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Abstract: Synchondrosis is defined as the development of a union between two bones by the formation of either hyaline 

cartilage or fibro-cartilage. This paper reviews the relationship between cranial base synchondroses and craniofacial 

development. The cranial base synchondroses are important growth centers of the craniofacial skeleton. Their 

abnormalities lead to numerous growth and developmental conditions in the craniofacial region. In dentofacial 

orthopedics, mechanical forces are commonly applied to cranial bones for growth modification to treat such conditions. 

Molecular biology and genetics provide tools to investigate the molecular mechanisms, genes and transcription factors 

responsible for synchondrosis and craniofacial development. 
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INTRODUCTION 

 Cranial base synchondroses are important growth centers 
of the craniofacial skeleton and the last sites in the cranium 
to terminate growth [1-5]. Abnormalities in synchondroses 
are the cause of numerous growth and developmental 
conditions of the craniofacial region, such as Apert 
syndrome (1:160000 to 1:200000 live births) [6], Crouzon 
syndromes (1:60000 live births) [7], Pfeiffer syndromes 
(1:100000 live births) [8], and Down syndrome (13:10000 
live births) [9]. Some abnormalities are craniosynostoses, or 
premature bony fusions of skull sutures, which eventually 
influence the life quality of affected children and their 
families [10]. Much effort has been made to overcome these 
problems. For example, in dentofacial orthopedics, 
mechanical forces are commonly applied to cranial bones for 
growth modification [11-14]. 

 A search of Medline Ovid from 1950 identified 258 
papers on synchondrosis, consisting of 188 papers written in 
English and 70 in other languages, such as German, French, 
Japanese, Italian, Polish, Czech and Russian. Most of the 
papers were case reports and some were experimental 
reports, but only a few were literature reviews. In the light of 
this finding, this paper reviews the literature on cranial base 
synchondroses, particularly the spheno-occipital synchon-
drosis, focusing on sources written in English either as e-
journals or in printed journals or textbooks, which were 
hand-searched. 

DEFINITION 

 Synchondrosis is defined as the development of a union 
between two bones by the formation of either hyaline 
cartilage or fibro-cartilage. A synchondrosis is usually 
temporary and exists during the growing phase until the  
 

 

*Address correspondence to this author at the 2/F, Orthodontics, Prince 

Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong; Tel: 

852-28590554; Fax: 852-25593803; E-mail: fyoung@hkucc.hku.hk 

intervening cartilage becomes progressively thinner during 
skeletal maturation and ultimately becomes obliterated and 
converted into bone before adult life. In simple terms, a 
synchondrosis is a cartilaginous joint. It allows only slight 
movement between bones compared with the synovial joint, 
which has a much greater range of movement. Throughout 
the human body, cartilaginous joints can be found in the 
pubic symphysis, between the ribs and sternum, between 
adjacent vertebrae in the spinal column, and at the growth 
plates between the epiphysis and metaphysis of tubular 
bones. Three synchondroses are present along the midline of 
the cranial base: the spheno-ethmoidal synchondrosis 
between the sphenoid and ethmoidal bones, the intersphe-
noid synchondrosis between two parts of the sphenoid bone 
and the spheno-occipital synchondrosis between the 
sphenoid and basioccipital bones. 

 Cranial base synchondroses are regarded as important 
growth centers of the craniofacial skeleton, particularly the 
spheno-occipital synchondrosis because of its late 
ossification and important contribution to post-natal cranial 
base growth [1, 15-18]. The spheno-ethmoidal synchondrosis 
terminates at 6 years of age [15, 19] and the intersphenoid 
synchondrosis ossifies immediately before birth [20]. The 
spheno-occipital synchondrosis seems to have a more 
prominent role in growth (ontogeny) of the human skull up 
to adult life than other midline chondral structures [19].

 

Synchondroseal cartilage is abundant at birth and contains a 
zone of proliferative and hypertrophic cells that show active 
growth up to 3 to 4 years of age, after which reduction in 
growth is observed [21]. 

HISTOLOGICAL STRUCTURE AND GROWTH 
MECHANISM OF SYNCHONDROSES 

 Morphologically, a synchondrosis is similar to the long-
bone growth plate, except that growth at the synchondrosis is 
not unipolar but bipolar. Indeed, the synchondrosis can be 
regarded as two growth plates positioned back to back so 
that they share a common zone of actively proliferating 
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chondroblasts, or the “rest zone”. The different zones of the 
synchondrosis mirror each other such that there is cartilage 
in the center and bone at each end. The intraoccipital 
synchondrosis is completely ossified by 5 weeks of postnatal 
development, whereas the intrasphenoid and spheno-
occipital synchondrosis retain a small amount of cartilage 
into adulthood. 

 Specific characteristics of several functional cell zones of 
a synchondrosis can be easily identified (Fig. 1) [22]: 

1. Zone of vascular erosion and invasion, 1 to 2 cells 
thick 

2. Zone of chondrolacunar hypertrophy and matrix 
calcification, 2 to 3 cells thick 

3. Zone of matrix production or matrixogenic zone, 4 to 
6 cells thick 

4. Zone of cellular proliferation, 4 to 6 cells thick 

5. Central zone or resting zone, 10 to 12 cells thick 

 The distinct columnar organization of zones 2 to 4 is 
analogous to the organization of the long-bone epiphyseal 
plates, which are characterized structurally by bipolar 
epiphyseal cartilage. These zones are responsible for the 
growth mechanism of endochondral bone, with the central 
zone as the true synchondrosis. The central, or resting, zone 
is synonymous to the reserve zone of the growth plate and is 
composed of chondrocyte precursors that direct the 
formation and organization of a synchondrosis. The cells in 

the central zone are much denser and smaller than cells in 
any of the other layers; they are also not arranged in 
columns, and are surrounded by a thicker layer of cartilage 
matrix [23]. 

 The proliferative zone plays a crucial role in 
endochondral bone formation and is the region of active cell 
replication [24]. In the proliferating layer, the chondrocytes 
are arranged in columns that are parallel to the longitudinal 
axis of the bone and are separated from each other by 
matrices containing large amounts of collagen type II. The 
number of cells in each column ranges from 10 to 20, 
depending on the mitotic moment of the column. The more 
cells there are, the greater the growth rate is [25]. 
Furthermore, multiple mitoses can be observed in the 
proximal portion of each column, even though each column 
behaves independently [26]. Because the two daughter cells 
line up along the long axis of the bone when the 
chondrocytes divide, clones of chondrocytes are arranged in 
columns parallel to this axis. This spatial orientation directs 
growth in a specific direction and is thus responsible for the 
elongate shape assumed by many endochondral bones. The 
chondrocytes divide only in this zone of the growth plate, 
and the high degree of division makes the cells flat and 
slightly irregular in shape. The proliferating layer has a high 
oxygen content, and the chondrocytes store large amounts of 
glycogen and have a high rate of mitochondrial ATP 
production [27]. The matrix is synthesized in the lower half 
of the proliferating layer by an extensive network of 

 

Fig. (1). Photomicrograph of a synchondrosis in neonatal mice showing different zones across one side of the synchondrosis. (A) Zone of 

vascular erosion and invasion. (B) Zone of chondrolacunar hypertrophy and matrix calcification. (C) Zone of matrix production or 

matrixogenic zone. (D) Zone of cellular proliferation. (E) Central zone or resting zone. 
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chondrocytes. Ultrastructural examination has shown that 
these chondrocytes have large amounts of rough 
endoplasmic reticulum., while an autoradiographic study 
using tritium-labeled thymidine has revealed high rates of 
cell division in the three to six layers of flattened cells of the 
proliferative zone, with lower rates in both the resting/central 
zone and the prehypertrophic or matrixogenic zone [28, 29]. 

 The hypertrophic zone also plays a key role in 
endochondral bone formation. Hypertrophic chondrocytes 
are generated by terminal differentiation of the proliferative 
zone chondrocytes farthest from the epiphysis. The function 
of the hypertrophic cell layer is not only to synthesize matrix 
but also to cause growth by cell expansion/hypertrophy [30-
32]. The hypertrophic chondrocyte, by the mechanism of 
swelling, is actually the principal engine of longitudinal bone 
growth. During the differentiation process, the chondrocytes 
increase their intracellular volume by 5 to 10 times, a sign of 
major activity in the intracellular organelles and cytosol. 
These cells cease dividing and then enlarge, contributing 
substantially to the growth process [33]. The hypertrophic 
chondrocyte is a viable master regulatory cell with an active 
metabolism. It initiates ossification, which prepares the 
matrix for calcification and vascularization by attracting 
vascular and bone-cell invasion from the adjacent bone [34]. 

 In contrast to the proliferative and hypertrophic zones, 
the resting zone has an unknown function. Abad and 
coworkers [35] suggested that resting zone cartilage makes 
important contributions to endochondral bone formation at 
the growth plate by providing stem-like cells to produce 
proliferative chondrocytes and producing growth plate-
orienting factors (GPOF), which are morphogens that control 
the alignment of the proliferative clones into columns 
parallel to the long axis of the bone. The resting zone also 
probably produces another type of morphogen that is 
responsible for inhibiting terminal differentiation of the 
nearby proliferative zone and thus the organization of the 
growth plate into distinct zones of proliferation and 
hypertrophy. 

EVOLUTIONARY SIGNIFICANCE OF CRANIAL 
BASE IN CRANIOFACIAL DEVELOPMENT 

 The cranial base has been an interesting subject of 
research owing to its importance in integrated craniofacial 
development and growth. It is the most complex structure of 
the human skeleton and its main function is to protect and 
support the brain. The cranial base is also the first region of 
the skull to reach adult size and is the structural foundation 
of many aspects of the craniofacial architecture [36]. In 
addition, it also connects with the rest of the body, articulates 
with the vertebral column and the mandible, provides 
conduits for all the vital neural and circulatory connections 
between the brain and the face and neck, houses and 
connects the sense organs in the skull and forms the roof of 
the nasopharynx. The shape of the cranial base is therefore a 
multifactorial product of numerous phylogenetic, 
developmental and functional interactions [37, 38]. 

 Although the cranial base, vault and face derive from 
embryologically distinct regions (basicranium, neurocranium 
and splanchnocranium), the cranial base region grows in a 
morphologically integrated manner through numerous 
developmental and functional interactions [39-41]. These 

interactions occur as a result of many morphogenetic (e.g., 
neural) and functional (e.g., masticatory, respiratory) stimuli, 
but the role of the cranial base in influencing overall cranial 
shape merits special consideration. The cranial base is 
derived from the chondrocranium, which serves as a growth 
plate, and is later replaced by bone through endochondral 
ossification. The chondrocranium is essentially a structural 
template within and around which the bony cranial base is 
constructed [42]. Any cartilage remaining between the bones 
in the form of synchondroses acts as a growth center in a 
similar way to the epiphyseal plates of the long bones. By 
the end of adolescent growth, the cranial base synchondroses 
have completely ossified and longitudinal growth has 
finished. Any interference that causes early or late 
ossification will result in shortening or lengthening of the 
cranial base, respectively, leading to serious consequences in 
craniofacial development [22]. 

BIOLOGICAL BASIS OF CRANIAL BASE 
SYNCHONDROSES 

 Information on the cartilaginous joint in the cranial base 
is limited, probably as a result of general acceptance that 
basal synchondroses are the same as the epiphyseal plates of 
the long bones [43]. Both share the same internal 
morphological features, as well as roles in endochondral 
bone growth [44]. In the postnatal period, endochondral 
ossification of the cranial base synchondroses contributes to 
the expansion of the ossification centers and growth of the 
cranial base. Therefore, cranial base synchondroses are 
analogous structures to growth plates of the long bones, in 
that they allow for the rapid endochondral growth of the 
bone and eventually close when the bone reaches its final 
size. Typical long-bone growth cartilage has been defined as 
a simple proliferating system that exhibits a linear 
mathematical relationship between cell division and bone 
growth [45]. Although the overall development of cranial 
base synchondroses has received less attention than that of 
long-bone growth plates, many genes have been identified 
that have proven to be fundamental in the development of 
the craniofacial complex [46]. 

EMBRYOLOGICAL DEVELOPMENT OF CRANIAL 
BASE SYNCHONDROSES 

 The cranial base has a distinct pattern of morphogenesis. 
The anterior cranial base is derived from neural crest 
mesoderm, which is also responsible for the growth of facial 
bone. In contrast, the posterior cranial base is developed 
from paraxial mesoderm. The cranial base develops from a 
cartilaginous template that is replaced by bone through the 
process of endochondral ossification. The cranial base is 
initially condensed, as individual elements. Pairs of 
templates, from caudal to rostral regions, are composed of 
sclerotome cartilage, parachordal cartilage (precursor of the 
basioccipital bone), hypophyseal cartilage (precursor of the 
basisphenoid), presphenoid cartilage (precursor to the 
sphenoid body anterior to the tubeculum sellae and 
chiasmatic sulcus), orbitosphenoid (precursor of anterior 
clinoids and lesser wing of the sphenoid), alisphenoid 
cartilage (precursor of greater wing of sphenoid) and 
mesethmoid cartilage. Ossification progresses in an orderly 
pattern from the posterior to the anterior and finally fuses 
into a single, irregular and much-perforated base plate, 
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known as the chondrocranium [47]. The chondrocranium 
then undergoes further progressive ossification. Large areas 
of the cranial base remain cartilaginous throughout early 
fetal life, while many cartilages persist into the third 
trimester and postnatal life in humans [10]. 

 Histological studies indicate that at least the spheno-
occipital synchondrosis contains cartilaginous canals through 
which blood vessels travel, in addition to connective tissue 
elements, probably for the purpose of bringing nutrients and 
other supplies to the cell [48]. Several in vivo studies have 
been designed to investigate the development of cranial base 
synchondroses in using mice fetuses [49-51]. The 
basioccipital ossification center was the first to form, starting 
at 14 days post coitum (dpc), followed by the paired 
exoccipitals and basisphenoid. The presumptive spheno-
occipital synchondrosis was found at 15 dpc; by 16 dpc, the 
perichondrium around the cranial base segments was 
interrupted at sites where synchondroses were forming. The 
presphenoid formed between 16 and 17 dpc. On 18 dpc, the 
entire presumptive cranial base was cartilaginous, and there 
was marked hypertrophy of chondrocytes and their lacunae 
in the areas of impeding basioccipital, basisphenoid and 
presphenoid bone formation. Cellular hypertrophy was the 
most advanced in the basisphenoid region, confirming the 
caudal-rostral sequence of cartilage maturation [52]. 
Throughout the first week of postnatal development, growth 
and ossification of the cranial base accelerated and the otic 
capsule ossified rapidly. By the fourth day after birth, the 
basioccipital-basisphenoid and basisphenoid-presphenoid 
synchondrosis had reached full development, in analogy to 
mirror-image epiphyses [49]. 

DIFFERENTIAL GROWTH IN THE CRANIAL BASE 
SYNCHONDROSES 

 There is no reason why growth in the zones on either side 
of the growth center should be the same. In human fetuses, 
more bone deposition occurs on the ethmoid at the 
sphenoethmoidal synchondrosis and on the occipital bone at 
the spheno-occipital junction. The sphenoid bone, therefore, 
shows less growth anteriorly and posteriorly. The increasing 
sella-foramen cecum distance after 2 years of age could 
mean, however, that the front part of the sphenoid grows 
faster postnatally than the ethmoid, and continues growing 
after the ethmoid has ceased [15]

 
and the constancy of sella-

basioccipital synchondrosal distance could imply a 
continuing preponderance of growth on the basiocciput [53]. 
Enlow [54] suggested that growth may occur at different 
rates and to different extents on opposite sides of the plate, 
such that in the spheno-occipital synchondrosis, the greater 
part of this lengthening occurs on the occipital side. It has 
been argued that these observations are better explained by 
posterior drift of the sella rather than by inequalities of 
synchondrosal growth. Melsen [55] did not find any 
asymmetry in histological examinations of the human 
postmortem material. Hoyte [56] studied the basicranial 
synchondroses in pigs and rabbits, by injecting live animals 
with alizarin red and sacrificing them at different intervals; 
the results demonstrated that growth in the basiscranial 
synchondroses is symmetric at each site but vary in patterned 
sequence between sites. Experiments using [�H]-thymidine 
radioisotope labeling in growing rats found a caudo-rostral 
gradient of growth rates in the cranial base cartilages, with 

the highest rates in the basioccipital and lowest in the rostral 
edge of the presphenoid. In other words, the posterior part of 
the spheno-occipital synchondrosis has a greater amount of 
bone formation in its inferior part than its superior part, 
which leads to angular changes in the cranial base [45, 46, 
57]. 

CRANIAL BASE SYNCHONDROSES AS GROWTH 
CENTERS 

 An area of hypothetical debate concerns synchondrosis 
growth capability, and whether it is independent from or 
dependent on other factors. As a remnant from the fetal 
chondrocranium, it should be an active and expansive 
growth center owing to its tissue separating power. Scott 
[58] hypothesized that cranial synchondroses by virtue of 
their interstitial growth, turgidity and resistance to deforming 
forces can separate growing bones at sutures, just as the 
brain or an eyeball can. On the other hand, others [27, 59] 
have suggested that cranial base synchondroses do not 
possess a growth potential of their own and are just show a 
mechanically obligatory response to the growth of other 
organs, such as the brain, and to the growth of organ spaces, 
such as the oral and nasopharyngeal spaces. According to 
this view, the growth of the craniofacial skeleton occurs as a 
secondary or adaptive response to its functional matrix. In 
the living body, load or muscular activity serves as an 
extracellular stimulus that is transmitted to cells and 
modulates their genetic growth and differentiation, leading to 
what is known as the functional matrix hypothesis [60]. 

 In order to test these hypotheses, many transplant-
implants studies have been performed. Petrovic and Charlier 
[61] showed that chondrogenesis continued in 8-day-old 
explants of the spheno-occipital synchondrosis of the rat. 
Servoss [62] used [�H]-thymidine labeling in vivo and in 
vitro in mice, and found that in vitro spheno-occipital 
synchondrosis not only continued to grow, but did so at a 
rate comparable to that of the in vivo counterparts. Kuroda et 
al. [63], repeating similar experiments in rabbits, noted that 
the spheno-occipital synchondrosis maintained it structure 
and grew independently, but less than in vivo. These 
experiments indicate that cranial base synchondroses are 
endowed with an independent growth potential and are 
comparable to epiphyseal plates and the costochondral 
junction with regards their tissue-separating capacity [64, 
65]. The independent growth potential of synchondroses [10] 
are also evident from the observation that their growth 
continues for a longer duration than that of the brain, which 
means the growth of the cranial base and the brain is not 
closely interdependent [19, 66]. The studies overall suggest 
that synchondroses are genetically coded in craniofacial 
growth and will develop even in the absence of functional 
activity. However, skeletal growth and the preservation of 
normal structure are modulated by environmental 
(epigenetic) factors, such as mechanical force, hormones and 
other growth factors. 

TIME OF CLOSURE OF THE SPHENO-OCCIPITAL 
SYNCHONDROSIS 

 Controversies have arisen with regard to the closure time 
of the spheno-occipital synchondrosis [34, 67, 68]. Ford [69] 
investigated human dry skulls and first reported that the 
closure time of the spheno-occipital synchondrosis occurred 
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late in the growth period between 20 and 25 years or 
between 17 and 20 years. A radiographic study by Irwin [70] 
and a tomographic study by Powell and Brodie [71] led to 
suggestions that incipient closure may already be discerned 
at the beginning of puberty. Melsen [4] reported that closure 
had taken place in the interval between eruption of the 
second and third molars. Computed tomography of the 
spheno-occipital synchondrosis showed signs of early fusion 
by age 8 years of age; the age of closure was 16 years in girls 
and 18 years in boys [72]. On the other hand, in postmortem 
histologic and micro-radiographic studies of the spheno-
occipital synchondrosis, Ingervall and Thilander observed 
closure as the appearance of bony bridges and demonstrated 
that the average age of closure in females is around 14 years 
and that the spheno-occipital synchondrosis is never 
completely open in many girls older than 13 years and 9 
months; the corresponding age for the boys is 16 years [3, 
21]. 

 The initial establishment of an osseous bridge between 
the adjoining bones in humans was investigated by Melsen 
[55] with human autopsy materials: the process occurs 
between the pubertal growth maximum and the cessation of 
sutural growth, which corresponds to the result from 
Thilander and Ingervall [21]. Latham [73] noted a rapid 
linear increase of the basioccipital length until the age of 9 
years, the beginning of a plateau at about 10 years and then 
another, but very slow, increase until 18 years, indicating 
that there is a sequence of slower growth in the 
synchondrosis between 8 and 11 years. Bony bridges first 
appear by about 12 years (females) and 13 years (males), and 
synostosis (all cartilage replaced by bone) takes place by the 
age of 16 to 17 years. 

ROLE OF SYNCHONDROSES IN GROWTH 

 The cranial base forms the platform to which the rest of 
the skull grows and attaches. It provides and protects the 
crucial foramina through which the brain connects the face 
and the rest of the body [24]. As the basicranium grows, it 
elongates and flexes in the spheno-ethmoid, mid-sphenoid, 
and spheno-occipital synchondrosis [19]. Increases in 
basicranial breadth and length also occur in sutures (e.g., the 
occipito-mastoid), and the endocranial fossae of the 
basicranium deepens through drift, during which bone is 
resorbed and deposited along the superior and inferior 
surfaces, respectively [74]. This integrated growth occurs 
through many mechanisms, the most important of which are 
sutural expansion, synchondroseal deposition, drift and 
flexion. As the brain expands, it generates tension along the 
endocranial surface of the neurocranial cavity, thereby 
activating osteoblast deposition within the intra-sutural 
periosteum throughout the upper portion of the vault, as well 
as drifting in the lower portions of the vault and cranial base 
and endochondral growth within certain synchondroses [23, 
75]. 

 In humans, facial growth is about 95% completed by 16 
to 18 years, at least 10 years after the majority of the neuro-
basicranial complex has reached adult size [76]. The 
basicranium and neurocranium, however, may have some 
influence on the growth of certain facial dimensions because 
the upper face articulates with the anterior cranial base and 
the anterior cranial fossa, while the mid-face articulates with 

the middle cranial fossa. In particular, the upper and middle 
portions of the face in humans grow primarily by lateral drift 
and anterior displacement around the ethmoid and in front of 
the sphenoid [74, 77]. 

SYNCHONDROSIS AND CRANIAL BASE ANGLE 

 Cranial base flexion is a unique cranial feature of modern 
human beings and also a reflection of brain evolution. 
Compared with the cranial of quadrupeds, the cranial base 
angle in humans is relatively small. This difference is 
believed to be mainly due to the upright posture of humans 
and the increase in brain volume as well as frontal 
positioning of the eyes [29]. Fusion along the spheno-
occipital synchondrosis is believed to be responsible for 
cranial base flexion, which develops in concert with the 
development of the upper airway and the ability to vocalize 
[78, 79]. During development, the anterior and posterior 
cranial base flexes at the sella turcica in the middle sagittal 
plane and thus constitutes an angle in the cranial base, 
termed the cranial base angle or saddle angle [10]. 

 There are two well-known ontogenic models regarding 
cranial base flexion. Enlow [80] proposed that cranial base 
flexion during human prenatal and postnatal ontogeny is due 
to increased brain growth, relative to slower growth of the 
midline basicranium. This view is consistent with human 
fetal studies showing that growth along the cranial base is 
significantly slower than in other parts of the skull [81] and 
that fetal brain growth is markedly rapid at the same time 
[82]. Taken together, these findings imply that brain size 
increases relatively during human fetal life. The other 
ontogenic model, proposed by Ross and Ravosa and known 
as general spatial-packing, suggests that increases in brain 
size (volume) relative to length of the midline cranial base 
create a spatial packing problem that drives cranial base 
flexion and coronal reorientation of the petrous bones [83]. 
These spatial-packing hypotheses have been substantiated by 
numerous studies but not by others, owing to a basicranium 
that is less flexed than expected in the modern human brain 
[23, 84]. The alternative explanation to this problem is that 
the cranial base flexion is probably an intrinsic feature of 
human beings that is predominantly genetically determined. 
However, this hypothesis has not yet been supported by 
research [10]. 

 A cranial base angle is already established in the 
chondrocranium between the prechordal and parachordal 
region of the cranial base in the human fetus. It has been 
generally presumed that the base flattens in the early stages 
of development by an increasing angle between the 
prechordal and parachordal portions and that this process 
later continues between the ossified part of the basicranium 
[85]. On the other hand, Diewert found little change during 7 
weeks and 10 weeks in human cranial base angulations, 
while the head lifted up and back and the face developed. 
Thus, the cranial base angle is similar to that in later prenatal 
and postnatal stages, suggesting that distinctively human 
patterns develop early in the embryonic period [86]. 

 Björk [1] reported that the cranial base angle gradually 
bends in the first years of childhood up to about 10 years, but 
others have shown that bending probably happens earlier in 
life, perhaps by 5 to 6 years [87]

 
or even 2 to 3 years [88]. 

Differences in these measurements probably relate to 
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different baseline measurements and, perhaps much more 
importantly, also the internal aspect of the cranial base, 
which remains stable from early childhood onwards [29]. 

 The cranial base angle (Fig. 2) is measured at three points 
antero-posteriorly and can be easily identified from 
cephalometric images; the most commonly used 
cephalometric landmarks are the nasion, sella turcica and 
basion. This measurement consists of two legs. The anterior 
leg, where the maxilla is attached, extends from the sella 
turcica (S) to the frontal-nasal suture (N). The posterior leg, 
where the mandible is attached, extends from the sella 
turcica (S) to the anterior border of the foramen magnum, 
defined as the basion (Ba). Therefore, any change in the 
cranial base angle can affect the relationships of the maxilla 
and mandible and influence the type of malocclusion. The 
posterior leg (BaS) of the cranial base angle (BaSN) may be 
tipped anteriorly or posteriorly, whereas the anterior leg 
(SN) may also be tipped up or down anteriorly by variation 
in either S or N vertically. Furthermore, variable lengths may 
compensate for any cranial deflection, such as an acute 
posterior leg that places the mandible forward, and this 
action can be negated by a long posterior leg that places both 
the basion and mandible posteriorly and vice versa [89]. 

 

Fig. (2). Diagram showing the cranial base angle (�), the 

synchondrosis (SOS) and the jaw relationship. The growth in SOS 

affects � and the relative jaw positions x1, x2 horizontally and y1, y2 

vertically. If � is small, the mandible is relatively more anterior 

with the maxilla. Conversely, if � is large, the mandible is relatively 

more posterior with the maxilla. 

 The posterior cranial base can grow sagittally under the 
aegis of the spheno-occipital synchondrosis. In contrast, the 
anterior cranial basis is restricted by the sphenoethmoidal 
and ethmoidofrontal sutures. Since the sutural growth of the 
anterior cranial base is complete around 8 years, the distance 
SN continues to increase for years after, but only as a result 
of apposition on the frontal bone [18]. As a consequence of 
this early completion, the anterior cranial base has been used 

wholly or in part as a reference in a number of cephalometric 
analyses. It is assumed that through ramification of sutures 
that link the cranial base, there is a close interrelationship 
between the calvarium and some facial growth. In particular, 
the spheno-occipital synchondrosis becomes a focus or pivot 
point for craniofacial growth [90]. 

 The correlation between the cranial base angle and 
orthodontics was noticed and described in 1948 followed by 
Björk, Moss and Rickets in 1955 [91]. The assessment of 
orthodontic anteroposterior skeletal discrepancy of the jaws 
and arches should also account for the role of the cranial 
base [92]. The relationship of the cranial base with jaw 
position and classification of malocclusion has subsequently 
been examined extensively. Scott [93] further proposed one 
of the main factors that influence facial prognathism is the 
opening of the cranial base angle. This angle has a large 
individual variation, with a 5° standard deviation, and is 
markedly decreased in value from birth until the first year. It 
is also considered one of the craniofacial constants as it 
changes little during growth from 5 to15 years [87, 94, 95]. 
Smaller linear and angular dimensions have been shown in 
class III patients, whereas class II subjects demonstrate an 
increased cranial base angle that leads to a more posterior 
position of the mandible [92, 96, 97]. The anterior cranial 
base and the middle cranial fossa have also been reported to 
be longer in individuals with class II malocclusion [98]. 

 However, many studies have shown that the etiological 
relationship between the cranial base flexion and the type of 
malocclusion is not well supported [89, 99, 100]. It therefore 
appears that the cranial base angle is not a pivotal factor in 
determining malocclusion. Rather, the differential growth 
pattern and direction between the anterior cranial base and 
posterior cranial base imply that length and inclination of the 
cranial base are controlling factors of jaw position. 
Abnormalities of the posterior cranial base are related to 
mandibular prognathism, and those of the anterior cranial 
base to retrusive maxilla. These relationships are probably 
explained by the glenoid fossa’s location in the posterior 
cranial base; an elongated cranial base would bring the 
glenoid fossa back and the mandible with it [1, 93]. A 
Norwegian study has recently demonstrated differential 
growth between the anterior and posterior cranial base: in the 
male group, the growth curve of the anterior cranial base 
flattened out after 18 years but the posterior part increased 
until 21 years; no such difference was detected in the female 
group, where both growth curves flattened out after 15 years 
[101]. 

 Other cephalometric characteristics resulting from 
skeletal type might influence the sagittal jaw position and 
relationship. For example, the flattening of the saddle angle 
is associated with a decrease of the posterior cranial base 
angle N-Ba-S, an elongation of the posterior part of the 
cranial base at Ba-point, and an enlarged distance N-Ar, all 
favoring an increased sagittal discrepancy of the jaws [91, 
94]. A compensating mechanism associated with cranial base 
flexure was first described by Anderson and Popovich [102] 
in a study showing that the angle between the posterior 
cranial base and the ramus of the mandible closes in a highly 
correlated way to compensate for the opening of the cranial 
base flexure. This phenomenon tends to maintain the angle 
between the ramus and the anterior cranial base. Therefore, 
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with a more obtuse cranial base angle, the mandible swings 
only slightly down and forward [101]. 

ABNORMALITIES IN GROWTH AND DEVELOPMENT 

 The spheno-occipital synchondrosis is an important link 
between the development of the cranial vault and that of the 
facial skeleton [1, 16, 26]. Premature growth arrest of the 
cranial base is widely regarded as the primary abnormality in 
syndromic forms of craniosynostosis [103]. In Klinefelter 
syndrome and Williams syndrome, the major craniofacial 
changes are located in the cranial base [104, 105]. In 
Cretinism syndrome, Turner syndrome [106] and Down’s 
syndrome [107], the craniofacial structure is characterized by 
a short retrognathic face owing to reduced cranial base 
length and increased angulations. In complete clefts of lip 
and palate, cranial base deviations in dimension and shape 
have been widely described. The data indicate that cleft lip 
and palate are not isolated malformations localized to the 
jaws, but malformations that also involve the cartilaginous 
cranial base [108, 109]. 

RECENT ADVANCEMENTS IN CRANIAL BASE 
RESEARCH 

 Significant advances in the study of craniofacial 
development have revealed

 
the genetic and environmental 

basis of numerous craniofacial malformations, some of 
which do not even appear to be genetic in origin. This 
finding significantly deepens our understanding toward the 
fundamental principles of development, how genes regulate 
cell activity and thus mechanisms of determining the pattern 
and form of the craniofacial complex. Without the 
knowledge of gene activity and signaling transduction 
pathways, the elucidation of mechanisms that control 
development would be impossible. 

 Revelations of fibroblast growth factor receptor (FGFR), 
Sonic Hedgehog (Shh), SOX 9 and Cbfa1 genes are some 
examples of the genes that have been found to play critical 
roles in craniofacial development. SOX 9 has been found to 
be a master transcriptional factor that regulates early 
differentiation of mesenchymal cells into the chondrocyte 
lineage [110]. The absence of SOX 9 results in a severe 
skeletal dwarfism known as campomelic dysplasia [111]. 
Cbfa1/run2/Osf2 serves as the earliest transcriptional 
regulator of osteoblast differentiation and can be considered 
to be the central regulator of intramembranous ossification 
[112]. Mutations involving Cbfa1 result in cleidocranial 
dysplasia in humans

 
[5]. Shh, a member of the vertebrate 

Hedgehog gene family, plays an important role in 
establishing craniofacial midline structures and in regulating 
cranial suture development [113]. Shh is the most commonly 
identified single-gene defect causing human 
holoprosencephaly [114]. Mutations in genes encoding 
FGFRs have been identified as causes of Apert syndrome, 
Crouzon syndromes and Pfeiffer syndromes [5]. As for 
environmental effects, the use of an organ culture technique 
has revealed that synchondrosis is responsive to tensile 
mechanical stress and increased expression of various factors 
related to growth stimulation [115-117]. This series of 
studies was the first to show that growth across the 
synchondrosis can be modified mechanically. 

 

CONCLUSION 

 Cranial base synchondroses, with their unique bipolar 
growth, are a fundamental part of craniofacial development. 
Abnormalities in their development have serious 
consequences because of their position and growth in the 
craniofacial complex. Molecular biology and genetics 
provide tools to further investigate the molecular 
mechanisms, genes and transcription factors responsible for 
synchondrosis and craniofacial development. 
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