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ABSTRACT 
Service computing has increasingly been adopted by the industry, 
developing business applications by means of orchestration and 
choreography. Choreography specifies how services collaborate 
with one another by defining, say, the message exchange, rather 
than via the process flow as in the case of orchestration. Messages 
sent from one service to another may require the use of different 
XPaths to manipulate or extract message contents. Mismatches in 
XML manipulations through XPaths (such as to relate incoming 
and outgoing messages in choreography specifications) may result 
in failures. In this paper, we propose to associate XPath Rewriting 
Graphs (XRGs), a structure that relates XPath and XML schema, 
with actions of choreography applications that are skeletally 
modeled as labeled transition systems. We develop the notion of 
XRG patterns to capture how different XRGs are related even 
though they may refer to different XML schemas or their tags. By 
applying XRG patterns, we successfully identify new data flow 
associations in choreography applications and develop new data 
flow testing criteria. Finally, we report an empirical case study that 
evaluates our techniques. The result shows our techniques are 
promising in detecting failures in choreography applications. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging—Testing 
tools; D.2.8 [Software Engineering]: Metrics—Product metrics 

General Terms: Measurement, Reliability, Verification 

Keywords: service composition, software testing, choreography, 
orchestration, web services, data flow testing. 

1.  INTRODUCTION 
Software built on top of the service-oriented architecture (SOA) 

is increasingly popular [4][14][27], and yet testing such software 
remains tedious and ill-understood. In these applications, primary 
components are typically known as services. A set of such 
coordinated components are called a service composition. To 
synthesize a service composition, one may coordinate services via 
two general strategies [13][17], namely orchestration [14] and 
choreography [18]. Testing, analysis, and formal verification tech-
niques should address the challenges presented by these strategies. 

Orchestration specifies the sequences of process actions of indi-
vidual services [13]. Through collaboration (e.g., parallel com-
position of processes in process algebra [27]), such sequences of 
process actions of one service can coordinate, albeit implicitly, 
with the sequences of process actions of other services in the same 
application. Techniques to test service orchestration have been 
proposed. For instance, Li et al. [10] model every business process 
as a composition model, and propose a unit test framework to veri-
fy them. Mei et al. [14] examine the verification problem from the 
perspective of loose coupling, formulate how a service orchestra-
tion manipulates XML through XPath, and develop a class of data 
flow techniques. Their techniques not only reveal the coverage 
properties of XML via XPath and the associated XML schema (or 
DTD), but also direct test efforts to cover [14][15] the derived 
requirements. 

Choreography (see [23][25], for example) defines the rules of 
interactions, common message types, and exchange agreements 
among a set of services [18]. For instance, instead of using implicit 
collaboration sequences embedded in the parallel composition of 
processes [27], choreography explicitly defines the interactions 
among services by such means as Message Sequence Charts 
(MSCs) [19][20], UML sequence diagrams, or the Web Services 
Choreography Description Language (WS-CDL) [22]. An applica-
tion developed in this way is called a choreography application. 

Existing research on service choreography focuses on service 
modeling [3], process flow modeling [2], synthesizing of models 
[21], verification using finite-state automata [7], and violation 
detection of properties such as atomicity and resource constraints 
[6][27]. Not much public literature highlights the testing challenges. 
Although XML has been considered in previous research [9] and 
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the impact of XPath on services has been studied [14], surprisingly, 
as we are going to present in Section 3, the mismatch among 
service interfaces in the testing of service choreography has not 
been addressed in the literature. 

Let us consider an example of a choreography application based 
on a WS-CDL specification. For each service, the specification 
explicitly defines the accepted types for both incoming and 
outgoing messages. It also defines how the ports of one service are 
individually linked to other services in the same collaboration. It 
may further define its own variables to ease the coordination task. 
For instance, it may specify XPath selections, such as X2 and Y2 in 
Figure 1, so that the service choreography can select parts of the 
XML data kept by a particular variable to be sent to (or received 
from) a particular service. Of course, the latter service may use its 
own XPath selection (defined, say, in its own WSDL [24] 
document) to select its required contents. Thus, to send a message 
m1 from a service A to a service B, an XPath in the WS-CDL 
specification may only select and forward a portion, say m2, of the 
message m1. To send m2 to B, another WS-CDL XPath may be 
used to restrict the contents to be seen by B, which essentially 
sends a further portion, say m3, of m2 to B. The service B may use 
its own XPath (defined, for instance, in B’s WSDL document) to 
pick the required contents from m3. In such a typical WS-CDL 
scenario where services are loosely coupled, three XPaths are used. 
Even though we force these three XPaths to conform to the same 
XML schema, if they incompatibly refer to disjoint fragments of 
m1, the required content originally kept at m1 may not be 
retrievable by B, regardless of whether m3 has reached B. In more 
complicated scenarios, to interpret the same XML message, a 
sender may refer to the sender’s XML schema, a receiver may 
refers to the receiver’s XML schema, and the WS-CDL 
specification may also have its own XML schema. Thus, testing 
techniques should address how different XML schemas in the same 
choreography application may interpret the same message by the 
same or different services in different collaboration steps. 

Simplifying a message exchange as a label (such as modeling 
the exchange as a pair of sent/received messages without data in an 
MSC) would be ineffective in pinpointing where the testing effort 
should be spent. As such, owing to the adoption of XPath selection 
to manipulate the contents in incoming or outgoing messages, the 
artifacts XPath, WSDL, and XML should be explicitly addressed 
in the choreography application model to supports testing, analysis, 
and formal verification. 

In this paper, we propose to extend Labeled Transition Systems 
(LTS) [20][21] to model the interactions among services in a cho-
reography application. In LTS, a label represents an action. A test 
trace is a sequence of labels that starting from the initial state. It 
represents the sequences of labels covered by the execution of a 
test case. Checking the sequence of actions in such a trace can help 
detect negative scenarios [21] or other static properties. However, 
an action cannot help specify concrete content selection, which 
involves concrete data. XPath [26] and WSDL [24] are crucial to 
the extraction of desirable contents from XML messages [14], and 
yet they have been abstracted out in the standard LTS model. We 
extend LTS by incorporating XPath Rewriting Graphs (XRGs) [14], 
which captures the relationships between XPath queries and 
WSDL documents. Specifically, we associate each XPath query in 
a WSDL or WS-CDL document with the action that may use it. By 
doing so, any number of XRGs (possibly zero) can be annotated in 
an LTS. To cater for multiple XML schemas interpreting the same 
XML messages, we develop the notion of XRG patterns. We 

model each legitimate interpretation of the same XML message by 
a pair of service endpoints as a matching of tags between a pair of 
corresponding XRG patterns. We develop an automated strategy to 
generate XRG patterns, and select such pairs of patterns that relates 
matching tags. Since different XRGs are linked up by chains of 
XRG patterns, we successfully develop a new family of data flow 
testing criteria to support the testing of service choreography. 

The main contribution of this paper is fourfold: (i) We propose a 
model to capture the interactions in service choreography. (ii) We 
develop the notation of XRG patterns. (iii) Based on our model and 
XRG patterns, we identify a new set of def-use associations in 
service choreography, and further propose a new family of data 
flow testing criteria. (iv) Finally, to the best of our knowledge, we 
provide the first case study on data flow testing for choreography 
applications. The experimental result shows that our approach can 
be more effective than orchestration testing and random testing in 
revealing failures in a choreography application. 

The rest of this paper is organized as follows: Section 2 presents 
the preliminaries that lay the foundations of our approach. Section 
3 gives a motivating example and outlines the testing challenges of 
choreography applications. Section 4 presents our effort to model 
choreography applications, and introduces our data flow testing crite-
ria to measure the comprehensiveness of test sets. Section 5 reports 
an experimental case study, followed by discussions and related 
work in Section 6 and Section 7, respectively. Finally, Section 8 
concludes the paper and proposes future work. 

2.  PRELIMINARIES 
This section introduces the foundations of our work. 

2.1 Service Choreography 

In service orchestration, a service can be implemented in different 
programming languages (such as Java, Python, or C#), its interface is 
publicly exposed as a WSDL document, and the orchestration can be 
implemented as a WS-BPEL program [15]. Figure 1 depicts a 
scenario in which an orchestration services A collaborates with a 
choreography service B. Each of the services exposes its WSDL 
documentation, which specifies the XPath for selecting the 
contents of an XML message (as shown in the bottom of the 
figure). For these two services to collaborate, service choreography 
(written, say, in WS-CDL [22]) can be developed. Choreography 
can be used to specify the interoperability and interactions between 
multiple services in an application [22]. A WS-CDL specification 
not only specifies how different ports of individual services are 
related, but also defines its own variables (such as X1 and Y1 in the 
figure) and the corresponding XML schemas. 

WS-CDL is a popular specification language in service choreo-
graphy. In general, a service can be composed through an orches-
tration language (such as WS-BPEL) or a choreography language 
(such as WS-CDL). In this paper, we follow [3] to model a service 
as a black-box component (see also [12]) via WS-CDL. 

2.2 Label Transition Systems 
Labeled transition systems (LTS) and unlabeled transition 

systems are two types of state transition systems [19]. Uchitel et al. 
[20][21] have applied LTS to portray implied scenarios among 
interacting components. For ease of presentation, we adapt their 
definitions into Definitions 1 and 2. 
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Figure 1. Key artifacts and their relationships 
in a typical service choreography application. 

Definition 1 (Labeled Transition Systems). A finite Labeled 
Transition System (LTS) P is a structure S, L, Δ, s such that S is a 
set of states; L = α(P) ∪ {τ} is a set of labels, where α(P) denotes 
the alphabet set of P, τ denotes the internal actions that cannot be 
observed by the environment of P; Δ ⊆ (S × L × S) is a set of 
transitions to link a state to another state; and s ∈ S is the initial 
state of P. 

Definition 2 (LTS Test Trace). Let P = S, L, Δ, s be an LTS. 
A sequence e = s1, l1, s2, l2, … is an execution of P if s1 = s and 
si, li, si+1 ∈ Δ for 0 < i < |e|. A word l = l1, l2, … over the alpha-
bet set α(P) is an LTS test trace of P if there is an execution e of P 
such that l = e|α(P). 

We choose LTS as the skeleton of our model for choreography 
applications. Our considerations are as follows: (a) LTS is a formal 
model to represent message interactions for scenario-based specifica-
tions such as message sequence charts. (b) In this paper, we focus on 
choreography applications, and hence we can simply use τ to model 
internal actions of individual services. As such, our approach can 
generally apply to test choreography applications (with or without 
orchestration information). (c) The trace definition on top of LTS 
facilitates us to define data flow entities for choreography applica-
tions. 

2.3 XPath Query Model 
In WS-CDL [22], XPath must be used as the language to specify 

expressions, queries, and conditional predicates. We adopt the 
syntax definition of a decidable fragment of XPath from [16], as 
shown in Figure 2. According to [16], the fragment provides repre-
sentative XPath syntax and is sufficient as the basis for studying 
XPath. Mei et al. [14] have also used this fragment in developing 
testing techniques. 

n(x)

*(x)

.(x)

(q1/q2)(x) 

(q1//q2)(x) 

(q1[q2])(x) 

=

=

= 

=

=

=

Rule
1

2

3

4 

5

6 

…

…

…

…

…

…

{y | (x, y)∈EDGES(t), LABEL(y) = n}

{y | (x, y) ∈EDGES(t)}

{x}

{z | y∈q1(x), z∈q2(y)}

{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)} 

{y | y∈q1(x), q2(y)≠Ø}  
Figure 2. Syntax of a decidable fragment of XPath. 

Mei et al. [14] have proposed an XPath Rewriting Graph (XRG) 
to represent an XPath with a model (Ω) of XML documents. Here, 
we revisit XRGs to facilitate the description of our new techniques. 
An XRG is built on XPath syntactic constructs [16]. Their technique 

treats the definitions in Figure 2 as left-to-right rewriting rules and, 
through a series of rewriting [5], transforms an XPath into a normal 
form or a fixed point. The intermediate rewriting steps are also rec-
orded in an XRG. Every two consecutive steps are linked in the 
graph. We revisit the definition of XRG [14] in Definition 3. 

Definition 3 (XPath Rewriting Graph). An XPath Rewriting 
Graph (XRG) for an XPath query is a 5-tuple q, Ω, Nx, Ex, Vx such 
that 
 q is an XPath expression for the XPath query, and Ω is an XML 

schema that describes the XML document to be queried on. 
 Nx is a set of rewriting and rewritten nodes identified by the 

algorithm Compute_XRG, and Vx is a set of conceptual variables 
defined at the nodes in Nx. 

 Ex is a set of edges (sc, sn), each of which represents a transition 
from sc to sn, where sc is a rewriting node and sn is either a 
rewriting node or a rewritten node. All the edges are also 
computed by the algorithm Compute_XRG. 

The algorithm Compute_XRG [14] used in Definition 3 takes an 
XPath expression q, the schema Ω of some XML document, and a 
set of currently located nodes X of Ω as parameters, and outputs the 
corresponding XRG. (We refer to each node in X as a tag. This data 
structure forms an explicit artifact to model different paths, concep-
tually defined in an XPath, on how to provide query results.) In the 
algorithm, X is first initialized as a singleton set containing the root 
of the schema [16]. The query q starts with this value of X to search 
for other nodes. An example of an XRG will be shown in Figure 7. 

There are two types of XRG nodes [14]: rewriting node q, Lc, 
rule and rewritten node q, Lc, Ln, S. Here, q is a query expression, 
Lc is the current set of nodes in Ω located by the previous query step, 
Lc is assigned to the root node of Ω, rule is the rewriting rule used to 
generate the sub-terms in the rewriting node, Ln denotes the set of 
nodes in Ω to be located by q starting from some node in Lc, and S is 
a set-theoretic representation of the result of q. In XRGs, we refer to 
the generation of the value of a variable (∈ Vx) as variable definition, 
and the use of a variable provided by a preceding node as variable 
usage. Such variables are only conceptual in nature and are not 
program variables because they never appear in an implemented pro-
gram. Hence, they are called conceptual variables [14]. By using 
inorder traversal of XRGs and dropping all rewriting nodes, 
Compute_XRG provides an explicit way to model different concep-
tual paths defined in an XPath for providing query results. In this 
paper, we use this algorithm to construct the XRGs in our model. 

3.  MOTIVATING EXAMPLE 
This section uses a TripHandling project as a motivating 

example to introduce the testing challenges of choreography 
applications. The original source code is in WS-CDL [22] and is 
available from [25]. 

There are four roles in TripHandling: (a) Customer Service, 
which helps customers to place trip orders and process payments; 
(b) Travel Agent, which handles requests from service customers 
and schedules trips; (c) Airline Service, which handles flight 
schedule queries, seat booking, and online payments of flights; and 
(d) Hotel Service, which handles hotel queries, room booking, and 
online payments via two agents known as HotelAgent-A and 
HotelAgent-B. For instance, Travel Agent includes the following 
workflow steps: (i) FlightBooking books the flights for a trip. 
(ii) HotelBooking books the hotels for the trip. (iii) Confirm-
Payment checks whether the corresponding charges (for successful 
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flight and hotel reservations) have been paid by an online credit 
card service. (iv) If both FlightBooking and HotelBooking are suc-
cessfully completed, the booking results will be sent to the custom-
er. On the other hand, if either FlightBooking or HotelBooking 
encounters an error, the TripHandling application will display an 

error message and terminate. Descriptions of the other services are 
omitted owing to space reason. 

The structure of the TripHandling application is shown in Figure 
3(a). For ease of illustration, we follow [14][15] and use a UML 
activity diagram to depict the application. A service is portrayed as 

TravelAgent (T) AirlineService (A) HotelService (H)CustomerService (C)

Place 
Order

Trip Query

Flight Query Hotel Query

Flight Booking

Hotel Booking

Yes
No

Query Flight

Booking Flight

Confirm 
Payment

HotelAgent-
A Query

HotelAgent-
B Query

Confirm Payment

Query
Trip

Query
Reply

Place
Order

Confirm
Order

(a) One Choreography Consisting of Three Sub-Parts (CCT, CTF, and CTH)

HotelAgent-
A Booking

HotelAgent-
B Booking

Flight
Query

FlightQuery
Reply

FlightBook
Response

Hotel
Query

HotelQuery
Reply

Confirm Payment

Failure
Success

Failure
Failure

Success
Success

Failure
Success

HotelBook
Request

HotelBook
Response

FlightBook
Request

Confirm Confirm

CCT CTA CTH

1 1.1
1.2

2.1

2.22

Confirm 
Payment

Confirm 
Payment

3

4

5

3.1

4.1

3.2

4.2

5.1 5.2

 

<xsd:complexType name="tripQuery">
<xsd:element name= "departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name="fromCity" type="xsd:string"/>
<xsd:element name="toCity" type="xsd:string"/>
<xsd:element name="airlineName" type="xsd:string"/>
<xsd:element name="hotelName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="tripQueryReply">
……

<xsd:complexType name="tripQueryList"
type="xsd:tripQueryReply"/> 

</xsd:complexType>

<xsd:complexType name="flightQuery">
<xsd:element name= "departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name="fromCity" type="xsd:string"/>
<xsd:element name="toCity" type="xsd:string"/> 
<xsd:element name="airlineName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="flightQueryReply">
……
<xsd:element name="airlineName" type="xsd:string">
<xsd:complexType name="airlineNameList”     

type="xsd:airlinelist"/>
</xsd:complexType>

<xsd:complexType name="airlineList">
<xsd:element name="airlineName" type="xsd:string" 

minOccurs="0"/>
<xsd:complexType>

(b) Typical XML schemas for XML messages defined in WSDL documents (for C, A, and H to support CCT, CTF, and CTH, respectively).

<xsd:complexType name="hotelQuery">
<xsd:element name="departureDate" type="xsd:date"/>
<xsd:element name="returnDate" type="xsd:date"/>
<xsd:element name=“city" type="xsd:string"/> 
<xsd:element name="hotelName" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="hotelQueryReply">
……
<xsd:element name="hotelName" type="xsd:string">
<xsd:complexType name="hotelNameList"     

type="xsd:hotellist"/>
</xsd:complexType>

<xsd:complexType name="hotelList">
<xsd:element name="hotelName" type="xsd:string" 

minOccurs="0"/>
<xsd:complexType>

1 1.1 1.2

2

2.1
2.2

XML Schemas for CCT XML Schemas for CTF XML Schemas for CTH

(c) Typical XML messages exchanged between services

<tripQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<fromCity>HongKong</fromCity>
<toCity>Vancouver</fromCity>
<airlineName>UnitedAirline</airlineName>
<hotelName>Westin</hotelName>

<tripQuery>

<tripQuery>
……
<airlineName>-</airlineName>
<hotelName>-</hotelName>

<tripQuery>

<flightQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<fromCity>HongKong</fromCity>
<toCity>Vancouver</fromCity>
<airlineName>UnitedAirline</airlineName>

<flightQuery>

<flightQuery>
……
<airlineName>-</airlineName>

<flightQuery>

<flightQueryReply>
……
<airlineNameList>

<airlineName>UnitedAirline</airlineName>
<airlineName>AirCanada</airlineName>       

</airlineNameList>
<flightQueryReply>

<hotelQuery>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</ returnDate>
<City>Vancouver</toCity>
<hotelName>ShangriLa</hotelName>       

<hotelQuery>

<hotelQuery>
……
<hotelName>-</hotelName>

<hotelQuery>

<hotelQueryReply>
……
<hotelNameList>

<hotelName>Westin</hotelName>
<hotelName>ShangriLa</hotelName>       

</hotelNameList>
<hotelQueryReply>

1-a

1-b

1.1-a

1.1-b

1.2-a

1.2-b

XML Messages for CCT XML Messages for CTF XML Messages for CTH

2.1 2.2

 

Figure 3. Choreography example of TripHandling. 
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a rectangle. A node in a rectangle represents a workflow activity of 
the corresponding service, and a link represents a transition 
between two activities. We further use a dashed line to represent a 
message that communicates among different roles of services in a 
choreography application. 

The messages between two services are defined by different XML 
schemas. For instance, the XML messages tripQuery1-a and trip-
Query1-b in Figure 3(c) are both defined by the schema tripQuery1, 
and the XML message hotelQuery2.2 in the same figure is defined by 
the schema hotelQuery2.2. To save space, we use “…” to represent 
obvious or irrelevant lines of code. For example, the omitted lines in 
tripQuery1-b are the same as the departureDate, returnDate, fromCity, 
and toCity lines in tripQuery1-a. 

Given an XPath query q and an XML message m, let w denote the 
XML schema (in a WSDL specification) that defines m. In such situ-
ations, q(m) may retrieve from m a dataset whose tags are defined in 
w. We further depict this set of tags as a circle or ellipse in Figure 4. 

Case 1: In general, two XML schemas may contain tags having 
the same name. Suppose X1 and X2 represent the sets of tags con-
tained in two XML schemas. We have three cases, namely X1 and X2 
being partially overlapping, disjoint, and one is a subset of another. 
These three scenarios are depicted, respectively, as the intersection, 
exclusion, and inclusion relations in Figure 4. We also use schemas 
from the motivating example to illustrate each relation in the figure. 

Intersection Inclusion Exclusion

Two XML schemas may 
share a set of tags

Two disjoint XML schemas need to define 
the common tags for message exchange

tripQuery
Schema 1

flightQuery
Schema1.1

Intersection Example

hotelQueryReply
Schema2.2 Inclusion Example

hotelList
Schema2.2

flightList
Schema 2.1

flightQuery
Schema2.2

Exclusion Example

 
Figure 4. Relations among XML schemas in choreography. 

However, two tags having the same name may come from 
different nodes of the same XML schema (or different XML 
schemas). Furthermore, a node may be reachable by multiple XPaths. 
A service may assume that it sends the content under a tag retrieva-
ble by one XPath, but its collaborating service may assume that it 
collects the content under a tag retrievable by another XPath. If these 
two XPaths do not refer to the same content of the XML message 
when applying their respective XML schemas, there will be an 
integration failure (or a mismatch between the two services in their 
message collaboration) even through the XML message may have 
successfully reached the second service. 

hotelQueryReply
Schema2.2

hotelList
Schema2.2flightQuery

Schema2.2

tripQuery
Schema 1

flightQuery
Schema1.1

flightList
Schema 2.1

flightQuery
Schema2.2

 
Figure 5. Faulty relations among XML schemas in choreography. 

For example, each of the schemas in Figure 4 may mistakenly 
overlap with other schemas used in the same collaboration step or 

different steps (as shown in Figure 5 and annotated by the super-
scripts in the schema names). For instance, step 2.2 of the motivating 
example may mistakenly include the flightQuery schema inside the 
hotelQueryReply schema. Thus, data that should not be referred to by 
peer services will now be accessible, which may result in 
collaboration failures. To detect this problem, a technique should not 
only determine the inclusion, exclusion, and intersection relations, 
but also distinguish the amounts of overlapping. Say, if there are five 
overlapping tags, a good technique should test each of them in turn. 

Nevertheless, although we have developed XRGs, a data structure 
to reveal the structure of XPath in the presence of schema, it is still 
generally infeasible to solve this problem. This is because covering 
all paths in an XRG merely means that some (but not necessary all) 
tags in individual XRG nodes have been exercised by a test case. The 
problem is further explained by the other two cases that follow. Thus, 
whether the content in relation to a particular tag can be successfully 
transferred from one service to another is not enforced by a tech-
nique at the XRG level. 

Case 2: Take tripQueryReply in Figure 3 as an example. When 
tripQuery uses a concrete value of the “hotelName” tag (such as 
Westin) as a parameter, its reply will contain either exactly one 
hotel name or no name. However, when tripQuery does not supply 
any “hotelName” (by using “–” to query all possible hotel names), 
the reply will be a name list, where each listed item contains a 
“hotelName” tag and its value. Therefore, the same XPath query 
(such as //hotelName/) on these two types of XML messages can 
retrieve elements in different locations of an XML schema (as 
illustrated in Figure 6). On the other hand, /hotelName/ and 
/hotelQueryReply/hotelName/ will access different nodes, and yet 
they share the same tag name (also illustrated in Figure 6). 

/hotelName/
hotelQueryReply

……

hotelName hotelNameList

hotelName-1 hotelName-2

//hotelName/ /hotelNameList/hotelName/

<hotelQueryReply>
<departureDate>2009-5-18</departureDate>
<returnDate>2009-5-24</returnDate>
<City>Vancouver</City>
<hotelName>ShangriLa</hotelName>

</hotelQueryReply>

<hotelQueryReply>
……
<hotelNameList>

<hotelName>Westin</hotelName>
<hotelName>ShangriLa</hotelName>       

</hotelNameList>
<hotelQueryReply>

 

Figure 6. Effect of different data structures of XML messages 
in XPath query. 

Case 3: Moreover, two different nodes with different tag names 
may refer to the same content. For example, the “toCity” tag in the 
“tripQuery” schema should refer to the “city” tag in the “hotelQuery” 
schema. These tags have been highlighted in Figure 3(b). The XPath 
queries //city/, /tripQuery/fromCity/, and /tripQuery/toCity/ will 
return a city name in string format. If they are used in different 
choreography steps, these steps will implicitly be strongly coupled. 
Using techniques such as type checking on the schemas may not 
effectively distinguish such differences in the corresponding query 
results. However, the use of the former two XPath queries may 
extract the departure city rather than the destination city. In case 
there are hotels in the same chain in both the departure city and 
destination city (such as Westin Hotel), the hotel service may book a 
room in the hotel of the same name in the departure city rather than 
in the destination city, which will result in a failure. 

In summary, the testing challenge illustrated by this example is 
that the sequence of XPath queries in the same step or different steps 
may raise different expectations on how to manipulate an XML 
message, which leads to failures in choreography collaboration. 
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4.  OUR CHOREOGRAPHY MODEL 
This section presents our formal model to facilitate data flow 

testing of choreography applications. 

4.1 The C-LTS Model 
As introduced in Section 2.2, LTS is a formal model to represent 

message interactions for scenario-based specifications. Therefore, 
we use LTS to model the skeleton of a choreography application. In 
this section, we enhance it gradually to realize our model of choreo-
graphy applications. In LTS, when performing an action via 
message passing from a sender service to a receiver service, the 
transition that represents the action (which is a service invocation 
in choreography) is inadequate to represent the roles of XPath and 
WSDL in manipulating the required contents of the XML message. 
We propose, therefore, to extend LTS by attaching an XRG to 
every transition associated with an XPath and its document model. 

We also assume that every transition represents either a send 
operation or a receive operation but not both. 

Definition 4 (Labeled Query). A labeled query q for a choreogra-
phy application P is an ordered couple δ, r such that δ is a transi-
tion representing the action taken by P, and r is an XRG that models 
the sending and receipt of XML data by P. 

For ease of presentation, we associate every transition δ with a 
labeled query. Even if δ is not originally associated with any XPath, 
we can attach an XPath that selects the entire contents of δ. 

By modeling each XPath query and its document model as an 
XRG, we can use data flow analyses on the conceptual variables of 
the XRG (see Section 2.3 or [14]) to analyze choreography 
applications. Moreover, our model can also facilitate (data flow) 
testing at the inter-XPath or inter-WSDL levels. To do so, we 
propose to analyze service chorography with respect to whether the 
sets of tags at an XRG node are partially overlapping, completely 
overlapping, or disjoint from those at a node in another XRG. 

A conceptual variable in an XRG (such as Lc and Ln in the defini-
tion of rewritten nodes in Section 2.2) is also a set of tags of an XML 
schema. Thus, in general, such a conceptual variable may contain 
multiple tags of an XML schema. If this is the case, as long as the 
corresponding XML message matches at least one tag, the variable 
does not distinguish the selected tag from others. Therefore, as ex-
plained in Section 3, simply adopting XRGs from [14] still cannot 
address the challenging issues illustrated in the motivating example. 
We thus propose a notion of XRG patterns as follows. For ease of 
presentation, we will use r.A to denote the attribute A of r. 

Definition 5 (XRG Pattern). For any given XRG r = q, Ω, Nx, 
Ex, Vx, an XRG pattern ξ(r) is an instantiation of r such that (i) a tag 
ti is assigned to the i-th variable (∈ Vx) in a conceptual path (with all 
rewritten nodes in Nx included) based on the definition order of the 
variables, and (ii) ti must be used (in the sense of data flow associa-
tions) by a subsequent rewritten node n ∈ r.Nx to locate ti+1 in the 
conceptual path. The set of all XRG patterns of r is denoted by ξ(ℜ). 

Intuitively, for any XRG r and any XRG pattern ξ(r), Lc of each 
rewritten node n (∈ r.Nx) in ξ(r) contains exactly one tag. This is 
quite different from Lc of a rewritten node in XRG or its XRG 
patterns, which may contain multiple tag values. Moreover, by 
defining ξ(ℜ) as a set, it helps model the fact that every XRG 
pattern ξ(r) with respect to ℜ is distinct. 

We provide an example in Figure 7 to illustrate an XRG pattern. 
The figure presents an XRG for the XPath query “//hotelName/”. 

The corresponding XML schemas are defined by the WSDL 
documents in Figure 3(b). In this example, we define five variables 
a, b, c, d, and e, representing the possible tags in the sets A, B, C, D, 
and E. With the exception of C, every set contains only one tag. 
We further identify two XRG patterns for C, as highlighted by the 
dashed text boxes. Since the tags for each conceptual variable can 
be statically computed during the construction of XRG, we can 
generate all possible candidate XRG patterns, and then eliminate 
the non-legitimate candidates according to Definition 5. Such a 
procedure for identifying XRG patterns can be done automatically. 

< //hotelName/, A={ROOT},(q1//q2)>

<hotelName/*, C, (q3/q4)>

q3(C),q3=(hotelName) q4(D), q4=*

q1(A), q1= * q2(C), q2=(hotelName/*)

R1

R3R2 R4

R5 R6

XQ(hotelQueryReply, //hotelName/)
Rewriting Node

Rewritten Node

A = {ROOT} B = {hotelQuery}    C = {hotelName, hotelNameList, City, …}      D = {HotelName} 
E = {e | e is the hotelName value} 

Rule 1: n(x) = {y|(x, y)∈EDGES(t), LABEL(y) = n}   Rule 2: *(x) = {y|(x, y)∈EDGES (t)}   
Rule 4: (q1/q2)(x) = {z| y∈q1(x), z∈q2(y)}             Rule 5: (q1//q2)(x) = {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) }  
“//”:        //(x) = {y|(x, y) ∈ EDGES*(t)} 

< *, A, B, Rule2>

< hotelName, C, D, Rule1> < *, D, E, Rule2>

< //, B, C, “//”>

In the first pattern: C = {hotelName}, 
child element of the hotelQueryReply.

In the second pattern: C = {hotelName}, 
child element of the hotelNameList.

 

Figure 7. Example of two XRG patterns. 

Individual XRG patterns represent valid message types for data 
manipulation. A pair of send and receive operations at the service 
endpoints are thus annotated with XRG patterns so that we can 
resolve how messages can be routed through a pair of XML 
definitions. Based on the notion of XRG patterns, we present a 
formal model that allows us to further the study of data flow 
modeling, testing, and analysis of choreography applications. 

Definition 6 (LTS-Based Choreography (C-LTS) Model). A C-
LTS model for a choreography application P is a 6-tuple S, L, ∆, s, 
V, ℜ satisfying the following: 

 S, L, ∆, s is an LTS of P. 

 V is a set of variables such that every v ∈ V is a variable defined 
in the choreography program P to serve as the input parameter 
or return value for a labeled query q, or is a conceptual variable 
defined in an XRG r (∈ ℜ), that is, v ∈ r.Vx. 

 ℜ is a set of XRGs in P such that every transition δ ∈ ∆ is asso-
ciated with a labeled query q = δ, r if and only if r ∈ ℜ. 

An execution for a C-LTS model is a sequence e = s1, q1, s2, 
q2, … such that (a) s1 = s, (b) si–1, qi.l, si ∈ Δ for i = 2, ..., |e|, and 
(c) every qi is a couple l, cp, where δ = si, qi.l, si+1 is a transition, 
δ, r is a labeled query, and cp is a conceptual path of ξ(r). To be 
consistent with the convention of an LTS execution, if δ is a send 
operation, then the fragment si, qi.l, si+1 can be rewritten as si–1, 
qi.l, qi.cp, si. Similarly, if δ is a receive operation, then the frag-
ment si–1, qi.l, si can be rewritten as si–1, qi.cp, qi.l, si. The 
corresponding test trace for the C-LTS is a projection of the execu-
tion on the alphabet of P (see Definition 2). 

4.2 Data Flow Entities for Choreography 

This section proposes a family of data flow testing criteria to 
measure the quality of test sets for choreography applications. 
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4.1.1 Conventional Data flow Associations 
In this section, we revisit the basic definitions in data flow testing 

[8] to make the paper self-contained. A Control Flow Graph (CFG) 
for a program unit is an ordered couple V, E. V is a set of nodes 
representing statements. E is a set of directed edges representing 
transitions among statements. A complete path in a CFG is a path 
starting from the entry node and ending with an exit node. A sub-
path is part of a complete path. A definition of variable x at node n 
occurs when either the value of x is stored or updated at n. A usage 
of variable x at node n occurs when either the value of x is fetched or 
referenced at n. 

A definition-clear path with respect to a variable x is a path in 
which none of the nodes (except the first and the last nodes) defines 
or undefines x. A def-use association is a triple x, nd, nu such that 
the variable x is defined at node nd and used at node nu, and the path 
from nd to nu is definition clear with respect to x. For ease of 
presentation, we follow [11] and define a predicate def_clear(x, nd, 
nu) to be true if and only if x, nd, nu is a def-use association. 

4.1.2 Data Flow Associations for Choreography 
This section discusses def-use associations in our C-LTS model. A 

C-LTS model may contain two types of variables: choreography 
variables that have been defined in choreography programs (see [25], 
for example), and conceptual variables that have been defined in 
XRGs [14]. We define the definition and use of these variables in our 
choreography model in Definition 7. 

Definition 7 (Chore-Query-Def and Chore-Query-Use of Vari-
ables). Given a C-LTS model P = S, L, ∆, s, V, ℜ, 
 A chore-query-def (defcq) of a variable v ∈ V is either (i) an occur-

rence of v in an action associated with a transition δ ∈ ∆ such that 
v is assigned the return value (i.e., the extracted content from an 
XML message) of an XPath query, or (ii) a definition occurrence 
of v at node n of an XRG r (∈ ℜ). 

 A chore-query-use (usecq) of a variable v ∈ V is either (i) an occur-
rence of v in an action associated with a transition δ ∈ ∆ such that 
v is used as an input parameter of an XPath query associated with 
δ, or (ii) a use occurrence of v at node n of an XRG r (∈ ℜ). 

We present further definitions to cover different XML-
manipulating data structures. 

Definition 8 (Chore-Query-Pattern-Def and Chore-Query-
Pattern-Use of Variables). Given a C-LTS model P =  S, L, ∆, s, V, 
ℜ, 
 A chore-query-pattern-def (defcpq) of a variable v ∈ V is either 

(i) a triple v, δ, ξ(r) for some r ∈ ℜ such that there is an occur-
rence of v in the action associated with a transition δ  ∈ ∆ and v is 
assigned the return value of ξ(r), or (ii) a triple v, δ, ξ(r) for 
some r ∈ ℜ such that there is a definition occurrence of v in a 
rewritten node n of ξ(r). 

 A chore-query-pattern-use (usecpq) of a variable v ∈ V is either 
(i) a triple v, δ, ξ(r) for some r ∈ ℜ such that there is an occur-
rence of v in an action associated with transition δ ∈ ∆ and v is 
used as an input parameter of ξ(r), or (ii) a triple v, δ, ξ(r) for 
some r ∈ ℜ such that there is a usage occurrence of v in a rewrit-
ten node n of ξ(r). 

Next, we demonstrate how we formulate def-use associations on 
top of our C-LTS model. We define two kinds of def-use associa-
tions in our model: Given a C-LTS model P = S, L, ∆, s, V, ℜ, a 

chore-query-def-use association α for a variable v is a triple v, nd, 
nu such that v is a defcq at nd and a usecq at nu, and there is a 
definition-clear sub-path with respect to v from nd to nu. Similarly, 
we define a chore-query-pattern-def-use association as a triple v, nd, 
nu such that v is a defcpq at nd and a usecpq at nu, and there is a 
definition-clear sub-path with respect to v from nd to nu. 

The algorithm to construct these data flow entities can be 
straightforwardly developed based on the definitions of these 
entities. Owing to space limit, we omit the algorithm in this paper. 

4.3 Test Adequacy Criteria for Choreography 

This section proposes a family of data flow testing criteria to 
measure the quality of test sets to test choreography applications. 
Our first test criterion is to exercise every XRG on each LTS test 
trace at least once. Such an adequate test set should cover all XRGs 
on all LTS test traces in the choreography application under test. 

Criterion 1 (All Chore-Queries). A test set T satisfies the all-
chore-queries criterion for a C-LTS model P = S, L, ∆, s, V, ℜ if 
and only if every XRG r (∈ ℜ) is exercised by at least one test case t 
∈ T. 

Executing a chore-query once may not help evaluate all chore-
query-def-use associations for conceptual variables in an XRG. 
Therefore, we continue to explore the structure of the XRG. It 
requires a test set to cover all chore-query-def-use associations. 

Criterion 2 (All Chore-Query-Uses). A test set T satisfies the all-
queries criterion for a C-LTS model P = S, L, ∆, s, V, ℜ if and only 
if, for each chore-query-def-use association α, there is at least one 
test case t ∈ T such that def_clear(α) is evaluated to be true. 

Finally, we define Criterion 3 to cover all chore-query-pattern-
def-use associations. We note that all-chore-query-uses subsumes [8] 
all-chore-queries because every XPath query is evaluated by at least 
one chore-query-use. Similarly, any chore-query-use is evaluated by 
at least one chore-query-pattern-use, and hence all-query-pattern-
uses subsumes all-chore-query-uses. 

Criterion 3 (All Chore-Query-Pattern-Uses). A test set T satisfies 
the all-chore-query-pattern-uses criterion for a C-LTS model P = S, 
L, ∆, s, V, ℜ if and only if, for each chore-query-pattern-def-use 
association α, there is at least one test case t ∈ T such that 
def_clear(α) is evaluated to be true. 

Definition 8 and Criterion 3 recognize that, during testing, we 
need to consider how the contents of a tag may transfer from one 
XRG to another XRG. 

5.  EVALUATION 
In this section, we evaluate our approach through a case study. 

5.1 Experiment Setup 

Our case study uses the Data Exchange Platform (DEP) applica-
tion, which is a part of the University Resource Planning (URP) 
project implemented in a university outside Hong Kong. URP can 
be viewed as a downsized version of an Enterprise Resource Plan-
ning (ERP) application (such as SAP). We choose DEP because we 
are allowed to access the source code for academic experimenta-
tion. The original version of DEP is a Java application. 

We adapt DEP using WS-CDL (presently the most popular ser-
vice choreography language) [22] to replace the existing Java-
based interface for communicating among web services. More 
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specifically, for each function (see the next paragraph), we 
mechanically translate the functional signature into a portType, and 
translate the parameter types into an XML schema. If a parameter 
is an object, the XML schema will contain an object ID field to 
identify the object. XPaths are also mechanically specified so that 
such a portType can select the objects and values from the XML 
schema as if the original version accepted Java objects and values. 
We further examine the source code of the original version of DEP 
to identify all the call sites of such a function, and specify the port 
relations between two services according to every identified call 
site in a WS-CDL specification. 

Owing to our limited resources, we select the four biggest 
services (in terms of lines of Java code in the original version) for 
the verification of our proposal in the case study. The four subject 
services are summarized below and illustrated as a UML activity 
diagram in Figure 8. 
 AgentService. Multiple agent services are distributed in different 

information systems. This service monitors the database updates, 
collects the change logs, and collaborates with MonitorService 
to update the data stored in other information systems according 
to the change log. 

 MonitorService handles the requests from AgentService, verifies 
the authority of the agent (by communicating with Authetica-
tionService), and allocates a data transfer thread to handle the 
authenticated request. 

 DataService consists of two subservices: DataUploadService 
enables an agent to upload data to the server, and DataDown-
loadService enables an agent to download data from the server. 

 AutheticationService authenticates whether an agent has the 
rights to perform the data transfer. 

The statistics of the subject services are summarized in Table 1. 

Table 1. Descriptive statistics of the subject services. 

Services 
No. of 
Ports 

WSDL XPath 
LOC 
(Java) 

No. of Faults 
(in XPath and 

WSDL of Services)
AgentService 6 2 6 4,000–5,000 3 

MonitorService 8 2 8 6,000–7,000 3 
DataService 4 1 4 3,000–4,000 2 

AutheticationService 2 1 2 1,000–2,000 2 
Total 20 6 20 > 14,000 10 

      

We have implemented a tool to compute the XRG patterns, and 
the proposed def-use associations for the case study. We generate 
different faulty versions by seeding one fault in each copy of the 

original program. We randomly select 10 faults from [14] and, for 
each of the selected faults, we randomly select one feasible 
position in the WSDL, XPath, or WS-CDL specification of DEP to 
simulate the fault. We create 10 faulty versions in total. We have 
also implemented a tool to randomly generate 1000 test cases to 
form a test pool for the case study based on the original adapted 
SOA version. Our tool then generates test suites for each of our 
testing criteria and for random testing. When generating each test 
suite for our testing criteria, the tool randomly selects a test case 
from a test pool and evaluates it on the application. We add this 
test case to the test suite only if the former can help improve the 
coverage specified by the criterion. This procedure will terminate if 
either 100% coverage of a criterion has been attained, or an upper 
bound of 1000 trials has been reached. We repeat the procedure 
100 times for every version. We originally planned to use more 
faulty versions in the case study. However, the experiment is 
intricate to conduct, and owing to effort and resource limitations, 
we settle for the size of the reported experiment, and have not 
included other testing criteria in the case study. For random testing, 
we first randomly select a test suite whose size is the same as the 
largest test suite for our testing criteria on the same program 
version. We then construct another random test suite by whose size 
is the same as the smallest test suite for our testing criterion. 

We observe from the procedure for test case selection for each 
criterion that random testing with the largest test suite (max-size 
for short) has the same size as the all-chore-query-pattern-uses 
criterion, and random testing with the smallest test suite (min-size 
for short) has the same size as the all-chore-queries criterion. 

We choose the fault-detection rate [8] as the effectiveness 
measure in the experimentation, defined as the proportion of the 
number of test cases that reveal failures to the total number of test 
cases. 

Table 2. Fault-detection rates of testing criteria 

Criterion Fault-Detection Rates 
Min. Avg. Max. 

Random (Min-Size) 0.200 0.512 0.900 
Random (Max-Size) 0.400 0.667 1.000 
All-Chore-Queries 0.400 0.684 0.900 
All-Chore-Query-Uses 0.600 0.763 1.000 
All-Chore-Query-Pattern-Uses 0.800 0.901 1.000 
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Figure 8. UML activity diagram showing typical scenarios for Data Exchange Platform. 
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5.2 Data Analysis 

We analyze the results of the case study in this section. Table 2 
summarizes the minimum, average, and maximum fault-detection 
rates of each criterion. It shows that the all-chore-query-pattern-
uses criterion is the most effective (90.1% on average) among all the 
criteria studied. For instance, it is better than random testing (max-
size) by 23%. The average effectiveness of the all-chore-query-uses 
criterion is slightly (8%) better than the all-chore-queries criterion. 
The all-chore-queries criterion is 17% better than random testing 
(min-size) with the same number of test cases, and is similar in 
effectiveness to random testing (max-size). The result indicates that 
the XRG pattern we have proposed in the paper can be promising in 
improving the effectiveness of testing. 

To further verify the effectiveness of our techniques, we order the 
faulty versions in ascending order of their fault-detection results 
reported by random testing (max-size) obtained from the experiment 
above. We then construct 10 faulty program suites as follows: Suite 
#1 contains only one program, which is the faulty version assigned 
the lowest fault-detection rate by random testing. Suite #2 contains 
the two faulty versions that have been assigned the lowest two fault-
detection rates. In general, Suite #n (n = 1, 2, ..., 10) contains the n 
faulty versions that have been assigned the lowest n fault-detection 
rates by random testing. For each testing criterion and for each of the 
faulty program suites, we then compute the mean fault-detection rate 
for all programs in the suite. The results are shown in Figure 9. 
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Figure 9. Comparisons of different faulty program suites. 

The figure shows that the all-chore-queries criterion is also better 
than random testing (max-size) in revealing faults that are more 
difficult to be detected (such as when n = 1  to 6). For most versions, 
we observe that all-chore-query-uses is more than 10 percent better 
than random testing (max-size) in terms of the fault-detection rate. 
Our all-query-pattern-uses criterion is significantly better than 
random testing in all experimented cases. In particular, for the 2nd 
faulty program suite, the effectiveness of all-chore-query-pattern-
uses is above 75%, whereas that of random testing (max-size) is 
lower than 25%. Furthermore, we observe that all-chore-query-
pattern-uses is more effective (around 40%) than all-chore-query-
uses in detecting faults in the 2nd and 3rd faulty program suites. 

In summary, the experimental results show that our technique 
using XRG patterns can detect more than 90% of all faults, which is 
encouraging. In the future, we will study how to detect subtle faults 
more effectively, and conduct multi-fault experiments and compare 
our technique with other testing criteria. 

5.3 Threats to Validity 
This section discusses the threats to validity of the experiment. 

Threats to internal validity are the influences that can affect the 
dependency of the experimental variables involved. When execut-
ing a test case, the contexts of the involved services (e.g., database 
conditions) may affect the result, making the result nondeterminis-
tic. The problems of service composition raised by contextual envi-
ronments have been discussed in [13]. To address this problem, our 
experiment tool confirms whether the contexts of services are 
reproducible for every test case (by resetting the contexts to the 
same values each time and rerunning the test case). Moreover, we 
simulate a multi-fault version in the experiment. It is less desirable 
than using real multi-fault versions to conduct the experiment, and 
using the latter may give other results. However, given that our 
technique outperforms random testing to a large extent, we believe 
that our techniques can be effective on real-life versions. 

External validity refers to whether the experiment can be genera-
lized. We use a case study to evaluate our approach. We choose 
this application because we can access the source code to adapt and 
study testing techniques, and because we are not aware of 
representative open-source service-oriented applications available 
for evaluation. However, the scale of the case study is not large, 
even though we have spent much effort on the experiment. In the 
future, we plan to use other subject programs to study the fault-
detection effectiveness of the testing criteria to gain more insight. 
Moreover, we follow WS-CDL specifications to use WSDL to 
define XML messages and to use XPath as expressions to extract 
required contents from these XML messages. It may not be 
representative if XPath, WSDL or WS-CDL is not used in the 
subject applications. 

6.  DISCUSSIONS 
We model a choreography application on top of Labeled 

Transition Systems (LTS), and develop a C-LTS model to facilitate 
data flow testing for choreography applications. However, our 
methodologies of using XRG and XRG patterns for modeling 
conceptual content selection in an XML document are not limited 
to LTS. Other models that use XPath (on choreography) may also 
apply our methodologies. 

Second, when defining our C-LTS model, we consider each 
participated service in the choreography as a black-box component, 
and have not considered the program structures of individual 
services. In general, a service participating in the choreography can 
be an orchestration service or choreography service. (i) For an 
orchestration service, one may extend or model by incorporating 
the control flow graph of the orchestration service, and then 
incorporate the data flow entities (similar to [14]) in addition to the 
data flow entities based on C-LTS. (ii) For a choreography service, 
one may model it using our C-LTS model, and extend test traces 
similarly to how process algebras (such as CSP) serialize concur-
rent processes into trace sets. Moreover, a service may further 
participate in multiple choreography applications. We plan to study 
how to include choreography information in the modeling and 
testing of orchestration applications [13]. 

Third, our C-LTS model has taken XPath and WSDL into 
account. WSDL is defined by the World Wide Web Consortium 
(W3C) and has been widely adopted as the standard to define web 
services in service-oriented applications. WS-CDL [22], defined by 
W3C is also a popular specification in designing service collabora-
tions among applications. As stated in the WS-CDL document, 
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XPath must be used in specifying expressions, queries, and 
predicates in WS-CDL. Therefore, our model can be applied to 
WS-CDL applications in general. 

7.  RELATED WORK 
In this section, we review the work related to ours. We first 

briefly review the research on modeling service composition. 
Brambilla et al. [2] proposed a process model aiming to achieve an 
effective high-level specification of web applications featuring 
business processes and remote services invocations. Roman et al. 
[18] proposed a semantic model for web service choreography. 
Our techniques aim at testing the functional correctness of service 
choreography and do not require a full semantic model of services. 

Next, we review the research efforts on analyzing the properties 
of service composition. Foster et al. [6] found that model checking 
approaches which ignore resource constraints of the deployment 
environment are insufficient to establish safety and liveness prop-
erties of services (such as the identification of deadlocks caused by 
complex interplays between services and execution hosts.) They 
proposed to link services and resource management to solve such 
problems. Ye et al. [27] studied the atomicity of service composi-
tion. By using the encapsulated details, they analyzed the implicit 
interactions among services in service composition. Their approach 
aims to detect the atomicity violations of service composition. 

Many researchers have proposed techniques to test service-
oriented applications. Chan et al. [4] applied metamorphic relations 
to construct test cases for stateless web services. Li et al. [10] 
studied unit testing problems for service orchestration. Our pre-
vious work [14] studied the complexity raised by XPath and 
WSDL in integrating different flow steps in service orchestration. 
In this paper, we study the testing problem from the choreography 
perspective rather than from the orchestration perspective. Fu et al. 
[9] translated web services into Promela for formal verification. 
They translated an XPath into a Promela procedural routine using 
self-proposed variables and code to simulate XPath operations. We 
translate an XPath strictly following the definition of XPath expres-
sions given in [16] into an XPath Rewriting Graph. On top of [14], 
we propose XRG patterns to enrich the concept of XRGs. 

Finally, we briefly review data flow testing techniques. Many 
existing techniques [8][11] on data flow testing are based on infor-
mation obtained from program code without considering artifacts 
like XPath and WSDL. Bartolini et al. [1] discussed potential ways 
to apply data flow testing to service compositions in a general 
sense. Mei et al. [14] modeled XPath and WSDL in the XRG, and 
developed data flow testing techniques for orchestration applica-
tions. However, how XRG can be adapted to facilitate data flow 
testing on top of a choreography model has not been addressed. 

8.  CONCLUSION 
In SOA, choreography is a strategy that specifies how services 

collaborate. The messages from one service to another may, how-
ever, require the use of many XPaths to manipulate or extract the 
message contents. Mismatches in XPath manipulation between the 
sender service and the choreography specification, within the cho-
reography specification to relate incoming and outgoing messages, 
or between the choreography specification and the receiver service 
may result in failures in service choreography. 

In this paper, we have proposed a C-LTS model to represent 
choreography applications from the testing perspective. To model 
message exchanges between services in a choreography application, 

we have proposed to annotate each action available in the WS-
CDL and WSDL interface with the associated XPath queries and 
WSDL specifications (in the format of XPath Rewriting Graphs 
(XRGs)). Moreover, to address the challenges such as mismatches 
in message content selection, we have proposed the notion of XRG 
patterns to explicitly model how message contents can be unified 
despite the multiple interpretations by different XML schemas. 
Since the actual unification is conducted through concrete tag 
matching available in the choreography application, we have 
developed an algorithm to automatically generate all the required 
XRG patterns. We have further used the XRG patterns as variables 
to analyze how the message contents of tags associated with an 
XML schema may be used by other XRGs or XRG patterns, and 
have identified new data flow associations. We have thus proposed 
a new family of data flow testing criteria for choreography 
applications, and evaluation them in an empirical case study. 

There is, of course, room for improvement. For example, we 
will study how to incorporate orchestration information into our 
model. We will also study how to integrate the notion of contexts 
into the testing of service-oriented applications. 
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