice, is a commercially available product which claims to be beneficial to our health and 

slow down aging. A recent randomized, double-blinded clinical study has shown that it can 

increase subjective feelings of general well-being and improves neurologic/psychologic 

performance (Amagase and Nance, 2008). Whether Goji juice is as beneficial as it claims 

remains a question, some research focused on the Wolfberry extracts and its different

components demonstrated that they provided diverse biological effects. Recent evidence on 

its anti-aging effects have suggested that it is neuroprotective in various aging-associated 

pathological conditions (Chan et al., 2007; Chang and So, 2008; Ho et al., 2007; Li et al.,

2007; Yu et al., 2005; Yu et al., 2006). The major active component from Wolfberry is

polysaccharide. Previously, our laboratory has demonstrated that a fraction of polysaccharides 

from Wolfberry (LBA) elicits neuroprotective effects against beta-amyloid (A) peptide 
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toxicity (Ho et al., 2007; Yu et al., 2005). To further examine whether LBA can serve as 

disease-modifying agent against degeneration in AD, we investigated its protective effects 

against glutamate excitotoxicity. It is possible that LBA may protect neurons against other 

Alzheimer’s disease-related pathological conditions. We hypothesize that LBA exerts 

cytoprotective effects against glutamate toxicity.
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2. Results

2.1. Protective effects of LBA against glutamate-induced cell death

To examine the toxicity of glutamate, cortical neurons were exposed to 30 or 60 μM

glutamate. Cultured neurons have a normal turnover with baseline LDH of 12.5  0.5 % of 

total lysis. Exposure to 30 or 60 μM glutamate elevated LDH release to 2.7 ± 0.2 fold of 

control or 3.3 ± 0.2 fold of control, respectively (Fig 1c, 1e). Exposure to LBA markedly 

reduced glutamate neurotoxicity in concentration-dependent manner. LBA at 500 μg/ml 

significantly abrogated cell death-induced by glutamate (Fig 1c, 1e).

Glutamate also induced apoptotic cell death as indicated by activation of caspase-3. 

The specific activity of caspase-3 was 0.042  0.007 pmol/min/μg of protein in our control 

group. Glutamate at 30 or 60 μM elevated activities of caspase-3 by 1.6 ± 0.1 or 1.8 ± 0.1 fold 

of control, respectively (Fig. 1d, 1f). Treatment of LBA significantly decreased glutamate-

triggered activity of caspase-3. The effective dosages of LBA to attenuate glutamate toxicity 

were ranged from 10 to 500 μg/ml, which was wider than that observed by LDH assay. One 

has to notice that activation of caspase-3 is on of the processes in apoptosis, while LDH is the 

end-product assay of necrosis. Therefore a high dose of LBA is required for reducing LDH 

release. We did not have any intention to makes correlation between LDH release and 

capsase-3 activity, but serving as index for different mode of death (Baethmann et al., 1996).

The protective effects of LBA on glutamate-induced cell death were supported by 

examining neuronal morphology. Representative images showing the protective effects of 

LBA against 24 h of exposure to glutamate are depicted in Fig. 2. Exposure to glutamate led

to shrinkage of cell body and breakage of neurites (Fig. 2b and 2c). In LBA-treated groups 

(Fig. 2 e and 2f), neuronal cell maintained their integrity and fasciculation of neurites.
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LBA itself had no significant effect on LDH and caspase-3 activity (Fig. 1a and 1b);

and there was no obvious morphological difference between the control and LBA groups (Fig. 

2d). 

2.2. Comparison of LBA and memantine in attenuating glutamate excitotoxicity

To examine the effectiveness of LBA in glutamate-induced cell death, we used 

memantine as positive control. Memantine is a drug approved by the European Union and the 

U.S. Food and Drug Administration (FDA) for the treatment of AD. The mechanism for its 

action is partly because it is a non-competitive and low-affinity NMDA antagonist (Lipton,

2005; Johnson and Kotermanski, 2006). The neuroprotective effects of LBA and memantine 

against glutamate-excitotoxicity were compared. We used memantine for comparison because 

we would like to know the efficacy of LBA in attenuating glutamate toxicity. Preliminary 

trials were carried out to determine the most effective and non-toxic dosages for memantine 

against glutamate toxicity (data not shown). The maximum dosage of memantine used in this 

study was 1 μM, which is the usual therapeutic plasma concentration in AD patients

(Kornhuber and Quack, 1995; Parsons et al., 2008). Fig. 3a shows the protective effects of 

LBA and memantine against glutamate-induced LDH release. Both LBA and memantine 

could significantly attenuate release of LDH, and their protective effects were comparable. 

Similar results were observed in 30 μM glutamate-mediated activation of caspase-3 (Fig. 3b). 

Both LBA and memantine could almost completely reduce activity of caspase-3 triggered by 

30 μM glutamate. However, only LBA provided protection against 60 μM glutamate as 

indicated by the reduction of level of caspase-3 from 1.8  0.1 fold to 1.2  0.1 fold of control. 

Memantine at 1 μM did not elicit protection against 60 μM glutamate-mediated activation of 

caspase-3.
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2.3. Post-treatment of LBA

In order to examine the possible neuroprotective properties of LBA, post-treatment 

experiments were performed, in which LBA was added into the culture 1 h after their 

exposure to glutamate. Post-treatment of LBA at 100 μg/ml led to a 20.9  2.4 % and 22.9 

3.2 % reduction in 60 μM glutamate-triggered LDH release and activity of caspase-3,

respectively (Fig 4c &d). However, only 250 μg/ml of LBA could significantly attenuate 

caspase-3 activity triggered by 30 μM glutamate (Fig 4b). We are surprised that protective 

behavioral in pretreatment and post-treatment was very different, further suggested that the 

mechanisms of necrosis was different to that of apoptosis. Furthermore, it appeared that 30

μM and 60 μM glutamate utilized different toxic pathways for toxic effects. When the 

protective effects between the pretreatment and post-treatment experiments were compared, 

we found that pretreatment was more effective than post-treatment.

2.4. LBA attenuated NMDA-induced neuronal cell death

Previous studies suggested that activation of NMDA receptor is a key factor for 

glutamate neurotoxicity (Coyle and Puttfarcken, 1993). In order to find out whether LBA 

could protect neurons against NMDA-induced neuronal damage, neurons were treated with 

LBA and then NMDA. After 24 h of 40 or 60 μM NMDA exposure, there were increase in 

LDH release for 1.4 ± 0.1 or 1.6 ± 0.1 fold of control, respectively (Fig. 5a). LBA 

significantly attenuated NMDA-triggered LDH release in dose-dependent manner. Exposure 

of neurons to 40 or 60 μM NMDA-induced apoptosis as indicated by the elevation of the 

activity of caspase-3 by 1.4 ± 0.1 or 1.7 ± 0.1 fold of control, respectively (Fig. 5b). LBA 

significantly attenuated the activity of caspase-3 induced by 60 μM NMDA. However, LBA 

could not significantly inhibit caspase-3 triggered by 40 μM NMDA. Similar to what we 
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observed in glutamate, the mechanisms mediating necrosis and apoptosis are somewhat 

different. Furthermore, it was possible that different pathways mediating low or high 

concentration of NMDA toxicity.

2.5. LBA did not function as anti-oxidant

Oxidative stress is one of the secondary factors mediating glutamate neurotoxicity; 

and therefore it is a possible therapeutic target. One may suspect of whether LBA have anti-

oxidative properties which would account for its protective effects. In order to investigate this 

property, we examined if LBA could protect neurons against hydrogen peroxide, a typical 

oxidative stress inducer. As indicated in Fig. 6, hydrogen peroxide induced neuronal damage 

as reflected by an increase in LDH release and caspase-3 activity by 1.3 ± 0.1 and 1.5 ± 0.1 

folds of control, respectively. LBA did not exert protective effect against hydrogen peroxide.

In contrast to have no protective effects on H2O2 toxicity, LBA at 10 or 100 μg/ml 

significantly increased caspase-3 activity. The results may imply that free radicals may 

change conformation of LBA at some concentrations to abolish protective effects of LBA.

To further confirm whether LBA suppressed production of free radicals by glutamate, 

we employed NBT reduction assay to examine intracellular free radicals. Our results showed 

that there was a 58% increase of intracellular ROS (Fig. 7). LBA did not attenuate 

intracellular ROS level, which further support the notion that LBA did not function as 

antioxidant to protect neurons in glutamate excitotoxicity.

2.6. LBA attenuated  phosphorylation of JNK triggered by glutamate

JNK has been shown to be one of the signaling pathways being activated by glutamate

(Arthur et al., 2007; Chen et al., 2003; Chi et al., 2005). Results from Western-blot analysis 
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showed that there was a significant increase in phosphorylation of JNK1, with little effect on 

non-phosphorylated JNK1 (Fig. 8). LBA reduced phosphorylation of JNK1 dose-dependently 

and this was consistent with its protective effects.
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3. Discussion

In this study, we have demonstrated that exposure of primary cortical neurons to LBA 

prevents neuronal damage induced by glutamate and NMDA. Since disturbance of glutamate 

transmission is one of the pathological factors in dementia and degenerative processes, 

attenuation of glutamate excitotoxicity by LBA is an advantage to stop progression of disease. 

Therefore, we provide evidence here that LBA can be further explored of whether it can be 

developed as a potential candidate as disease-modifying agent for the treatment of AD.

It has been documented that glutamate can impose its toxicity on neurons in both 

necrotic and apoptotic manner (Portera-Cailliau et al., 1997; Arthur et al., 2007; Kogo et al.,

2006). Our results indicate that excitotoxic glutamate triggered release of LDH from neurons;

and this is significantly blocked by LBA. LBA also attenuates NMDA toxicity as reflected by 

the attenuation of the release of LDH. With the use of NMDA antagonist MK801, we found 

that glutamate neurotoxicity was attenuated (data not shown). This suggests that NR2A

receptor pathway took part, at least in some degree, in glutamate-mediated excitotoxicity in 

our model. 

Activation of caspases is believed to play a key role in glutamate-induced neuronal 

apoptosis (Zhang and Bhavnani, 2006; Amodio et al., 2006). In agreement with previous 

studies, which show activation of caspase-3 in cortical, hippocampal (Zhang et al., 2003) and 

cerebellar granular cells (Amodio et al., 2006), our results also show activation of caspase-3. 

Inhibition of caspase-3 activation by LBA may partly contribute to its neuroprotective effects

against glutamate-triggered neuronal apoptosis.
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Generation of ROS is one of the pathological events during excitotoxicity. Following 

influx of Ca2+, there are activation of phospholipase and NO synthase, resulting in high levels

of ROS and NO. The interaction of NO with superoxide radical leads to formation of reactive 

peroxynitrite, which can be a cytotoxic mediator in excitatory neuronal injury (Gilgun-Sherki 

et al., 2002). Since many herbal extracts have anti-oxidative properties, it is reasonable for 

one to speculate that LBA may exert its protective effects by attenuating ROS generated by 

glutamate. We found that LBA could not attenuate hydrogen peroxide toxicity, suggesting 

that LBA may not provide strong anti-oxidative effects. At the same time, we found that LBA 

treatment could not attenuate glutamate-induced ROS generation, which support the idea that 

LBA may protect neurons independent on the anti-oxidative mechanism.

We further examined signaling pathways that are mediated by LBA for its protection.

Our previous study on LBA has demonstrated that it has anti-apoptotic properties on A-

induced neuronal cell death, and this is probably mediated by of the JNK signaling pathway

(Yu et al., 2005). In fact, active JNK has been implicated in neuronal cell death under 

different pathological insults such as stroke, epilepsy, traumatic brain injury and 

neurodegenerative diseases (Choi, 1988). Similar to a previous report (Chen et al., 2003),

glutamate induces JNK1 phosphorylation at Thr 183 or Thr 185, with little changes in the

phosphorylation of JNK2. Since activation of glutamate receptors mediates physiological

functions other than its excitotoxicity, it has been suggested that downstream signaling events 

rather than blockage of the receptors should be targeted (Borsello et al., 2003). Furthermore, 

there are reports showing that strong NMDA antagonist such as MK801 (dizocilpine) and 

phencyclidine can attenuate excitotoxicity; but in the same time induce adverse side effects

(Gladstone et al., 2002). Our results of LBA on suppression of JNK activation suggested that 

it can be a potential candidate for therapeutic purpose.
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In this study, we chose memantine as a positive control and compared its protective 

effect against glutamate neurotoxicity to that provided by LBA. We chose memantine instead 

of other traditional extracts for comparison because memantine is a well defined compound 

and it is an approved drug for the treatment of AD. More importantly, its pharmacokinetic 

properties had been well studied (Kornhuber et al., 2007). The normal plasma concentration 

of memantine is 0.5-1 μM, higher concentrations might increase the chance of adverse effects

(Freudenthaler and Pantev, 2008). Our data showed that the neuroprotective effects of LBA 

against glutamate were comparable to that provided by highest dosage of memantine used in 

this study. Although we compared LBA with memantine, our present data are not sufficient to 

state that LBA functions as another NR2A antagonist or receptor modifier. Whether LBA 

interferes with glutamate receptor functions remains unclear. Previous studies have shown

that LBA had diverse protective effects against neuronal damage induced by A peptide as 

well as dithiothreitol (DTT) (Yu et al., 2005; Yu et al., 2006), it is possible that LBA mediates 

its protection in the receptor level. Polysaccharide is the major active component in LBA. 

Recent research suggested that polysaccharide has various effects on the CNS and is involved 

in long term potentiation, receptor regulation and neuronal development (Lauri et al., 1999;

Sotogaku et al., 2007). Regarding the receptor interaction, several reports have demonstrated 

that polysaccharide is able to modify receptor properties (Sinnarajah et al., 1999;

Suppiramaniam et al., 2006). For instant, dextran sulfate, a polyanion that mimics natural 

mucopolysacchardies such as heparin sulfate, is able to alter binding and channel properties of 

AMPA receptors (Chicoine et al., 2004). Apart from neuronal damage, over-stimulation on 

AMPA receptors may also play a role in maintenance and repair of neurons (Dicou et al.,

2003; Wu et al., 2004). Recent study has shown that polysaccharide can promote 

neuroprotection against excitotoxicity by modulating the AMPA receptor signals (Chicoine 
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and Bahr, 2007). It is therefore possible for other neuroprotective polysaccharide to protect 

neurons through modulation of AMPA receptor. More importantly, it has been documented 

that neuroprotective polysaccharide such as haparin derivatives are able to pass through the

blood brain barrier (BBB) (Leveugle et al., 1998; Ma et al., 2002). Whether LBA is also able 

to pass through BBB and interferes AMPA receptor has beyond the scope of our study, but 

this certainly deserves further investigation.

We have demonstrated that LBA is able to reduce glutamate-induced neuronal damage. 

Together with our previous findings that it has neuroprotective effects against A toxicity, we 

propose LBA has multiple benefits on the CNS. Its property of attenuating glutamate toxicity 

enables it to extend its potential as disease-modifying agent for the treatment of a variety of 

neurological disorders such as stroke, AD and glaucoma. In fact, our recent results have 

shown that LBA provides protection for retinal ganglion cells in experimental glaucoma 

(Chan et al., 2007). Furthermore, its protective effect against glutamate is comparable to that

of memantine, a drug that have been approved for treatment of AD. In summary, our findings 

support the potential therapeutic use of LBA in neurological disorders, and more research is 

needed to further explore its protective effects and underlying mechanisms.
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4. Experimental Procedures

4.1. Materials

Wolfberry was purchased from Ning Xia Huizu Autonomous Region. The glycosyl 

composition and amino acid composition analysis were performed as described in Yu et al

(2005).

NeurobasalTM medium, B-27 supplement, penicillin, streptomycin and glutamine were 

purchased from Gibco-BRL (Burligton, Ontario, Canada). Other chemicals were obtained 

from the following companies: L-glutamate, N-methyl-D-aspartate (NMDA), memantine,

nitroblue tetrazolium (NBT) tablet, protease inhibitor cocktail, phosphatase inhibitor cocktail 

and anti-β-actin monoclonal antibody were obtained from Sigma-Aldrich, Inc. (St. Louis, MO, 

USA). Hydrogen peroxide was from BDH Laboratory Supplies (England). Lactate 

dehydrogenase (LDH) cytotoxicity assay kit was from Roche Diagnostics (Mannheim, 

Germany). Caspase-3 substrate (Ac-DEVE-pNA) was obtained from Calbiochem, Inc. (La 

Jolla, CA, USA). Rabbit polyclonal antibodies for JNK detection were purchased from Cell 

Signaling Technology (Beverly, MA, USA). Horseradish peroxidase-conjugated goat anti-

rabbit and goat anti-mouse antibodies were from DAKO (Glostrup, Denmark). PVDF 

membrane was from Bio-Rad (Richmond, CA, USA). Biomax X-ray film was from Kodak 

(Tokyo, Japan). Enhanced chemiluminescence (ECL) detection kit was from Amersham 

(Buckinghamshire, UK).

4.2. Preparation of Wolfberry polysacchardes (LBA)

LBA were prepared according to the previous publication (Yu et al., 2005). In brief, 

Wolfberry was crushed into small pieces and were extracted with boiling distilled water. After

concentration and deproteination by the Sevag method (Seveg, 1934), the resulting aqueous 
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fraction was dialyzed, precipitated by ethanol. The retentate were then concentrated and dried

to yield a brown powder (LBA).

4.3. Preparation of primary cortical neurons and treatment

Cultures of rat embryonic day 17 cortical neurons were prepared as described 

previously (Chang et al., 2002; Suen et al., 2003). Briefly, cortical neurons were micro-

dissected from the brains of rat fetuses in phosphate-buffered saline (PBS) with glucose (18

mM). Cells were subjected to mechanical trituration and were resuspended in NeurobasalTM

medium containing 2% B-27, L-glutamine (2 mM), penicillin (50 U/ml) and streptomycin (50 

μg/ml). Cells were seeded onto 6-well plates pre-coated with poly-L-lysine (25 μg/ml) at a 

density of 1.0 × 106/well. Neurons were maintained at 37°C in a humidified atmosphere of 

5% CO2, half of the medium in each well was replaced with fresh medium twice a week. On 

day 7 in vitro, the cultured cells were treated with different dosages of LBA or memantine 

prior to the exposure to glutamate, NMDA or hydrogen peroxide for 24 h. For post-treatment, 

neurons were exposed to glutamate for 1 h and LBA were subsequently added into the 

cultures for co-incubation of another 23 h.

4.4. Assessment of cell death

Cell death in various treatment groups was determined by the release of LDH into 

supernatant of cell cultures. Activity of LDH was measured using a commercially available 

kit as described elsewhere (Lai et al., 2006; Yu et al., 2005). Briefly, equal volume of cell free 

culture supernatant and assay buffer were transferred into a 96-well-plate and incubated in 

dark for 30 min at room temperature. Leakage of LDH into the culture medium was measured 

at 492 nm wavelength. Results were expressed as fold of control (fold of control was 

calculated as follow: absorbance of glutamate-treated/LBA-treated / absorbance of control).
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4.5. Assessment of apoptosis

Apoptotic cell death was determined by measuring the caspase-3-like activity as 

described elsewhere (Fang et al. 2005; Yu et al. 2007). Proteins were extracted from cortical 

neurons using lysis buffer (5 mM DTT, 0.1 mM EDTA, 50 mM HEPES (pH 7.4) and 0.2%

Triton-X-100) and the supernatant (lysate) was collected. Fifty micrograms of proteins from 

each sample and caspase-3 substrate (Ac-DEVD-pNA) were transferred to a 96-well-plate and 

incubated for 2 h at 37°C. During the reaction, a yellow product (pNA) was cleaved from the 

substrate (i.e. DEVD cleavage) and its absorbance at 405 nm was determined for caspase-3-

like activity. The values of specific activity (s.a., unit = pmol/min/μg) were calculated. 

Results were expressed as fold of control.

4.6. Western blot analysis

Neurons after treatment were lysed in ice-cold lysis buffer (10 mM Tris-HCl (pH 7.4), 

1 mM NaCl, 20 mM Na4P2O7, 2 mM Na3VO4, 1% Triton-X-100, 10% glycerol, 0.5%

deoxycholate, 0.1% SDS, 1 mM phenylmethylsulfonyl fluoride, protease inhibitor cocktail 

and phosphatase inhibitor cocktail) and the supernatant was collected as described elsewhere

(Lai et al. 2008; Suen et al. 2003; Yu et al. 2004) . Equal amounts of protein were separated 

on 12.5% SDS-polyacrylamide gels and transferred to polyvinylidene difluoride (PVDF) 

membranes. The membranes were blocked with 5% non-fat milk in TBST (TBS containing 

0.1% Tween-20). Primary antibody specifically recognizing phosphorylated JNK (1:1000), 

non-phosphorylated JNK (1:1000) were diluted in TBST and incubated with the membrane 

overnight. After washing, the membranes were incubated with horseradish peroxidase-

conjugated secondary antibodies, and subsequently developed by using the ECL Western 

blotting detection kit. The membranes were then stripped with stripping buffer (50 mM 
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glycine, 2% SDS, pH 2.0) and re-probed with monoclonal anti-β-actin antibody (1:5000) and 

goat anti-mouse HRP secondary antibody.

4.7. Determination of ROS level

Production of ROS intracellularly was determined by the nitroblue tetrazolium (NBT) 

reduction assay as described previously with some modifications (Choi et al., 2005;

McDonald et al., 1997; Chao et al., 2008). The presence of ROS was indicated by the color 

change of the water soluble NBT (yellow) to insoluble formazan (blue) upon reduction. 

Cortical neurons were treated with different dosages of LBA for 1 h prior to the exposure of

glutamate. After 2 h of co-incubation, NBT (2 mg/ml) was added, and the cells were further

incubated for 1 h. Medium was removed and cultures were rinsed twice with ice-cold PBS to 

remove excess NBT. The intracellular blue formazan was dissolved in dimethylsulfoxide 

(DMSO) completely by sonication (three pulses of 6s). Samples were centrifuged for 5 min at 

13,000 g. The absorbance of the supernatant was determined at 570 nm in a microplate reader.

Results were expressed as fold of control.

4.8. Statistical analysis

Data are expressed as mean ± standard error (SE) from at least 3 independent 

experiments. The significance of differences among different groups was determined by one-

way ANOVA, followed by Student Newman-Keuls as post-hoc test. P < 0.05 was considered

to be statistically significant.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Ho et. al., 2008

19

Acknowledgments

The authors would like to thank Professor J. N. Fang for the help in providing LBA. 

This work is supported by the Research Fund for the Control of Infectious Disease (05050032) 

from Food and Health Bureau, General Research Grant (7552/06M) and NSFC/RGC Joint 

Research Scheme (N_HKU707/07M) from Research Grant Council, HKU Alzheimer’s 

Disease Research Network and HKU Seed Funding for Basic Research (200711159028) to 

RCCC. Also, the work is supported by Azalea 1972 Endowed Fund. WHY would like to 

thank for the support from the Department of Chemistry. YSH is supported by the Graduate 

School, MSY is supported by Postdoctoral Fellowship, The University of Hong Kong.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Ho et. al., 2008

20

Figure legends

Fig. 1. LBA protected cortical neurons from glutamate-induced neurotoxicity. Rat primary 

cortical neurons were treated with different dosages of LBA for 1 h and then co-incubated 

with 30 or 60 μM glutamate for 24 h. The level of neuronal cell death in culture treated with 

(a) LBA only (c) LBA and 30 μM glutamate and (e) LBA and 60 μM glutamate was accessed 

by LDH assay. Cultured neurons have a normal turnover with baseline of LDH of 12.5 

0.5% of total lysis. The level of apoptosis in culture treated with (b) LBA only (d) LBA and 

30 μM glutamate and (f) LBA and 60 μM glutamate was accessed by colorimetric caspase-3 

like activity assay. The specific activity of caspase-3 was 0.042  0.007 pmol/min/μg of 

protein in the control group. Data represent mean ± SE from at least 3 independent 

experiments. The significance of differences among treatment groups was determined by one-

way ANOVA, followed by Student Newman-Keuls as post-hoc test. #p<0.001 compared to 

control. p< 0.05 compared to cultures treated with 30 μM glutamate. **p<0.001 compared to 

cultures treated with 60 μM glutamate. *p<0.05 compared to cultures treated with 60 μM 

glutamate.

Fig. 2. LBA preserved morphological changes in glutamate-treated groups. Neurons were 

incubated in the absence or presence of glutamate for 24 h. LBA was added 1h before the

addition of glutamate. Photographs shows phase-contrast images of representative fields of 

cells after various treatments. (a) Control, (b) 30 μM glutamate, (c) 60 μM glutamate, circled

areas indicate fragmented neuritis, (d) 500 μg/ml LBA, (e) 500 μg/ml LBA + 30 μM

glutamate and (f) 500 μg/ml LBA + 60 μM glutamate. There were no obvious morphological 

difference between the control and LBA alone treatment groups, while LBA preserved the 

morphology of neurons that exposed to glutamate.
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Fig. 3. Neuroprotective effects of LBA against glutamate toxicity were comparable to that 

provided by memantine. Neurons were treated with LBA or memantine for 1 h prior to the 

addition of glutamate for 24 h. The protective effects of LBA and memantine against 

glutamate-induced cell death and apoptosis were accessed by (a) LDH assay and (b) caspase-3 

like activity assay. Data represent mean ± SE from at least 3 independent experiments. The 

significance of differences among treatment groups was determined by one-way ANOVA, 

followed by Student Newman-Keuls as post-hoc test. #p<0.001 compared to control. 

**p<0.001 compared to cultures treated with 60 μM glutamate. *p<0.05 compared to cultures 

treated with 60 μM glutamate. p< 0.001 compared to cultures treated with 30 μM glutamate.

p< 0.05 compared to cultures treated with 30 μM glutamate.

Fig. 4. Effects of post-treatment of LBA on glutamate neurotoxicity. Neurons were exposed

to glutamate for 1 h prior to LBA for another 23 h. Release of LDH was measured in (a) 

neurons treated with LBA and 30 μM glutamate (c) LBA and 60 μM glutamate. Level of 

apoptosis in (b) neurons treated with LBA and 30 μM glutamate (d) LBA and 60 μM 

glutamate was accessed by measuring the caspase-3 like activity. Data were analyzed by one-

way ANOVA for multiple comparisons, followed by Student Newman-Keuls as post-hoc test. 

#p<0.001 compared to control. p< 0.001 compared to cultures treated with 30 μM glutamate.

p< 0.05 compared to cultures treated with 30 μM glutamate. *p<0.05 compared to cultures 

treated with 60 μM glutamate.

Fig. 5. Effects of LBA against NMDA neurotoxicity. LBA was added into the culture for 1 h 

and then co-incubated with 40 or 60 μM NMDA for 24 h. (a) LDH assay and (b) caspase-3 

like activity assay were performed. Data represent mean ± SE from at least 3 independent 

experiments. The significance of differences among treatment groups was determined by one-
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way ANOVA, followed by Student Newman-Keuls as post-hoc test. #p<0.001 compared to 

control. ##p<0.05 compared to control. p< 0.001 compared to cultures treated with 40 μM 

NMDA. **p<0.001 compared to cultures treated with 60 μM NMDA.

Fig. 6. LBA could not protect neurons against H2O2-induced toxicity. Neurons were treated 

with LBA for 1 h prior to the exposure to H2O2 for 24 h. (a) LDH assay and (b) caspase-3 like 

assay were carried out to examine its protective effect. Data represent mean ± SE from at least 

3 independent experiments. The significance of differences among treatment groups was 

determined by one-way ANOVA, followed by Student Newman-Keuls as post-hoc test.

#p<0.001 compared to control. *p<0.05 compared to cultures treated with H2O2.

Fig. 7. LBA did not attenuate glutamate-induced production of ROS. Neurons were treated 

with LBA for 1 h prior to the exposure to 60 μM glutamate for 2 h. NBT reduction assay were 

performed to access the level of intracellular ROS. Data represent mean ± SE from at least 3 

independent experiments. The significance of differences among treatment groups was 

determined by one-way ANOVA, followed by Student Newman-Keuls as post-hoc test. 

#p<0.001 compared to control. *p<0.05 compared to cultures treated with glutamate only.

Fig. 8. LBA suppressed the phosphorylation of JNK in glutamate-treated groups. Neurons 

were treated with indicated dosages of LBA for 1 h prior to the exposure to 60 μM glutamate 

for 2 h. Cell were harvested for measurement of phosphorylated JNK and non-phosphorylated 

JNK by Western blotting. -Actin was used as internal control. The images of Western blots 

films were scanned and quantified with Image J. Data showed the ratio of p-JNK to JNK. 

Data represent mean ± SE from at least 3 independent experiments. Statistical analysis was 
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performed with one-way ANOVA, followed by Student Newman-Keuls as post-hoc test.

#p<0.05 compared to control. *p<0.05 compared to cultures treated with 60 μM glutamate.
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