
Title Data flow testing of service choreography

Author(s) Mei, L; Chan, WK; Tse, TH

Citation
Esec-Fse'09 - Proceedings Of The Joint 12Th European Software
Engineering Conference And 17Th Acm Sigsoft Symposium On
The Foundations Of Software Engineering, 2009, p. 151-160

Issued Date 2009

URL http://hdl.handle.net/10722/65598

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37900003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundation of Software Engineering (ESEC 2009/FSE-17), ACM Press, New York, NY (2009)

Data Flow Testing of Service Choreography

*

†

Lijun Mei
The University of Hong Kong

Pokfulam, Hong Kong

ljmei@cs.hku.hk

W. K. Chan
‡

City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse
The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

ABSTRACT
Service computing has increasingly been adopted by the industry,
developing business applications by means of orchestration and
choreography. Choreography specifies how services collaborate
with one another by defining, say, the message exchange, rather
than via the process flow as in the case of orchestration. Messages
sent from one service to another may require the use of different
XPaths to manipulate or extract message contents. Mismatches in
XML manipulations through XPaths (such as to relate incoming
and outgoing messages in choreography specifications) may result
in failures. In this paper, we propose to associate XPath Rewriting
Graphs (XRGs), a structure that relates XPath and XML schema,
with actions of choreography applications that are skeletally
modeled as labeled transition systems. We develop the notion of
XRG patterns to capture how different XRGs are related even
though they may refer to different XML schemas or their tags. By
applying XRG patterns, we successfully identify new data flow
associations in choreography applications and develop new data
flow testing criteria. Finally, we report an empirical case study that
evaluates our techniques. The result shows our techniques are
promising in detecting failures in choreography applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms: Measurement, Reliability, Verification

Keywords: service composition, software testing, choreography,
orchestration, web services, data flow testing.

1. INTRODUCTION
Software built on top of the service-oriented architecture (SOA)

is increasingly popular [4][14][27], and yet testing such software
remains tedious and ill-understood. In these applications, primary
components are typically known as services. A set of such
coordinated components are called a service composition. To
synthesize a service composition, one may coordinate services via
two general strategies [13][17], namely orchestration [14] and
choreography [18]. Testing, analysis, and formal verification tech-
niques should address the challenges presented by these strategies.

Orchestration specifies the sequences of process actions of indi-
vidual services [13]. Through collaboration (e.g., parallel com-
position of processes in process algebra [27]), such sequences of
process actions of one service can coordinate, albeit implicitly,
with the sequences of process actions of other services in the same
application. Techniques to test service orchestration have been
proposed. For instance, Li et al. [10] model every business process
as a composition model, and propose a unit test framework to veri-
fy them. Mei et al. [14] examine the verification problem from the
perspective of loose coupling, formulate how a service orchestra-
tion manipulates XML through XPath, and develop a class of data
flow techniques. Their techniques not only reveal the coverage
properties of XML via XPath and the associated XML schema (or
DTD), but also direct test efforts to cover [14][15] the derived
requirements.

Choreography (see [23][25], for example) defines the rules of
interactions, common message types, and exchange agreements
among a set of services [18]. For instance, instead of using implicit
collaboration sequences embedded in the parallel composition of
processes [27], choreography explicitly defines the interactions
among services by such means as Message Sequence Charts
(MSCs) [19][20], UML sequence diagrams, or the Web Services
Choreography Description Language (WS-CDL) [22]. An applica-
tion developed in this way is called a choreography application.

Existing research on service choreography focuses on service
modeling [3], process flow modeling [2], synthesizing of models
[21], verification using finite-state automata [7], and violation
detection of properties such as atomicity and resource constraints
[6][27]. Not much public literature highlights the testing challenges.
Although XML has been considered in previous research [9] and

* © ACM (2009). This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundation of Software Engineering (ESEC
2009/FSE-17), ACM Press, New York, NY (2009).
http://doi.acm.org/10.1145/1595696.1595720.

† This work is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (project nos. 717506 and 717308).

‡ All correspondence should be addressed to Dr. W. K. Chan at Department
of Computer Science, City University of Hong Kong, Tat Chee Avenue,
Hong Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08…$10.00.

Administrator
 HKU CS Tech Report TR-2009-15

2

the impact of XPath on services has been studied [14], surprisingly,
as we are going to present in Section 3, the mismatch among
service interfaces in the testing of service choreography has not
been addressed in the literature.

Let us consider an example of a choreography application based
on a WS-CDL specification. For each service, the specification
explicitly defines the accepted types for both incoming and
outgoing messages. It also defines how the ports of one service are
individually linked to other services in the same collaboration. It
may further define its own variables to ease the coordination task.
For instance, it may specify XPath selections, such as X2 and Y2 in
Figure 1, so that the service choreography can select parts of the
XML data kept by a particular variable to be sent to (or received
from) a particular service. Of course, the latter service may use its
own XPath selection (defined, say, in its own WSDL [24]
document) to select its required contents. Thus, to send a message
m1 from a service A to a service B, an XPath in the WS-CDL
specification may only select and forward a portion, say m2, of the
message m1. To send m2 to B, another WS-CDL XPath may be
used to restrict the contents to be seen by B, which essentially
sends a further portion, say m3, of m2 to B. The service B may use
its own XPath (defined, for instance, in B’s WSDL document) to
pick the required contents from m3. In such a typical WS-CDL
scenario where services are loosely coupled, three XPaths are used.
Even though we force these three XPaths to conform to the same
XML schema, if they incompatibly refer to disjoint fragments of
m1, the required content originally kept at m1 may not be
retrievable by B, regardless of whether m3 has reached B. In more
complicated scenarios, to interpret the same XML message, a
sender may refer to the sender’s XML schema, a receiver may
refers to the receiver’s XML schema, and the WS-CDL
specification may also have its own XML schema. Thus, testing
techniques should address how different XML schemas in the same
choreography application may interpret the same message by the
same or different services in different collaboration steps.

Simplifying a message exchange as a label (such as modeling
the exchange as a pair of sent/received messages without data in an
MSC) would be ineffective in pinpointing where the testing effort
should be spent. As such, owing to the adoption of XPath selection
to manipulate the contents in incoming or outgoing messages, the
artifacts XPath, WSDL, and XML should be explicitly addressed
in the choreography application model to supports testing, analysis,
and formal verification.

In this paper, we propose to extend Labeled Transition Systems
(LTS) [20][21] to model the interactions among services in a cho-
reography application. In LTS, a label represents an action. A test
trace is a sequence of labels that starting from the initial state. It
represents the sequences of labels covered by the execution of a
test case. Checking the sequence of actions in such a trace can help
detect negative scenarios [21] or other static properties. However,
an action cannot help specify concrete content selection, which
involves concrete data. XPath [26] and WSDL [24] are crucial to
the extraction of desirable contents from XML messages [14], and
yet they have been abstracted out in the standard LTS model. We
extend LTS by incorporating XPath Rewriting Graphs (XRGs) [14],
which captures the relationships between XPath queries and
WSDL documents. Specifically, we associate each XPath query in
a WSDL or WS-CDL document with the action that may use it. By
doing so, any number of XRGs (possibly zero) can be annotated in
an LTS. To cater for multiple XML schemas interpreting the same
XML messages, we develop the notion of XRG patterns. We

model each legitimate interpretation of the same XML message by
a pair of service endpoints as a matching of tags between a pair of
corresponding XRG patterns. We develop an automated strategy to
generate XRG patterns, and select such pairs of patterns that relates
matching tags. Since different XRGs are linked up by chains of
XRG patterns, we successfully develop a new family of data flow
testing criteria to support the testing of service choreography.

The main contribution of this paper is fourfold: (i) We propose a
model to capture the interactions in service choreography. (ii) We
develop the notation of XRG patterns. (iii) Based on our model and
XRG patterns, we identify a new set of def-use associations in
service choreography, and further propose a new family of data
flow testing criteria. (iv) Finally, to the best of our knowledge, we
provide the first case study on data flow testing for choreography
applications. The experimental result shows that our approach can
be more effective than orchestration testing and random testing in
revealing failures in a choreography application.

The rest of this paper is organized as follows: Section 2 presents
the preliminaries that lay the foundations of our approach. Section
3 gives a motivating example and outlines the testing challenges of
choreography applications. Section 4 presents our effort to model
choreography applications, and introduces our data flow testing crite-
ria to measure the comprehensiveness of test sets. Section 5 reports
an experimental case study, followed by discussions and related
work in Section 6 and Section 7, respectively. Finally, Section 8
concludes the paper and proposes future work.

2. PRELIMINARIES
This section introduces the foundations of our work.

2.1 Service Choreography

In service orchestration, a service can be implemented in different
programming languages (such as Java, Python, or C#), its interface is
publicly exposed as a WSDL document, and the orchestration can be
implemented as a WS-BPEL program [15]. Figure 1 depicts a
scenario in which an orchestration services A collaborates with a
choreography service B. Each of the services exposes its WSDL
documentation, which specifies the XPath for selecting the
contents of an XML message (as shown in the bottom of the
figure). For these two services to collaborate, service choreography
(written, say, in WS-CDL [22]) can be developed. Choreography
can be used to specify the interoperability and interactions between
multiple services in an application [22]. A WS-CDL specification
not only specifies how different ports of individual services are
related, but also defines its own variables (such as X1 and Y1 in the
figure) and the corresponding XML schemas.

WS-CDL is a popular specification language in service choreo-
graphy. In general, a service can be composed through an orches-
tration language (such as WS-BPEL) or a choreography language
(such as WS-CDL). In this paper, we follow [3] to model a service
as a black-box component (see also [12]) via WS-CDL.

2.2 Label Transition Systems
Labeled transition systems (LTS) and unlabeled transition

systems are two types of state transition systems [19]. Uchitel et al.
[20][21] have applied LTS to portray implied scenarios among
interacting components. For ease of presentation, we adapt their
definitions into Definitions 1 and 2.

3

WSDL (Service A)
Documentation

Orchestration Service Choreography Service

receive

Variable X1

XPath Selection X2

XML
messages

XPath
Selection

Variable Y1

XPath Selection Y2

send

WSDL (Service B)
Documentation

Service Choreography
Service A Service B

XML
messages

XPath
Selection

(With Messages, XPath, and WSDL)

WS-CDL

Figure 1. Key artifacts and their relationships
in a typical service choreography application.

Definition 1 (Labeled Transition Systems). A finite Labeled
Transition System (LTS) P is a structure S, L, Δ, s such that S is a
set of states; L = α(P) ∪ {τ} is a set of labels, where α(P) denotes
the alphabet set of P, τ denotes the internal actions that cannot be
observed by the environment of P; Δ ⊆ (S × L × S) is a set of
transitions to link a state to another state; and s ∈ S is the initial
state of P.

Definition 2 (LTS Test Trace). Let P = S, L, Δ, s be an LTS.
A sequence e = s1, l1, s2, l2, … is an execution of P if s1 = s and
si, li, si+1 ∈ Δ for 0 < i < |e|. A word l = l1, l2, … over the alpha-
bet set α(P) is an LTS test trace of P if there is an execution e of P
such that l = e|α(P).

We choose LTS as the skeleton of our model for choreography
applications. Our considerations are as follows: (a) LTS is a formal
model to represent message interactions for scenario-based specifica-
tions such as message sequence charts. (b) In this paper, we focus on
choreography applications, and hence we can simply use τ to model
internal actions of individual services. As such, our approach can
generally apply to test choreography applications (with or without
orchestration information). (c) The trace definition on top of LTS
facilitates us to define data flow entities for choreography applica-
tions.

2.3 XPath Query Model
In WS-CDL [22], XPath must be used as the language to specify

expressions, queries, and conditional predicates. We adopt the
syntax definition of a decidable fragment of XPath from [16], as
shown in Figure 2. According to [16], the fragment provides repre-
sentative XPath syntax and is sufficient as the basis for studying
XPath. Mei et al. [14] have also used this fragment in developing
testing techniques.

n(x)

*(x)

.(x)

(q1/q2)(x)

(q1//q2)(x)

(q1[q2])(x)

=

=

=

=

=

=

Rule
1

2

3

4

5

6

…

…

…

…

…

…

{y | (x, y)∈EDGES(t), LABEL(y) = n}

{y | (x, y) ∈EDGES(t)}

{x}

{z | y∈q1(x), z∈q2(y)}

{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}

{y | y∈q1(x), q2(y)≠Ø}
Figure 2. Syntax of a decidable fragment of XPath.

Mei et al. [14] have proposed an XPath Rewriting Graph (XRG)
to represent an XPath with a model (Ω) of XML documents. Here,
we revisit XRGs to facilitate the description of our new techniques.
An XRG is built on XPath syntactic constructs [16]. Their technique

treats the definitions in Figure 2 as left-to-right rewriting rules and,
through a series of rewriting [5], transforms an XPath into a normal
form or a fixed point. The intermediate rewriting steps are also rec-
orded in an XRG. Every two consecutive steps are linked in the
graph. We revisit the definition of XRG [14] in Definition 3.

Definition 3 (XPath Rewriting Graph). An XPath Rewriting
Graph (XRG) for an XPath query is a 5-tuple q, Ω, Nx, Ex, Vx such
that
 q is an XPath expression for the XPath query, and Ω is an XML

schema that describes the XML document to be queried on.
 Nx is a set of rewriting and rewritten nodes identified by the

algorithm Compute_XRG, and Vx is a set of conceptual variables
defined at the nodes in Nx.

 Ex is a set of edges (sc, sn), each of which represents a transition
from sc to sn, where sc is a rewriting node and sn is either a
rewriting node or a rewritten node. All the edges are also
computed by the algorithm Compute_XRG.

The algorithm Compute_XRG [14] used in Definition 3 takes an
XPath expression q, the schema Ω of some XML document, and a
set of currently located nodes X of Ω as parameters, and outputs the
corresponding XRG. (We refer to each node in X as a tag. This data
structure forms an explicit artifact to model different paths, concep-
tually defined in an XPath, on how to provide query results.) In the
algorithm, X is first initialized as a singleton set containing the root
of the schema [16]. The query q starts with this value of X to search
for other nodes. An example of an XRG will be shown in Figure 7.

There are two types of XRG nodes [14]: rewriting node q, Lc,
rule and rewritten node q, Lc, Ln, S. Here, q is a query expression,
Lc is the current set of nodes in Ω located by the previous query step,
Lc is assigned to the root node of Ω, rule is the rewriting rule used to
generate the sub-terms in the rewriting node, Ln denotes the set of
nodes in Ω to be located by q starting from some node in Lc, and S is
a set-theoretic representation of the result of q. In XRGs, we refer to
the generation of the value of a variable (∈ Vx) as variable definition,
and the use of a variable provided by a preceding node as variable
usage. Such variables are only conceptual in nature and are not
program variables because they never appear in an implemented pro-
gram. Hence, they are called conceptual variables [14]. By using
inorder traversal of XRGs and dropping all rewriting nodes,
Compute_XRG provides an explicit way to model different concep-
tual paths defined in an XPath for providing query results. In this
paper, we use this algorithm to construct the XRGs in our model.

3. MOTIVATING EXAMPLE
This section uses a TripHandling project as a motivating

example to introduce the testing challenges of choreography
applications. The original source code is in WS-CDL [22] and is
available from [25].

There are four roles in TripHandling: (a) Customer Service,
which helps customers to place trip orders and process payments;
(b) Travel Agent, which handles requests from service customers
and schedules trips; (c) Airline Service, which handles flight
schedule queries, seat booking, and online payments of flights; and
(d) Hotel Service, which handles hotel queries, room booking, and
online payments via two agents known as HotelAgent-A and
HotelAgent-B. For instance, Travel Agent includes the following
workflow steps: (i) FlightBooking books the flights for a trip.
(ii) HotelBooking books the hotels for the trip. (iii) Confirm-
Payment checks whether the corresponding charges (for successful

4

flight and hotel reservations) have been paid by an online credit
card service. (iv) If both FlightBooking and HotelBooking are suc-
cessfully completed, the booking results will be sent to the custom-
er. On the other hand, if either FlightBooking or HotelBooking
encounters an error, the TripHandling application will display an

error message and terminate. Descriptions of the other services are
omitted owing to space reason.

The structure of the TripHandling application is shown in Figure
3(a). For ease of illustration, we follow [14][15] and use a UML
activity diagram to depict the application. A service is portrayed as

TravelAgent (T) AirlineService (A) HotelService (H)CustomerService (C)

Place
Order

Trip Query

Flight Query Hotel Query

Flight Booking

Hotel Booking

Yes
No

Query Flight

Booking Flight

Confirm
Payment

HotelAgent-
A Query

HotelAgent-
B Query

Confirm Payment

Query
Trip

Query
Reply

Place
Order

Confirm
Order

(a) One Choreography Consisting of Three Sub-Parts (CCT, CTF, and CTH)

HotelAgent-
A Booking

HotelAgent-
B Booking

Flight
Query

FlightQuery
Reply

FlightBook
Response

Hotel
Query

HotelQuery
Reply

Confirm Payment

Failure
Success

Failure
Failure

Success
Success

Failure
Success

HotelBook
Request

HotelBook
Response

FlightBook
Request

Confirm Confirm

CCT CTA CTH

1 1.1
1.2

2.1

2.22

Confirm
Payment

Confirm
Payment

3

4

5

3.1

4.1

3.2

4.2

5.1 5.2

<xsd:complexType name="tripQuery">
<xsd:element name= "departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name="fromCity" type="xsd:string"/>
<xsd:element name="toCity" type="xsd:string"/>
<xsd:element name="airlineName" type="xsd:string"/>
<xsd:element name="hotelName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="tripQueryReply">
……

<xsd:complexType name="tripQueryList"
type="xsd:tripQueryReply"/>

</xsd:complexType>

<xsd:complexType name="flightQuery">
<xsd:element name= "departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name="fromCity" type="xsd:string"/>
<xsd:element name="toCity" type="xsd:string"/>
<xsd:element name="airlineName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="flightQueryReply">
……
<xsd:element name="airlineName" type="xsd:string">
<xsd:complexType name="airlineNameList”

type="xsd:airlinelist"/>
</xsd:complexType>

<xsd:complexType name="airlineList">
<xsd:element name="airlineName" type="xsd:string"

minOccurs="0"/>
<xsd:complexType>

(b) Typical XML schemas for XML messages defined in WSDL documents (for C, A, and H to support CCT, CTF, and CTH, respectively).

<xsd:complexType name="hotelQuery">
<xsd:element name="departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name=“city" type="xsd:string"/>
<xsd:element name="hotelName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="hotelQueryReply">
……
<xsd:element name="hotelName" type="xsd:string">
<xsd:complexType name="hotelNameList"

type="xsd:hotellist"/>
</xsd:complexType>

<xsd:complexType name="hotelList">
<xsd:element name="hotelName" type="xsd:string"

minOccurs="0"/>
<xsd:complexType>

1 1.1 1.2

2

2.1
2.2

XML Schemas for CCT XML Schemas for CTF XML Schemas for CTH

(c) Typical XML messages exchanged between services

<tripQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<fromCity>HongKong</fromCity>
<toCity>Vancouver</fromCity>
<airlineName>UnitedAirline</airlineName>
<hotelName>Westin</hotelName>

<tripQuery>

<tripQuery>
……
<airlineName>-</airlineName>
<hotelName>-</hotelName>

<tripQuery>

<flightQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<fromCity>HongKong</fromCity>
<toCity>Vancouver</fromCity>
<airlineName>UnitedAirline</airlineName>

<flightQuery>

<flightQuery>
……
<airlineName>-</airlineName>

<flightQuery>

<flightQueryReply>
……
<airlineNameList>

<airlineName>UnitedAirline</airlineName>
<airlineName>AirCanada</airlineName>

</airlineNameList>
<flightQueryReply>

<hotelQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<City>Vancouver</toCity>
<hotelName>ShangriLa</hotelName>

<hotelQuery>

<hotelQuery>
……
<hotelName>-</hotelName>

<hotelQuery>

<hotelQueryReply>
……
<hotelNameList>

<hotelName>Westin</hotelName>
<hotelName>ShangriLa</hotelName>

</hotelNameList>
<hotelQueryReply>

1-a

1-b

1.1-a

1.1-b

1.2-a

1.2-b

XML Messages for CCT XML Messages for CTF XML Messages for CTH

2.1 2.2

Figure 3. Choreography example of TripHandling.

5

a rectangle. A node in a rectangle represents a workflow activity of
the corresponding service, and a link represents a transition
between two activities. We further use a dashed line to represent a
message that communicates among different roles of services in a
choreography application.

The messages between two services are defined by different XML
schemas. For instance, the XML messages tripQuery1-a and trip-
Query1-b in Figure 3(c) are both defined by the schema tripQuery1,
and the XML message hotelQuery2.2 in the same figure is defined by
the schema hotelQuery2.2. To save space, we use “…” to represent
obvious or irrelevant lines of code. For example, the omitted lines in
tripQuery1-b are the same as the departureDate, returnDate, fromCity,
and toCity lines in tripQuery1-a.

Given an XPath query q and an XML message m, let w denote the
XML schema (in a WSDL specification) that defines m. In such situ-
ations, q(m) may retrieve from m a dataset whose tags are defined in
w. We further depict this set of tags as a circle or ellipse in Figure 4.

Case 1: In general, two XML schemas may contain tags having
the same name. Suppose X1 and X2 represent the sets of tags con-
tained in two XML schemas. We have three cases, namely X1 and X2
being partially overlapping, disjoint, and one is a subset of another.
These three scenarios are depicted, respectively, as the intersection,
exclusion, and inclusion relations in Figure 4. We also use schemas
from the motivating example to illustrate each relation in the figure.

Intersection Inclusion Exclusion

Two XML schemas may
share a set of tags

Two disjoint XML schemas need to define
the common tags for message exchange

tripQuery
Schema 1

flightQuery
Schema1.1

Intersection Example

hotelQueryReply
Schema2.2 Inclusion Example

hotelList
Schema2.2

flightList
Schema 2.1

flightQuery
Schema2.2

Exclusion Example

Figure 4. Relations among XML schemas in choreography.

However, two tags having the same name may come from
different nodes of the same XML schema (or different XML
schemas). Furthermore, a node may be reachable by multiple XPaths.
A service may assume that it sends the content under a tag retrieva-
ble by one XPath, but its collaborating service may assume that it
collects the content under a tag retrievable by another XPath. If these
two XPaths do not refer to the same content of the XML message
when applying their respective XML schemas, there will be an
integration failure (or a mismatch between the two services in their
message collaboration) even through the XML message may have
successfully reached the second service.

hotelQueryReply
Schema2.2

hotelList
Schema2.2flightQuery

Schema2.2

tripQuery
Schema 1

flightQuery
Schema1.1

flightList
Schema 2.1

flightQuery
Schema2.2

Figure 5. Faulty relations among XML schemas in choreography.

For example, each of the schemas in Figure 4 may mistakenly
overlap with other schemas used in the same collaboration step or

different steps (as shown in Figure 5 and annotated by the super-
scripts in the schema names). For instance, step 2.2 of the motivating
example may mistakenly include the flightQuery schema inside the
hotelQueryReply schema. Thus, data that should not be referred to by
peer services will now be accessible, which may result in
collaboration failures. To detect this problem, a technique should not
only determine the inclusion, exclusion, and intersection relations,
but also distinguish the amounts of overlapping. Say, if there are five
overlapping tags, a good technique should test each of them in turn.

Nevertheless, although we have developed XRGs, a data structure
to reveal the structure of XPath in the presence of schema, it is still
generally infeasible to solve this problem. This is because covering
all paths in an XRG merely means that some (but not necessary all)
tags in individual XRG nodes have been exercised by a test case. The
problem is further explained by the other two cases that follow. Thus,
whether the content in relation to a particular tag can be successfully
transferred from one service to another is not enforced by a tech-
nique at the XRG level.

Case 2: Take tripQueryReply in Figure 3 as an example. When
tripQuery uses a concrete value of the “hotelName” tag (such as
Westin) as a parameter, its reply will contain either exactly one
hotel name or no name. However, when tripQuery does not supply
any “hotelName” (by using “–” to query all possible hotel names),
the reply will be a name list, where each listed item contains a
“hotelName” tag and its value. Therefore, the same XPath query
(such as //hotelName/) on these two types of XML messages can
retrieve elements in different locations of an XML schema (as
illustrated in Figure 6). On the other hand, /hotelName/ and
/hotelQueryReply/hotelName/ will access different nodes, and yet
they share the same tag name (also illustrated in Figure 6).

/hotelName/
hotelQueryReply

……

hotelName hotelNameList

hotelName-1 hotelName-2

//hotelName/ /hotelNameList/hotelName/

<hotelQueryReply>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</returnDate>
<City>Vancouver</City>
<hotelName>ShangriLa</hotelName>

</hotelQueryReply>

<hotelQueryReply>
……
<hotelNameList>

<hotelName>Westin</hotelName>
<hotelName>ShangriLa</hotelName>

</hotelNameList>
<hotelQueryReply>

Figure 6. Effect of different data structures of XML messages
in XPath query.

Case 3: Moreover, two different nodes with different tag names
may refer to the same content. For example, the “toCity” tag in the
“tripQuery” schema should refer to the “city” tag in the “hotelQuery”
schema. These tags have been highlighted in Figure 3(b). The XPath
queries //city/, /tripQuery/fromCity/, and /tripQuery/toCity/ will
return a city name in string format. If they are used in different
choreography steps, these steps will implicitly be strongly coupled.
Using techniques such as type checking on the schemas may not
effectively distinguish such differences in the corresponding query
results. However, the use of the former two XPath queries may
extract the departure city rather than the destination city. In case
there are hotels in the same chain in both the departure city and
destination city (such as Westin Hotel), the hotel service may book a
room in the hotel of the same name in the departure city rather than
in the destination city, which will result in a failure.

In summary, the testing challenge illustrated by this example is
that the sequence of XPath queries in the same step or different steps
may raise different expectations on how to manipulate an XML
message, which leads to failures in choreography collaboration.

6

4. OUR CHOREOGRAPHY MODEL
This section presents our formal model to facilitate data flow

testing of choreography applications.

4.1 The C-LTS Model
As introduced in Section 2.2, LTS is a formal model to represent

message interactions for scenario-based specifications. Therefore,
we use LTS to model the skeleton of a choreography application. In
this section, we enhance it gradually to realize our model of choreo-
graphy applications. In LTS, when performing an action via
message passing from a sender service to a receiver service, the
transition that represents the action (which is a service invocation
in choreography) is inadequate to represent the roles of XPath and
WSDL in manipulating the required contents of the XML message.
We propose, therefore, to extend LTS by attaching an XRG to
every transition associated with an XPath and its document model.

We also assume that every transition represents either a send
operation or a receive operation but not both.

Definition 4 (Labeled Query). A labeled query q for a choreogra-
phy application P is an ordered couple δ, r such that δ is a transi-
tion representing the action taken by P, and r is an XRG that models
the sending and receipt of XML data by P.

For ease of presentation, we associate every transition δ with a
labeled query. Even if δ is not originally associated with any XPath,
we can attach an XPath that selects the entire contents of δ.

By modeling each XPath query and its document model as an
XRG, we can use data flow analyses on the conceptual variables of
the XRG (see Section 2.3 or [14]) to analyze choreography
applications. Moreover, our model can also facilitate (data flow)
testing at the inter-XPath or inter-WSDL levels. To do so, we
propose to analyze service chorography with respect to whether the
sets of tags at an XRG node are partially overlapping, completely
overlapping, or disjoint from those at a node in another XRG.

A conceptual variable in an XRG (such as Lc and Ln in the defini-
tion of rewritten nodes in Section 2.2) is also a set of tags of an XML
schema. Thus, in general, such a conceptual variable may contain
multiple tags of an XML schema. If this is the case, as long as the
corresponding XML message matches at least one tag, the variable
does not distinguish the selected tag from others. Therefore, as ex-
plained in Section 3, simply adopting XRGs from [14] still cannot
address the challenging issues illustrated in the motivating example.
We thus propose a notion of XRG patterns as follows. For ease of
presentation, we will use r.A to denote the attribute A of r.

Definition 5 (XRG Pattern). For any given XRG r = q, Ω, Nx,
Ex, Vx, an XRG pattern ξ(r) is an instantiation of r such that (i) a tag
ti is assigned to the i-th variable (∈ Vx) in a conceptual path (with all
rewritten nodes in Nx included) based on the definition order of the
variables, and (ii) ti must be used (in the sense of data flow associa-
tions) by a subsequent rewritten node n ∈ r.Nx to locate ti+1 in the
conceptual path. The set of all XRG patterns of r is denoted by ξ(ℜ).

Intuitively, for any XRG r and any XRG pattern ξ(r), Lc of each
rewritten node n (∈ r.Nx) in ξ(r) contains exactly one tag. This is
quite different from Lc of a rewritten node in XRG or its XRG
patterns, which may contain multiple tag values. Moreover, by
defining ξ(ℜ) as a set, it helps model the fact that every XRG
pattern ξ(r) with respect to ℜ is distinct.

We provide an example in Figure 7 to illustrate an XRG pattern.
The figure presents an XRG for the XPath query “//hotelName/”.

The corresponding XML schemas are defined by the WSDL
documents in Figure 3(b). In this example, we define five variables
a, b, c, d, and e, representing the possible tags in the sets A, B, C, D,
and E. With the exception of C, every set contains only one tag.
We further identify two XRG patterns for C, as highlighted by the
dashed text boxes. Since the tags for each conceptual variable can
be statically computed during the construction of XRG, we can
generate all possible candidate XRG patterns, and then eliminate
the non-legitimate candidates according to Definition 5. Such a
procedure for identifying XRG patterns can be done automatically.

< //hotelName/, A={ROOT},(q1//q2)>

<hotelName/*, C, (q3/q4)>

q3(C),q3=(hotelName) q4(D), q4=*

q1(A), q1= * q2(C), q2=(hotelName/*)

R1

R3R2 R4

R5 R6

XQ(hotelQueryReply, //hotelName/)
Rewriting Node

Rewritten Node

A = {ROOT} B = {hotelQuery} C = {hotelName, hotelNameList, City, …} D = {HotelName}
E = {e | e is the hotelName value}

Rule 1: n(x) = {y|(x, y)∈EDGES(t), LABEL(y) = n} Rule 2: *(x) = {y|(x, y)∈EDGES (t)}
Rule 4: (q1/q2)(x) = {z| y∈q1(x), z∈q2(y)} Rule 5: (q1//q2)(x) = {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) }
“//”: //(x) = {y|(x, y) ∈ EDGES*(t)}

< *, A, B, Rule2>

< hotelName, C, D, Rule1> < *, D, E, Rule2>

< //, B, C, “//”>

In the first pattern: C = {hotelName},
child element of the hotelQueryReply.

In the second pattern: C = {hotelName},
child element of the hotelNameList.

Figure 7. Example of two XRG patterns.

Individual XRG patterns represent valid message types for data
manipulation. A pair of send and receive operations at the service
endpoints are thus annotated with XRG patterns so that we can
resolve how messages can be routed through a pair of XML
definitions. Based on the notion of XRG patterns, we present a
formal model that allows us to further the study of data flow
modeling, testing, and analysis of choreography applications.

Definition 6 (LTS-Based Choreography (C-LTS) Model). A C-
LTS model for a choreography application P is a 6-tuple S, L, ∆, s,
V, ℜ satisfying the following:

 S, L, ∆, s is an LTS of P.

 V is a set of variables such that every v ∈ V is a variable defined
in the choreography program P to serve as the input parameter
or return value for a labeled query q, or is a conceptual variable
defined in an XRG r (∈ ℜ), that is, v ∈ r.Vx.

 ℜ is a set of XRGs in P such that every transition δ ∈ ∆ is asso-
ciated with a labeled query q = δ, r if and only if r ∈ ℜ.

An execution for a C-LTS model is a sequence e = s1, q1, s2,
q2, … such that (a) s1 = s, (b) si–1, qi.l, si ∈ Δ for i = 2, ..., |e|, and
(c) every qi is a couple l, cp, where δ = si, qi.l, si+1 is a transition,
δ, r is a labeled query, and cp is a conceptual path of ξ(r). To be
consistent with the convention of an LTS execution, if δ is a send
operation, then the fragment si, qi.l, si+1 can be rewritten as si–1,
qi.l, qi.cp, si. Similarly, if δ is a receive operation, then the frag-
ment si–1, qi.l, si can be rewritten as si–1, qi.cp, qi.l, si. The
corresponding test trace for the C-LTS is a projection of the execu-
tion on the alphabet of P (see Definition 2).

4.2 Data Flow Entities for Choreography

This section proposes a family of data flow testing criteria to
measure the quality of test sets for choreography applications.

7

4.1.1 Conventional Data flow Associations
In this section, we revisit the basic definitions in data flow testing

[8] to make the paper self-contained. A Control Flow Graph (CFG)
for a program unit is an ordered couple V, E. V is a set of nodes
representing statements. E is a set of directed edges representing
transitions among statements. A complete path in a CFG is a path
starting from the entry node and ending with an exit node. A sub-
path is part of a complete path. A definition of variable x at node n
occurs when either the value of x is stored or updated at n. A usage
of variable x at node n occurs when either the value of x is fetched or
referenced at n.

A definition-clear path with respect to a variable x is a path in
which none of the nodes (except the first and the last nodes) defines
or undefines x. A def-use association is a triple x, nd, nu such that
the variable x is defined at node nd and used at node nu, and the path
from nd to nu is definition clear with respect to x. For ease of
presentation, we follow [11] and define a predicate def_clear(x, nd,
nu) to be true if and only if x, nd, nu is a def-use association.

4.1.2 Data Flow Associations for Choreography
This section discusses def-use associations in our C-LTS model. A

C-LTS model may contain two types of variables: choreography
variables that have been defined in choreography programs (see [25],
for example), and conceptual variables that have been defined in
XRGs [14]. We define the definition and use of these variables in our
choreography model in Definition 7.

Definition 7 (Chore-Query-Def and Chore-Query-Use of Vari-
ables). Given a C-LTS model P = S, L, ∆, s, V, ℜ,
 A chore-query-def (defcq) of a variable v ∈ V is either (i) an occur-

rence of v in an action associated with a transition δ ∈ ∆ such that
v is assigned the return value (i.e., the extracted content from an
XML message) of an XPath query, or (ii) a definition occurrence
of v at node n of an XRG r (∈ ℜ).

 A chore-query-use (usecq) of a variable v ∈ V is either (i) an occur-
rence of v in an action associated with a transition δ ∈ ∆ such that
v is used as an input parameter of an XPath query associated with
δ, or (ii) a use occurrence of v at node n of an XRG r (∈ ℜ).

We present further definitions to cover different XML-
manipulating data structures.

Definition 8 (Chore-Query-Pattern-Def and Chore-Query-
Pattern-Use of Variables). Given a C-LTS model P = S, L, ∆, s, V,
ℜ,
 A chore-query-pattern-def (defcpq) of a variable v ∈ V is either

(i) a triple v, δ, ξ(r) for some r ∈ ℜ such that there is an occur-
rence of v in the action associated with a transition δ ∈ ∆ and v is
assigned the return value of ξ(r), or (ii) a triple v, δ, ξ(r) for
some r ∈ ℜ such that there is a definition occurrence of v in a
rewritten node n of ξ(r).

 A chore-query-pattern-use (usecpq) of a variable v ∈ V is either
(i) a triple v, δ, ξ(r) for some r ∈ ℜ such that there is an occur-
rence of v in an action associated with transition δ ∈ ∆ and v is
used as an input parameter of ξ(r), or (ii) a triple v, δ, ξ(r) for
some r ∈ ℜ such that there is a usage occurrence of v in a rewrit-
ten node n of ξ(r).

Next, we demonstrate how we formulate def-use associations on
top of our C-LTS model. We define two kinds of def-use associa-
tions in our model: Given a C-LTS model P = S, L, ∆, s, V, ℜ, a

chore-query-def-use association α for a variable v is a triple v, nd,
nu such that v is a defcq at nd and a usecq at nu, and there is a
definition-clear sub-path with respect to v from nd to nu. Similarly,
we define a chore-query-pattern-def-use association as a triple v, nd,
nu such that v is a defcpq at nd and a usecpq at nu, and there is a
definition-clear sub-path with respect to v from nd to nu.

The algorithm to construct these data flow entities can be
straightforwardly developed based on the definitions of these
entities. Owing to space limit, we omit the algorithm in this paper.

4.3 Test Adequacy Criteria for Choreography

This section proposes a family of data flow testing criteria to
measure the quality of test sets to test choreography applications.
Our first test criterion is to exercise every XRG on each LTS test
trace at least once. Such an adequate test set should cover all XRGs
on all LTS test traces in the choreography application under test.

Criterion 1 (All Chore-Queries). A test set T satisfies the all-
chore-queries criterion for a C-LTS model P = S, L, ∆, s, V, ℜ if
and only if every XRG r (∈ ℜ) is exercised by at least one test case t
∈ T.

Executing a chore-query once may not help evaluate all chore-
query-def-use associations for conceptual variables in an XRG.
Therefore, we continue to explore the structure of the XRG. It
requires a test set to cover all chore-query-def-use associations.

Criterion 2 (All Chore-Query-Uses). A test set T satisfies the all-
queries criterion for a C-LTS model P = S, L, ∆, s, V, ℜ if and only
if, for each chore-query-def-use association α, there is at least one
test case t ∈ T such that def_clear(α) is evaluated to be true.

Finally, we define Criterion 3 to cover all chore-query-pattern-
def-use associations. We note that all-chore-query-uses subsumes [8]
all-chore-queries because every XPath query is evaluated by at least
one chore-query-use. Similarly, any chore-query-use is evaluated by
at least one chore-query-pattern-use, and hence all-query-pattern-
uses subsumes all-chore-query-uses.

Criterion 3 (All Chore-Query-Pattern-Uses). A test set T satisfies
the all-chore-query-pattern-uses criterion for a C-LTS model P = S,
L, ∆, s, V, ℜ if and only if, for each chore-query-pattern-def-use
association α, there is at least one test case t ∈ T such that
def_clear(α) is evaluated to be true.

Definition 8 and Criterion 3 recognize that, during testing, we
need to consider how the contents of a tag may transfer from one
XRG to another XRG.

5. EVALUATION
In this section, we evaluate our approach through a case study.

5.1 Experiment Setup

Our case study uses the Data Exchange Platform (DEP) applica-
tion, which is a part of the University Resource Planning (URP)
project implemented in a university outside Hong Kong. URP can
be viewed as a downsized version of an Enterprise Resource Plan-
ning (ERP) application (such as SAP). We choose DEP because we
are allowed to access the source code for academic experimenta-
tion. The original version of DEP is a Java application.

We adapt DEP using WS-CDL (presently the most popular ser-
vice choreography language) [22] to replace the existing Java-
based interface for communicating among web services. More

8

specifically, for each function (see the next paragraph), we
mechanically translate the functional signature into a portType, and
translate the parameter types into an XML schema. If a parameter
is an object, the XML schema will contain an object ID field to
identify the object. XPaths are also mechanically specified so that
such a portType can select the objects and values from the XML
schema as if the original version accepted Java objects and values.
We further examine the source code of the original version of DEP
to identify all the call sites of such a function, and specify the port
relations between two services according to every identified call
site in a WS-CDL specification.

Owing to our limited resources, we select the four biggest
services (in terms of lines of Java code in the original version) for
the verification of our proposal in the case study. The four subject
services are summarized below and illustrated as a UML activity
diagram in Figure 8.
 AgentService. Multiple agent services are distributed in different

information systems. This service monitors the database updates,
collects the change logs, and collaborates with MonitorService
to update the data stored in other information systems according
to the change log.

 MonitorService handles the requests from AgentService, verifies
the authority of the agent (by communicating with Authetica-
tionService), and allocates a data transfer thread to handle the
authenticated request.

 DataService consists of two subservices: DataUploadService
enables an agent to upload data to the server, and DataDown-
loadService enables an agent to download data from the server.

 AutheticationService authenticates whether an agent has the
rights to perform the data transfer.

The statistics of the subject services are summarized in Table 1.

Table 1. Descriptive statistics of the subject services.

Services
No. of
Ports

WSDL XPath
LOC
(Java)

No. of Faults
(in XPath and

WSDL of Services)
AgentService 6 2 6 4,000–5,000 3

MonitorService 8 2 8 6,000–7,000 3
DataService 4 1 4 3,000–4,000 2

AutheticationService 2 1 2 1,000–2,000 2
Total 20 6 20 > 14,000 10

We have implemented a tool to compute the XRG patterns, and
the proposed def-use associations for the case study. We generate
different faulty versions by seeding one fault in each copy of the

original program. We randomly select 10 faults from [14] and, for
each of the selected faults, we randomly select one feasible
position in the WSDL, XPath, or WS-CDL specification of DEP to
simulate the fault. We create 10 faulty versions in total. We have
also implemented a tool to randomly generate 1000 test cases to
form a test pool for the case study based on the original adapted
SOA version. Our tool then generates test suites for each of our
testing criteria and for random testing. When generating each test
suite for our testing criteria, the tool randomly selects a test case
from a test pool and evaluates it on the application. We add this
test case to the test suite only if the former can help improve the
coverage specified by the criterion. This procedure will terminate if
either 100% coverage of a criterion has been attained, or an upper
bound of 1000 trials has been reached. We repeat the procedure
100 times for every version. We originally planned to use more
faulty versions in the case study. However, the experiment is
intricate to conduct, and owing to effort and resource limitations,
we settle for the size of the reported experiment, and have not
included other testing criteria in the case study. For random testing,
we first randomly select a test suite whose size is the same as the
largest test suite for our testing criteria on the same program
version. We then construct another random test suite by whose size
is the same as the smallest test suite for our testing criterion.

We observe from the procedure for test case selection for each
criterion that random testing with the largest test suite (max-size
for short) has the same size as the all-chore-query-pattern-uses
criterion, and random testing with the smallest test suite (min-size
for short) has the same size as the all-chore-queries criterion.

We choose the fault-detection rate [8] as the effectiveness
measure in the experimentation, defined as the proportion of the
number of test cases that reveal failures to the total number of test
cases.

Table 2. Fault-detection rates of testing criteria

Criterion Fault-Detection Rates
Min. Avg. Max.

Random (Min-Size) 0.200 0.512 0.900
Random (Max-Size) 0.400 0.667 1.000
All-Chore-Queries 0.400 0.684 0.900
All-Chore-Query-Uses 0.600 0.763 1.000
All-Chore-Query-Pattern-Uses 0.800 0.901 1.000

AgentService (Provider)

RequestData
Transfer

Collect Data

Login

Yes
No

Send Data

ServerService

VerifyUpload
Data

Allocate Port

Check Authority

YesNo

Confirm
Upload

Log Service

Send(AgentInfo) Receive
(AuthorityInfo)

Send
(LogInfo)

Send(AuthorityInfo)

Receive(Authoritiy)

Send(Data)

Receive(Acknowledge) DataUpload
Service

Authentication
Service

AgentService
(Consumer)

Receive
Update

Receive
Data

Update
Table

Send(RequestUploadData)

Receive(UnloadPort)

Send(UploadDone)

Receive(Acknowledge)

DataDownload
Service

Send(Data)

Receive(Acknowledge)

Send(Notification)

Receive(Acknowledge)

Send(RequestDownloadData)

Receive(DownloadPort)

Send
Notification

Allocate Port

ClearData

Confirm
Download

Send(UploadDone)

Receive(Acknowledge)

c

Figure 8. UML activity diagram showing typical scenarios for Data Exchange Platform.

9

5.2 Data Analysis

We analyze the results of the case study in this section. Table 2
summarizes the minimum, average, and maximum fault-detection
rates of each criterion. It shows that the all-chore-query-pattern-
uses criterion is the most effective (90.1% on average) among all the
criteria studied. For instance, it is better than random testing (max-
size) by 23%. The average effectiveness of the all-chore-query-uses
criterion is slightly (8%) better than the all-chore-queries criterion.
The all-chore-queries criterion is 17% better than random testing
(min-size) with the same number of test cases, and is similar in
effectiveness to random testing (max-size). The result indicates that
the XRG pattern we have proposed in the paper can be promising in
improving the effectiveness of testing.

To further verify the effectiveness of our techniques, we order the
faulty versions in ascending order of their fault-detection results
reported by random testing (max-size) obtained from the experiment
above. We then construct 10 faulty program suites as follows: Suite
#1 contains only one program, which is the faulty version assigned
the lowest fault-detection rate by random testing. Suite #2 contains
the two faulty versions that have been assigned the lowest two fault-
detection rates. In general, Suite #n (n = 1, 2, ..., 10) contains the n
faulty versions that have been assigned the lowest n fault-detection
rates by random testing. For each testing criterion and for each of the
faulty program suites, we then compute the mean fault-detection rate
for all programs in the suite. The results are shown in Figure 9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 F
au

lt
 D

et
ec

ti
on

 R
at

e

No. of fault versions included
Random(Min-Size) Random(Max-Size) All-Chore-Queries
All-Chore-Query-Uses All-Query-Pattern-Uses

Figure 9. Comparisons of different faulty program suites.

The figure shows that the all-chore-queries criterion is also better
than random testing (max-size) in revealing faults that are more
difficult to be detected (such as when n = 1 to 6). For most versions,
we observe that all-chore-query-uses is more than 10 percent better
than random testing (max-size) in terms of the fault-detection rate.
Our all-query-pattern-uses criterion is significantly better than
random testing in all experimented cases. In particular, for the 2nd
faulty program suite, the effectiveness of all-chore-query-pattern-
uses is above 75%, whereas that of random testing (max-size) is
lower than 25%. Furthermore, we observe that all-chore-query-
pattern-uses is more effective (around 40%) than all-chore-query-
uses in detecting faults in the 2nd and 3rd faulty program suites.

In summary, the experimental results show that our technique
using XRG patterns can detect more than 90% of all faults, which is
encouraging. In the future, we will study how to detect subtle faults
more effectively, and conduct multi-fault experiments and compare
our technique with other testing criteria.

5.3 Threats to Validity
This section discusses the threats to validity of the experiment.

Threats to internal validity are the influences that can affect the
dependency of the experimental variables involved. When execut-
ing a test case, the contexts of the involved services (e.g., database
conditions) may affect the result, making the result nondeterminis-
tic. The problems of service composition raised by contextual envi-
ronments have been discussed in [13]. To address this problem, our
experiment tool confirms whether the contexts of services are
reproducible for every test case (by resetting the contexts to the
same values each time and rerunning the test case). Moreover, we
simulate a multi-fault version in the experiment. It is less desirable
than using real multi-fault versions to conduct the experiment, and
using the latter may give other results. However, given that our
technique outperforms random testing to a large extent, we believe
that our techniques can be effective on real-life versions.

External validity refers to whether the experiment can be genera-
lized. We use a case study to evaluate our approach. We choose
this application because we can access the source code to adapt and
study testing techniques, and because we are not aware of
representative open-source service-oriented applications available
for evaluation. However, the scale of the case study is not large,
even though we have spent much effort on the experiment. In the
future, we plan to use other subject programs to study the fault-
detection effectiveness of the testing criteria to gain more insight.
Moreover, we follow WS-CDL specifications to use WSDL to
define XML messages and to use XPath as expressions to extract
required contents from these XML messages. It may not be
representative if XPath, WSDL or WS-CDL is not used in the
subject applications.

6. DISCUSSIONS
We model a choreography application on top of Labeled

Transition Systems (LTS), and develop a C-LTS model to facilitate
data flow testing for choreography applications. However, our
methodologies of using XRG and XRG patterns for modeling
conceptual content selection in an XML document are not limited
to LTS. Other models that use XPath (on choreography) may also
apply our methodologies.

Second, when defining our C-LTS model, we consider each
participated service in the choreography as a black-box component,
and have not considered the program structures of individual
services. In general, a service participating in the choreography can
be an orchestration service or choreography service. (i) For an
orchestration service, one may extend or model by incorporating
the control flow graph of the orchestration service, and then
incorporate the data flow entities (similar to [14]) in addition to the
data flow entities based on C-LTS. (ii) For a choreography service,
one may model it using our C-LTS model, and extend test traces
similarly to how process algebras (such as CSP) serialize concur-
rent processes into trace sets. Moreover, a service may further
participate in multiple choreography applications. We plan to study
how to include choreography information in the modeling and
testing of orchestration applications [13].

Third, our C-LTS model has taken XPath and WSDL into
account. WSDL is defined by the World Wide Web Consortium
(W3C) and has been widely adopted as the standard to define web
services in service-oriented applications. WS-CDL [22], defined by
W3C is also a popular specification in designing service collabora-
tions among applications. As stated in the WS-CDL document,

10

XPath must be used in specifying expressions, queries, and
predicates in WS-CDL. Therefore, our model can be applied to
WS-CDL applications in general.

7. RELATED WORK
In this section, we review the work related to ours. We first

briefly review the research on modeling service composition.
Brambilla et al. [2] proposed a process model aiming to achieve an
effective high-level specification of web applications featuring
business processes and remote services invocations. Roman et al.
[18] proposed a semantic model for web service choreography.
Our techniques aim at testing the functional correctness of service
choreography and do not require a full semantic model of services.

Next, we review the research efforts on analyzing the properties
of service composition. Foster et al. [6] found that model checking
approaches which ignore resource constraints of the deployment
environment are insufficient to establish safety and liveness prop-
erties of services (such as the identification of deadlocks caused by
complex interplays between services and execution hosts.) They
proposed to link services and resource management to solve such
problems. Ye et al. [27] studied the atomicity of service composi-
tion. By using the encapsulated details, they analyzed the implicit
interactions among services in service composition. Their approach
aims to detect the atomicity violations of service composition.

Many researchers have proposed techniques to test service-
oriented applications. Chan et al. [4] applied metamorphic relations
to construct test cases for stateless web services. Li et al. [10]
studied unit testing problems for service orchestration. Our pre-
vious work [14] studied the complexity raised by XPath and
WSDL in integrating different flow steps in service orchestration.
In this paper, we study the testing problem from the choreography
perspective rather than from the orchestration perspective. Fu et al.
[9] translated web services into Promela for formal verification.
They translated an XPath into a Promela procedural routine using
self-proposed variables and code to simulate XPath operations. We
translate an XPath strictly following the definition of XPath expres-
sions given in [16] into an XPath Rewriting Graph. On top of [14],
we propose XRG patterns to enrich the concept of XRGs.

Finally, we briefly review data flow testing techniques. Many
existing techniques [8][11] on data flow testing are based on infor-
mation obtained from program code without considering artifacts
like XPath and WSDL. Bartolini et al. [1] discussed potential ways
to apply data flow testing to service compositions in a general
sense. Mei et al. [14] modeled XPath and WSDL in the XRG, and
developed data flow testing techniques for orchestration applica-
tions. However, how XRG can be adapted to facilitate data flow
testing on top of a choreography model has not been addressed.

8. CONCLUSION
In SOA, choreography is a strategy that specifies how services

collaborate. The messages from one service to another may, how-
ever, require the use of many XPaths to manipulate or extract the
message contents. Mismatches in XPath manipulation between the
sender service and the choreography specification, within the cho-
reography specification to relate incoming and outgoing messages,
or between the choreography specification and the receiver service
may result in failures in service choreography.

In this paper, we have proposed a C-LTS model to represent
choreography applications from the testing perspective. To model
message exchanges between services in a choreography application,

we have proposed to annotate each action available in the WS-
CDL and WSDL interface with the associated XPath queries and
WSDL specifications (in the format of XPath Rewriting Graphs
(XRGs)). Moreover, to address the challenges such as mismatches
in message content selection, we have proposed the notion of XRG
patterns to explicitly model how message contents can be unified
despite the multiple interpretations by different XML schemas.
Since the actual unification is conducted through concrete tag
matching available in the choreography application, we have
developed an algorithm to automatically generate all the required
XRG patterns. We have further used the XRG patterns as variables
to analyze how the message contents of tags associated with an
XML schema may be used by other XRGs or XRG patterns, and
have identified new data flow associations. We have thus proposed
a new family of data flow testing criteria for choreography
applications, and evaluation them in an empirical case study.

There is, of course, room for improvement. For example, we
will study how to incorporate orchestration information into our
model. We will also study how to integrate the notion of contexts
into the testing of service-oriented applications.

9. REFERENCES
[1] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis. Data flow-

based validation of web services compositions: perspectives and
examples. In Architecting Dependable Systems V, pages 298–325,
2008.

[2] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process
modeling in web applications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15 (4): 360–409, 2006.

[3] M. Broy, I. H. Krüger, and M. Meisinger. A formal model of services.
ACM TOSEM, 16 (1): Article No. 5, 2007.

[4] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. Towards a
metamorphic testing methodology for service-oriented software
applications. In Proceedings of QSIC 2005, pages 470–476, 2005.

[5] H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: a methodology for
object-oriented software testing at the class and cluster levels. ACM
TOSEM, 10 (1): 56–109, 2001.

[6] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosenblum, and S.
Uchitel. Model checking service compositions under resource
constraints. In Proceedings of ESEC/FSE 2007, pages 225–234, 2007.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Proceedings ASE 2003,
pages 152–161, 2003.

[8] P. G. Frankl and E. J. Weyuker. An applicable family of data flow
testing criteria. IEEE Transactions on Software Engineering, 14 (10):
1483–1498, 1988.

[9] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web
services. In Proceedings of WWW 2004, pages 621–630, 2004.

[10] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang. BPEL4WS unit testing:
framework and implementation. In Proceedings of ICWS 2005, pages
103–110, 2005.

[11] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an RFID-
based experimentation. In Proceedings of SIGSOFT 2006/FSE-14,
pages 242–252, 2006.

[12] L. Mariani, S. Papagiannakis, and M. Pezzè. Compatibility and
regression testing of COTS-component-based software. In
Proceedings of ICSE 2007, pages 85–95, 2007.

[13] L. Mei. A context-aware orchestrating and choreographic test
framework for service-oriented applications. In Proceedings of ICSE
Companion 2009 (Doctoral Symposium), pages 371–374, 2009.

[14] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-
oriented workflow applications. In Proceedings of ICSE 2008, pages

11

371–380, 2008.

[15] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse. Test case prioritization
for regression testing of service-oriented business applications. In
Proceedings of WWW 2009, pages 901–910, 2009.

[16] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. Journal of the ACM, 51 (1): 2–45, 2004.

[17] C. Peltz. Web services orchestration and choreography. IEEE
Computer, 36 (10): 46–52, 2003.

[18] D. Roman and M. Kifer. Semantic web service choreography:
contracting and enactment. In The Semantic Web — ISWC 2008,
pages 550–566, 2008.

[19] State Transition System. Wikipedia. Available at http://en.wikipedia.
org/wiki/State_transition_system. (Last access on June 16, 2009.)

[20] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in
message sequence chart specifications. In Proceedings of ESEC 2001
/ FSE-9, pages 74–82, 2001.

[21] S. Uchitel, J. Kramer, and J. Magee. Negative scenarios for implied
scenario elicitation. In Proceedings of SIGSOFT 2002 / FSE-10,
pages 109–118, 2002.

[22] Web Services Choreography Description Language Version 1.0.
W3C, 2005. Available at http://www.w3.org/TR/ws-cdl-10/.

[23] Web Services Choreography in Practice. IBM, 2005. Available at
http://www.ibm.com/developerworks/xml/library/ws-choreography/.

[24] Web Services Description Language (WSDL) 2.0. W3C, 2007.
Available at http://www.w3.org/TR/wsdl20.

[25] WS-CDL Eclipse (with Examples). Sourceforce.net, 2005. Available
at http://sourceforge.net/project/showfiles.php?group_id=138675.

[26] XML Path Language (XPath) Recommendation. W3C, 2007.
Available at http://www.w3.org/TR/xpath20/.

[27] C. Ye, S. C. Cheung, W. K. Chan, and C. Xu. Detection and
resolution of atomicity violation in service composition. In
Proceedings of ESEC/FSE 2007, pages 235–244, 2007.

