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Abstract: Recently, Ng et al. (2009) studied a new family of distributions, namely the

nested Dirichlet distributions. This family includes the traditional Dirichlet distribution

as a special member and can be adopted to analyze incomplete categorical data. However,

other important aspects of the family, such as marginal and conditional distributions and

related properties are not yet available in the literature. Moreover, diverse applications of

the family to the real world need to be further explored. In this paper, we first obtain the

marginal and conditional distributions and other related properties of the nested Dirichlet

Distribution. We then present new applications of the family in fitting competing–risks

model, analyzing incomplete categorical data and evaluating cancer diagnosis tests. Three

real data involving failure times of radio transmitter receivers, attitude toward the death

penalty and ultrasound ratings for breast cancer metastasis are provided.

Key words: Dirichlet distribution; EM algorithm; Missing at random; Nested Dirichlet

distribution; Stochastic representation.
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1. Introduction

The Dirichlet distribution plays an important role in multivariate statistics, distribution

theory and Bayesian inference for categorical data and compositional data (cf. Fang et al.,

1990; Gupta and Richards, 2001; Balakrishnan and Nevzorov, 2003). Generalizations of

Dirichlet distribution for various purposes have been studied in the literature. Amongst

them, Liouville distribution is perhaps the most famous. For instance, Marshall and

Olkin (1979, Chapter 11) described the family of Liouville distributions. Sivazlian (1981a,

1981b) presented some results on marginal distributions and transformation properties for

the class of Liouville distributions. Gupta and Richards (1987, 1990, 1991, 1992) used the

Weyl fractional integral and Deny’s theorem in measure theory on locally compact groups

to derive some important results for the multivariate Liouville distributions. The integral

related to the generalized Liouville distribution was presented as early as in Edwards

(1922, p.160–162) but did not appear in the literature until Marshall and Olkin (1979).

Fang, Kotz and Ng (1990, Chapter 6) provided an extensive study of the Liouville family,

including discussions of its applications to compositional data modeling, nonparametric

prediction of lifetimes, survival functions and multiple Type I error of ANOVA. Gupta

and Richards (2001) provided a comprehensive review of the theory and applications of

the Dirichlet and Liouville distributions. Thomas and George (2004) presented a review

of the development of the Dirichlet distribution, some applications and its generalizations

in various directions.

The nested Dirichlet distribution, defined on the closed n-dimensional simplex, in-

cludes the Dirichlet distribution as a special case. To our knowledge, the distribution

was first briefly introduced by Tian, Ng and Geng (2003), in which only one stochastic

representation was presented. Other basic properties such as mixed (or raw) moments

and mode are obtained by Ng et al. (2009). Based on the distribution, they also examined

large–sample likelihood inferences and small–sample Bayesian inferences for incomplete

2



categorical data. However, certain important components of distribution theory, includ-

ing the marginal and conditional distributions for the family are not yet available in the

literature. This state of development of the nested Dirichlet distribution is not helped to

further applications to the real world.

This article is organized as follows. Section 2 reviews some properties of the nested

Dirichlet distribution, including stochastic representation and mode. In Sections 3 and 4,

we respectively derive the marginal and conditional distributions of the nested Dirichlet

distribution and other related properties. In Section 5, applications of the distribution

in the competing–risks model, sample survey and cancer diagnosis tests are introduced.

Three real data involving failure times of radio transmitter receivers, attitude toward

the death penalty and ultrasound ratings for breast cancer metastasis are presented. We

conclude with a discussion in Section 6.

2. The nested Dirichlet distribution

Let Tn denote the closed simplex {(x1, . . . , xn)> : xi ≥ 0, i = 1, . . . , n,
∑n

i=1 xi = 1}. A

random vector x ∈ Tn is said to follow a nested Dirichlet distribution, if the density of

x−n
∧
= (x1, . . . , xn−1)

> is given by (Tian et al., 2003)

NDn,n−1(x−n|a,b) = c−1

( n∏

i=1

xai−1
i

) n−1∏

j=1

( ∑j
k=1 xk

)bj

, x−n ∈ Vn−1, (2.1)

where a = (a1, . . . , an)> is a positive parameter vector, b = (b1, . . . , bn−1)
> non-negative

parameter vector, Vn−1
∧
= {x−n : xi ≥ 0, i = 1, . . . , n−1,

∑n−1
i=1 xi ≤ 1} denotes the open

simplex, and c is the normalizing constant defined by

c =

n−1∏

j=1

B(dj, aj+1) with dj
∧
=

j∑

k=1

(ak + bk), (2.2)

B(α, β)
∧
= Γ(α)Γ(β)/Γ(α+β) is the beta function. We will write x ∼ NDn,n−1(a,b) on Tn

or x−n ∼ NDn,n−1(a,b) on Vn−1, where the first subscript n in the notation NDn,n−1(a,b)
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represents the effective dimension of the parameter vector a and the second subscript n−1

denotes that of the parameter vector b.

In particular, when b = 0n−1 the distribution in (2.1) reduces to the traditional

Dirichlet distribution Dn(a). On the other hand, when b = (0, . . . , 0, bn−1)
> with bn−1 > 0,

it reduces to a beta Liouville distribution (e.g., see the formula (6.13) of Fang et al., 1990).

Figure 1 shows some plots of Dirichlet and nested Dirichlet densities for n = 3 with various

combinations of a and b. We observe that the latter provides more varieties than the

traditional Dirichlet distribution in terms of skewness.

[Insert Figure 1 here]

The following result suggests that the nested Dirichlet distribution can be stochasti-

cally represented by, and thus generated via, a sequence of mutually independent beta

random variables (Ng et al., 2009).

Proposition 1. A random vector x ∼ NDn,n−1(a,b) on Tn if and only if




xi
d
= (1 − yi−1)

n−1∏

j=i

yj, y0 ≡ 0, i = 1, . . . , n − 1,

xn
d
= 1 − yn−1,

(2.3)

where

yj ∼ Beta(dj, aj+1), j = 1, . . . , n − 1, dj =

j∑

k=1

(ak + bk). (2.4)

and y1, . . . , yn−1 are mutually independent. ¶

Remark 1. (i) Proposition 1 provides a stochastic representation of the nested Dirichlet

distribution and hence give a simple procedure for generating independently and identi-

cally distributed samples from nested Dirichlet distribution, which in turn plays a crucial

role in Bayesian analysis for incomplete categorical data. (ii) When all b = 0n−1 (hence,

dj in (2.4) is equal to
∑j

k=1 ak according to the definition (2.2) of dj), the stochastic rep-

resentation (2.3) reduces to the stochastic representation of Dirichlet distribution, which
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was first utilized by Gupta and Richards (1987) within the context of the Dirichlet and

Liouville distributions. ¶

Ng et al. (2009) also obtain a closed-form expression for the mode of a nested Dirichlet

density, implying that explicit maximum likelihood estimates (MLEs) of cell probabilities

are available in the frequentist analysis of incomplete categorical data.

Proposition 2. Let ai ≥ 1 for all i ∈ {1, . . . , n} and bj ≥ 0 for all j ∈ {1, . . . , n − 1}

but there exists at least one j such that bj > 0. Then the mode of the nested Dirichlet

density (2.1) is given by





x̂n =
an − 1

dn−1 + an − n
,

x̂i =
(ai − 1)(1 − x̂i+1 − x̂i+2 − · · · − x̂n)

di−1 + ai − i
, i = 2, . . . , n − 1,

x̂1 = 1 − x̂2 − · · · − x̂n.

(2.5)

where {dj} are defined in (2.2). ¶

3. Marginal distributions

Let x ∼ NDn,n−1(a,b) on Tn and 1 ≤ m < n. We partition xn×1 into two components

x = (x(1)>,x(2)>)>, each with m and n−m elements, respectively. Similarly, we partition

zn×1 = (z(1)>, z(2)>)> and an×1 = (a(1)>, a(2)>)> in the same fashion as x. Furthermore,

we let b(n−1)×1 = (b(1)>, bm,b(2)>)>, where b(1) : (m − 1) × 1 and b(2) : (n − m − 1) × 1.

Finally, we define ||x|| = 11>x =
∑n

i=1 xi. We have the following results.

Proposition 3. Let x = (x(1)>, x(2)>)> ∼ NDn,n−1(a,b) on Tn. We have the following

stochastic representation:

x =
(x(1)

x(2)

)
d
=

( R z(1)

(1 − R) z(2)

)
, (3.1)
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where

(i) z(1) ∼ NDm,m−1(a
(1),b(1)) on Tm;

(ii) z(1) is independent of (R, z(2));

(iii) R
d
=

∏n−1
j=m yj with {yj} being defined in (2.4); and

(iv) z(2) follows a mixture of nested Dirichlet distributions with density

f(z(2)) =

bm+1∑

km+1=0

· · ·
bn−1∑

kn−1=0

ω(k(2)) × NDn−m,n−m−1(z
(2)|a(2), b(2) − k(2)), (3.2)

z(2) ∈ Tn−m, where k(2) ∧
= (km+1, . . . , kn−1)

>, the weights are given by

ω(k(2)) =

[ n−1∏

j=m+1

(
bj

kj

)]
B(dm + ||k(2)||, ||a(2)|| + ||b(2)|| − ||k(2)||)

B(dm, am+1)

×
n−1∏

j=m+1

B(
∑j

`=m+1(a` + b` − k`), aj+1)

B(dj, aj+1)
, (3.3)

and {dj} are defined in (2.2). ¶

Proof. If x ∼ NDn,n−1(a,b) on Tn, then the density of x−n is given by (2.1). Noting

that

x(1) = ||x(1)|| x(1)

||x(1)|| , x(2) = ||x(2)|| x(2)

||x(2)|| , (3.4)

and ||x|| = 1, we make the transformation

z(1) = x(1)/R, R = ||x(1)||, z(2) = x(2)/(1 − R). (3.5)

The Jacobian determinant is then given by

J(x−n → z1, . . . , zm−1, R, zm+1, . . . , zn−1) = Rm−1(1 − R)n−m−1.

Hence, the joint density of (z1, . . . , zm−1, R, zm+1, . . . , zn−1) can be written as

(
∏m

i=1 zai−1
i )

∏m−1
j=1 (

∑j
k=1 zk)

bj

∏m−1
j=1 B(dj, aj+1)

f(R, z(2)), (3.6)
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where z(1) ∈ Tm, R ∈ [0, 1], z(2) ∈ Tn−m, and

f(R, z(2)) =
R dm−1(1 − R)||a

(2)||−1

Πn−1
j=mB(dj, aj+1)

×
( n∏

i=m+1

zai−1
i

) n−1∏

j=m+1

[
R + (1 − R)

j∑

k=m+1

zk

]bj

. (3.7)

Therefore, (3.3) follows from (3.4) and (3.5).

By noting that (3.6) can be factorized into two independent parts, we have (i) and

(ii). Combining (3.5) with (2.3), we obtain

R = x1 + · · · + xm
d
=

n−1∏

j=m

yj,

which implies (iii). To derive the marginal density of z(2), we assume all bj (j = m +

1, . . . , n − 1) are positive integers. By integrating out the density of R from (3.7) and

using the Taylor expansion, we obtain (3.2) and (3.3) easily. ‖

Remark 2. From (3.3), we can see that

x(1) d
= R z(1)

is a mixture of nested Dirichlet distributions. In addition,

x(2) d
= (1 − R) z(2)

follows a double-mixture distribution of nested Dirichlet distributions in the sense that

z(2) itself is a mixture of nested Dirichlet distributions. This is not surprising because of

the asymmetry of xi in (2.1). ¶

From (3.7), setting bm+1 = · · · = bn−1 = 0 immediately yields the following result.

Proposition 4. If x ∼ NDn,n−1(a,b) on Tn with b(2) = 0, the stochastic representation

in (3.3) still holds, and
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(i) z(1) ∼ NDm,m−1(a
(1),b(1)) on Tm, z(2) ∼ Dn−m(a(2)) on Tn−m;

(ii) R ∼ Beta(dm, ||a(2)||); and

(iii) z(1), z(2) and R are mutually independent. ¶

Remark 3. According to Fang, Kotz and Ng (1990, p.147), Proposition 4 implies that

x(2) follows a beta-Liouville distribution and we write

x(2) ∼ BLn−m(a(2); ||a(2)||, dm). ¶

By letting m = n − 1 in Proposition 3, we have the following result.

Proposition 5. Given that x ∼ NDn,n−1(a,b) on Tn, we have the following stochastic

representation

x =
(

x−n

1 − ||x−n||
)

d
=

(
R z−n

1 − R

)

where

(i) z−n ∼ NDn−1,n−2(a−n,b−(n−1)) on Tn−1;

(ii) R ∼ Beta(dn−1, an); and

(iii) z−n and R are mutually independent. ¶

4. Conditional distributions

Now, we consider the conditional distributions of x(1)|x(2) and x(2)|x(1). For the sake of

convenience, we denote ||x(1)|| and ||x(2)|| by ∆1 and ∆2, respectively.

Proposition 6. Given that x ∼ NDn,n−1(a,b) on Tn, we have

(i) x(1)

1−∆2
|x(2) ∼ NDm,m−1(a

(1),b(1)) on Tm; and

(ii) x(2)

1−∆1
|x(1) ∼ g(·|x(1)) on Tn−m, where

g(z(2)|x(1)) ∝
( n∏

i=m+1

zai−1
i

) n−1∏

j=m+1

[
∆1 + (1 − ∆1)

j∑

k=m+1

zk

]bj

. ¶ (4.1)
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Proof. From (3.3), we have

x(1) d
= R z(1) d

= ||x(1)|| z(1) = (1 − ∆2) z(1).

Result (ii) in Proposition 3 implies that

(a) z(1) and ∆2 are mutually independent; and

(b) z(1) is independent of x(2).

Therefore,
x(1)

1 − ∆2

d
= z(1)

and
x(1)

1 − ∆2
|x(2) d

= z(1)|x(2) d
= z(1) ∼ NDm,m−1(a

(1),b(1)) on Tm.

Similarly, we have
x(2)

1 − ∆1
|x(1) d

= z(2)|x(1) d
= z(2)|∆1

d
= z(2)|R.

From (3.7), we immediately obtain (4.1). ‖

By combining Proposition 4 with Proposition 6, we have the following result.

Corollary 7. Given that x ∼ NDn,n−1(a,b) on Tn and b(2) = 0, we have

x(1)

1 − ∆2

∣∣∣x(2) ∼ NDm,m−1(a
(1),b(1)) on Tm

and
x(2)

1 − ∆1

∣∣∣x(1) ∼ Dn−m(a(2)) on Tn−m. ¶

Remark 4. Result (i) in Proposition 6 suggests that the conditional density g(x(1)|x(2))

depends on x(2) only through the `1-norm ||x(2)|| and is a nested Dirichlet distribution with

scale parameter 1 − ∆2, which is a constant when x(2) is fixed. We do not have similar

conclusion for g(x(1)|x(2)) because of the asymmetry between x(1) and x(2). However,

for the special case (i.e., b(2) = 0), Corollary 7 indicates that the conditional distribution
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g(x(2)|x(1)) depends on x(1) only through the `1-norm ||x(1)|| and is a Dirichlet distribution

with scale parameter 1 − ∆1, which is a constant when x(1) is given. ¶

5. Applications

5.1 Competing-risks model: Failure data for
radio transmitter receivers

5.1.1 Competing-risks model

In reliability, clinical and epidemiologic studies, we often encounter competing-risks prob-

lem (Prentice et al., 1978). The term ‘competing-risks’ has come to encompass the study

of any failure process (e.g., survival study) in which there is more than one distinct type

of failure or cause of death. For the purpose of illustration, we assume that there are only

two possible causes of failure, indexed by i (i = 1, 2). Suppose that the notional times

to failure of a unit under those two risks are denoted by the random variables X and Y ,

respectively. The variables X and Y cannot be observed. Available data on each unit

typically include the time of failure T = min(X, Y ) ≥ 0 which may be right censored and

the corresponding cause of failure C ∈ {1, 2} which will be unknown if T is censored.

To connect the likelihood function for the competing-risks model with nested Dirichlet

distribution, we assume that the time to failure, T , is discrete with m possible values,

say t1, . . . , tm. For continuous failure times, one can classify the failure times into a finite

number of intervals with {tj}m
j=1, for instance, being the endpoints of those intervals. The

cause-specific hazard rate for the i-th cause, gi(tj), is defined as the rate of failure at time

tj from the i-th cause given that the unit has been working to time tj, i.e.,

gi(tj) = Pr(C = i, T = tj|T ≥ tj), i = 1, 2, j = 1, . . . , m. (5.1)

Define pij = Pr(C = i, T = tj). Hence, pij ≥ 0,
∑2

i=1

∑m
j=1 pij = 1, and (5.1) becomes

gi(tj) =
pij∑2

i=1

∑m
j′=j pij′

. (5.2)
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One of the objective is to estimate the cause-specific hazard rate.

Let Yobs = {nij : i = 1, 2, j = 1, . . . , m} ∪ {r1, . . . , rm} denote the observed data,

where nij is the number of failure from cause i in the time period indexed by j and rj is

the number of right-censored items during that time period. The likelihood function for

the unknown cell probabilities {pij} is given by (Dykstra, Kochar and Robertson, 1998)

L({pij}|Yobs) ∝
2∏

i=1

m∏

j=1

p
nij

ij ×
m∏

j=1

( m∑

j′=j+1

[p1j′ + p2j′]

)rj

.

If we reparameterize {pij} by θ = (θ1, . . . , θ2m)> with

θ2j−1 = p1,m−j+1 and θ2j = p2,m−j+1, j = 1, . . . , m, (5.3)

then the above likelihood function can be expressed as

L(θ|Yobs) ∝
2m∏

i=1

θai−1
i ×

2m−1∏

j=1

( j∑

k=1

θk

)bj

, θ ∈ T2m, (5.4)

where a = (a1, . . . , a2m)> and b = (b1, . . . , b2m−1)
> with

a2j−1 = n1,m−j+1 + 1, a2j = n2,m−j+1 + 1, j = 1, . . . , m,

b2j−1 = 0, b2j = rm−j, j = 1, . . . , m − 1.

Therefore, the likelihood function (5.4) is a nested Dirichlet distribution up to a normal-

izing constant, i.e.,

θ ∼ ND2m,2m−1(a,b) on T2m (5.5)

if θ is regarded as a random variable. The MLEs of θ can be obtained analytically1 by

using Proposition 2. After some straightforward algebras, we find that the MLEs of the

cause-specific hazard rates at time tj are given by

ĝi(tj) =
nij∑m

j′=j(n1j′ + n2j′ + rj′)
, i = 1, 2, j = 1, . . . , m, (5.6)

which coincide with the results obtained by Davis and Lawrence (1989).

1Although Dykstra et al. (1998) obtained the analytical expressions for the MLEs of the parameters
of interest based on the approach of Dykstra et al. (1991), they seem to be unaware that the likelihood
function (5.4) is indeed a density function with closed-form mode.
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5.1.2 Analyzing failure data of radio transmitter receivers

Next, consider a study of the failure times of 369 radio transmitter receivers (Medenhall

and Hader, 1958; Cox, 1959). The failures were classified into two types, those confirmed

(Type I) and unconfirmed (Type II) on arrival at the maintenance center. Forty-four

of the 369 receivers were censored, i.e., they did not fail during the test period of 630

hours. Following Cox (1959), we exclude the 44 items in our analysis as the information

contained in them would be not helpful in the estimation of the cause-specific hazard

rates for the two types of failure. These data are listed in Table 1.

Table 1: Observed cell counts of the failure times for radio transmitter receivers

Index Time period Type I Type II

j [tj−1, tj) failures (n1j) failures (n2j) Total †rj

1 0-50 26 15 41 328

2 50-100 29 15 44 284

3 100-150 28 22 50 234

4 150-200 35 13 48 186

5 200-250 17 11 28 158

6 250-300 21 8 29 129

7 300-350 11 7 18 111

8 350-400 11 5 16 95

9 400-450 12 3 15 80

10 450-500 7 4 11 69

11 500-550 6 1 7 62

12 550-600 9 2 11 51

13 600-629 6 1 7 44

Not fail at 630h - - 44 -

Total - 218 107 369 -

Source: Medenhall and Hader (1958).
†: rj is the number of right-censored items during the time period indexed by j.

Based on (5.6), we calculate the estimates ĝi(tj) for i = 1, 2 and j = 1, . . . , 13 (see

the 2-nd and 5-th column of Table 2). Figure 2 shows the comparison of the two hazard
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rates.

[Insert Figure 2 here]

To describe the variability of the estimates ĝi(tj), we need to compute their standard

errors. As a complicated function of {pij}, gi(tj) defined in (5.2) is related to the parameter

vector θ through the relationship (5.3). Hence, the delta-method is quite difficult to be

applied. However, the Bayesian approach is rather straightforward to be applied in the

current situation. In fact, if we utilize the uniform prior distribution of θ, then the

posterior distribution of θ is still given by (5.5). Using the stochastic representation in

Proposition 1, we generate 20,000 posterior samples of θ from (5.5) and calculate 20,000

values of gi(tj) via (5.2) and (5.3). The corresponding Bayesian means and standard

deviations are given in Table 2.

Table 2: MLEs and Bayesian estimates of gi(tj) for the failure

data of radio transmitter receivers

g1(tj) g2(tj)

Index Classical Bayesian Classical Bayesian

j MLE Mean SD MLE Mean SD

1 0.01205 0.01268 0.00246 0.00695 0.00743 0.00184

2 0.01622 0.01690 0.00307 0.00839 0.00905 0.00223

3 0.01919 0.02017 0.00363 0.01507 0.01608 0.00335

4 0.02978 0.03129 0.00520 0.01106 0.01212 0.00324

5 0.01806 0.01965 0.00458 0.01168 0.01306 0.00383

6 0.02781 0.03020 0.00636 0.01059 0.01238 0.00402

7 0.01842 0.02113 0.00596 0.01172 0.01405 0.00486

8 0.02350 0.02759 0.00783 0.01068 0.01384 0.00554

9 0.03361 0.03998 0.01083 0.00840 0.01233 0.00618

10 0.02671 0.03538 0.01218 0.01526 0.02207 0.00982

11 0.03296 0.04853 0.01765 0.00549 0.01392 0.00962

12 0.07964 0.08667 0.03946 0.01769 0.04118 0.02255

13 0.11764 0.12205 0.05921 0.01960 0.01794 0.01921

SD = Standard Deviation.
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5.2 Sample surveys: Two data sets for death penalty attitude

Kadane (1983) analyzed a data set from two sample surveys of jurors’ attitudes toward

the death penalty, where respondents are classified into one and only one of the following

four groups:

C1: Would not decide guilt versus innocence in a fair and impartial manner;

C2: Fair and impartial on guilt and, when sentencing, would sometimes and sometimes

not vote for the death penalty;

C3: Fair and impartial on guilt and, when sentencing, would never vote for the death

penalty;

C4: Fair and impartial on guilt versus innocence and when sentencing, would always

vote for the death penalty regardless of circumstance.

Let ni be the frequency of group i, i = 1, 2, 3, 4. In some cases, some jurors found

it difficult to classify their attitudes into one and only one of the aforementioned four

categories. Instead, these jurors would consider themselves as a member of an union of

some of the categories. For instance, some jurors may consider themselves to be fair and

impartial, and would consider the death penalty and would at least sometimes vote for

it, if the defendant is found guilty (i.e., C2 ∪ C4). Let n24 and n123 be the frequencies of

groups C2 ∪ C4 and C1 ∪ C2 ∪ C3, respectively. In the present death penalty study, the

frequency data were given by n1 = 68, n3 = 97 and n24 = 674 according to the survey

from the Field Research Corporation while n4 = 15 and n123 = 1484 according to the

survey by the Harris Survey Company. The goal is to estimate the cell probabilities.

Let Yobs = {Yobs,1, Yobs,2} denote the combined data and θ = (θ1, . . . , θ4)
> the cell

probabilities, where Yobs,1 = {(n1, n3); n24} and Yobs,2 = {n4; n123} are the counts obtained
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by the Field Research Corporation and the Harris Survey Company, respectively. The

likelihood corresponding to the Field survey is

L(θ|Yobs,1) ∝ θn1
1 θn3

3 (θ2 + θ4)
n24 .

Similarly, the likelihood based on the Harris survey is

L(θ|Yobs,2) ∝ θn4
4 (θ1 + θ2 + θ3)

n123 .

The combined likelihood for the observed data Yobs is then given by (Dickey et al., 1987)

L(θ|Yobs) ∝
{

(Π4
j=1θ

nj

j )θ0
1(θ1 + θ2)

0(θ1 + θ2 + θ3)
n123

}
× (θ2 + θ4)

n24 , (5.7)

where θ ∈ T4 and n2
∧
= 0. We observe that the first term in 5.7) follows the ND4,3(a,b)

with a = (n1 +1, n2 +1, n3 +1, n4 +1)> and b = (0, 0, n123)
> up to a normalizing constant

while the second term is simply a power of a linear combination of the components of θ.

We use the expectation-maximization (EM) algorithm to calculate the MLEs of θ. By

introducing a latent variable z to split (θ2 + θ4)
n24 , the conditional predictive density is

f(z|Yobs, θ) = Binomial
(
z
∣∣∣n24, θ2/(θ2 + θ4)

)
, z = 0, 1, . . . , n24. (5.8)

The likelihood function for the complete-data is then given by

L(θ|Yobs, z) = ND4,3(θ|(n1 + 1, n2 + 1 + z, n3 + 1, n4 + 1 + n24 − z)>, (0, 0, n123)
>). (5.9)

Note that the MLEs of θ based on the complete-data {Yobs, z} can be obtained analytically

via Proposition 2. Using θ(0) = (1/4, 1/4, 1/4, 1/4)> as the initial value, the EM algorithm

based on (5.8) and (5.9) converges in 11 iterations. The resultant MLEs are given by

θ̂1 = 0.08105, θ̂2 = 0.79332, θ̂3 = 0.11561 and θ̂4 = 0.01002 with the corresponding

standard errors being 0.00942, 0.01396, 0.01104 and 0.00257, which are obtained by the

direct computation of the observed information matrix evaluated at θ = θ̂.
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5.3 Disease diagnosis: Ultrasound rating data for
breast cancer metastasis

5.3.1 The ROC curve and the AUC

Diagnostic tests play an important role in medical studies and contribute significantly to

health care costs. A receiver operating characteristic (ROC) curve is a plot of a diagnostic

test’s sensitivity (i.e., the test’s ability to detect the condition of interest) versus its false-

positive rate (i.e., the test’s inability to recognize normal anatomy and physiology as

normal). The curve is usually adopted to illustrate how different criteria for interpreting

a test produce different values for the test’s false-positive rate and sensitivity (Zhou,

Obuchowski and McClish, 2002, p.5). The ROC curve provides an overall accuracy for a

diagnosis test (Pepe, 2003). In existing literature, several numerical indices are proposed

to summarize ROC curves. The most commonly used summary measure is the area under

ROC curve (AUC), which is defined as

AUC =

∫ 1

0

ROC(t) dt.

The AUC gives a measure of the overall accuracy of the diagnostic test.

Let YD and YD̄ denote independent and randomly chosen test results from the diseased

and non-diseased populations, respectively. If the diagnostic score is considered to be

continuous (e.g., the coronary artery calcium score), it can be shown that (Result 4.6 in

Pepe, 2003)

AUC = Pr(YD ≥ YD̄). (5.10)

The AUC given by (5.10) has an interesting interpretation. It is equal to the probability

that test results from a randomly selected pair of diseased and non-diseased subjects are

correctly ordered.
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5.3.2 Estimating AUC for ordinal diagnostic tests

When the diagnostic result is discrete (or ordinal), it can be shown that (Result 4.10 in

Pepe, 2003)

AUC = Pr(YD > YD̄) +
1

2
Pr(YD = YD̄). (5.11)

Here, we assume that the possible values of YD and YD̄ are the consecutive integers

1, 2, . . . , n. Let

θi = Pr(YD = i), i = 1, . . . , n, and

φj = Pr(YD̄ = j), j = 1, . . . , n,

with θ = (θ1, . . . , θn)> ∈ Tn and φ = (φ1, . . . , φn)> ∈ Tn. From (5.11) and the indepen-

dence between YD and YD̄, we obtain (Broemeling, 2007, p.82)

AUC(θ, φ) =

n∑

i=2

i−1∑

j=1

θiφj +
1

2

n∑

i=1

θiφi

=
n∑

i=1

i∑

j=1

θiφj −
1

2

n∑

i=1

θiφi

= θ>(Ωn − 0.5In)φ, (5.12)

where In denotes the n × n identity matrix and

Ωn
∧
=




1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1


 .

5.3.3 Bayesian analysis of the ultrasound rating data

Consider the rating data for the study of breast cancer metastasis described in Peng & Hall

(1996) and Hellmich et al. (1998). The diagnosis of metastasis is made with ultrasound by

a radiologist to read 9 images from subjects with metastasis and 14 without metastasis.
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The rating scale is from 1 to 4, where 1 denotes definitely abnormal, 2 probably abnormal,

3 probably normal, and 4 definitely normal. In addition, the rating scale 23 denotes

equivocal (i.e., probably abnormal or probably normal). The ultrasound ratings of the

twenty-three patients are given in Table 3.

Table 3 Ultrasound rating data for detection of breast cancer metastasis

Rating scale 1 2 23 3 4 Total

Metastasis Yes 5 (y1, θ1) 2 (y2, θ2) 0 (y23, θ2 + θ3) 2 (y3, θ3) 0 (y4, θ4) 9

No 0 (z1, φ1) 1 (z2, φ2) 2 (z23, φ2 + φ3) 5 (z3, φ3) 6 (z4, φ4) 14

Source: Peng & Hall (1996). The observed counts and the corresponding cell
probabilities are in parentheses.

Let yi denote the frequency of category ‘i’ in the 9 diseased patients and zj denote

the frequency of category ‘j’ in the 14 non-diseased patients. Hence,
∑4

i=1 yi + y23 = 9

and
∑4

j=1 zj + z23 = 14. Under the assumption of missing at random (Rubin, 1976), the

likelihood function for the observed data Yobs = {y1, . . . , y4, y23} ∪ {z1, . . . , z4, z23} is

L(θ, φ|Yobs) ∝

{( 4∏

i=1

θyi

i

)
(θ2 + θ3)

y23

}
×

{( 4∏

j=1

φ
zj

j

)
(φ2 + φ3)

z23

}
,

where θ = (θ1, . . . , θ4)
> ∈ T4 and φ = (φ1, . . . , φ4)

> ∈ T4. When the joint prior is the

product of two independent Dirichlet densities:

4∏

i=1

θai−1
i ×

4∏

j=1

φ
bj−1
j ,

the joint posterior density is given by

{( 4∏

i=1

θyi+ai−1
i

)
(θ2 + θ3)

y23

}
×

{( 4∏

j=1

φ
zj+bj−1
j

)
(φ2 + φ3)

z23

}
. (5.13)

Note that the second term in (5.13) can be rewritten as

φz2+b2−1
2 φz3+b3−1

3 φz4+b4−1
4 φz1+b1−1

1 × φ0
2(φ2 + φ3)

z23(φ2 + φ3 + φ4)
0.
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In other words, (φ2, φ3, φ4, φ1)
> ∼ ND4,3(a

∗,b∗) with a∗ = (z2 +b2, z3 +b3, z4 +b4, z1 +b1)
>

and b∗ = (0, z23, 0)>. We have similar result for the first term in (5.13). The stochastic

representation in Proposition 1 can be employed to generate i.i.d. posterior samples of

θ and φ according to (5.13). Therefore, the posterior distribution of the AUC is readily

determined since (5.12) is a function of θ and φ.

For the ultrasound rating data in Table 3, we adopt uniform prior distributions (i.e., all

ai = bj = 1) for the parameters θ and φ. From (5.13), we can see that the posterior distri-

bution of θ is Dirichlet with parameters (6, 3, 3, 1)> and is independent of (φ2, φ3, φ4, φ1)
>,

which is nested Dirichlet with parameters (2, 6, 7, 1)> and (0, 2, 0)>. Using the stochastic

representation in Proposition 1, we generate 20,000 samples from the two independent

posterior distributions and calculate 20,000 values, via (5.12), for the AUC. The posterior

density and histogram of the AUC are shown in Figure 3, and the corresponding results

are reported in Table 4.

[Insert Figure 3 here]

Table 4 Bayesian estimates of AUC for the ultrasound rating data

Investigator Median Mean std 95% Credible Interval

Peng & Hall (1996) 0.987 [0.927, 0.999]

Hellmich et al. (1998) 0.903 0.073 [0.720, 0.990]

Our method 0.700 0.693 0.098 [0.487, 0.864]

It should be noted that Peng & Hall (1006) and Hellmich et al. (1998) used a regression

model for the ordinal responses, normality assumption for a latent variable, and MCMC

methods for computing the posterior distribution of the AUC. In addition, their results

were based on a five-point ordinal scale, i.e., the rating scales are 1, 2, 23, 3 and 4.

Therefore, there is a great difference between their results and ours. However, this is not

surprising because we expect that the Bayesian estimate would produce underestimated
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area as it is based on the linear interpolation of four points on the graph (Broemeling,

2007, p.84).

6. Discussion

The goal of this article is to further develop important distributional theory for the nested

Dirichlet distribution and to explore some new applications in practice. Recently, Ng et

al. (2008) studied a new family of distributions called grouped Dirichlet distributions,

which also includes the Dirichlet distribution as a special case. We believe that both the

grouped Dirichlet distributions and the nested Dirichlet distributions would provide two

new tools for incomplete categorical data analyses (Tang et al. 2007).
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Figure 1. Perspective plots of Dirichlet and nested Dirichlet densities ND3,2(x−3|a,b). (i)
a = (2, 2, 2)> and b = (0, 0)>; (ii) a = (2, 2, 2)> and b = (3, 3)>; (iii) a = (2, 2, 2)> and
b = (5, 10)>; (iv) a = (2, 2, 2)> and b = (20, 30)> ; (v) a = (1, 2, 3)> and b = (6, 3)>; (vi)
a = (7, 9, 1)> and b = (10, 5)>; (vii) a = (10, 6, 4)> and b = (20, 5)>; (viii) a = (16, 7, 8)> and
b = (50, 0)>.
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Figure 2. Comparison of the two cause–specific hazard rates for the radio transmitter receivers
data.
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Figure 3. (a) Posterior density of the AUC given by (5.12) for the ultrasound rating data
of breast cancer metastasis, where the density curve is estimated by a kernel density smoother
based on 20, 000 i.i.d. samples. (b) The histogram of the AUC.
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