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Abstract— This paper considers the L2-L∞ model reduction
problems for polytopic system with time-varying delay. In terms
of the solution of linear matrix inequalities (LMIs) and inverse
constraints, sufficient conditions are presented to construct the
reduced order models such that the L2-L∞ gain of the error
system between the full order model and the reduced order one
is less than a given scalar.

Index Terms— model reduction problems, polytopic systems
with time-varying delay, L2-L∞ norm

I. INTRODUCTION

The L2-L∞ gain of a system Σ is defined as

‖Σ‖L2-L∞ = sup
‖u‖L2

≤1

‖y‖L∞

with zero initial state, where y(t) is the output of sys-
tem Σ and u(t) is the input of system Σ with ‖u‖L2

=(∫ ∞
0

‖u (t)‖2
dt

)1/2

and ‖u‖L∞ = supt≥0 ‖u (t)‖ ,

‖u (t)‖ =
√

uT (t) u (t) [1] and [16]. The L2-L∞ gain of er-
ror system, which is also referred as the energy-to-peak gain
in [14] is a natural criterion for model reduction. The L2-L∞
model reduction problem for continuous-time and discrete-
time systems without delay is studied in [11]. Necessary and
sufficient conditions are given in terms of LMIs and a rank
constraint, which can be solved by the alternating projection
algorithm [4, Chap.13]. The model reduction problem has
been extensively studied in the literature, as can be seen from
[13] and the references listed therein.

In many physical, industrial and engineering systems,
control systems cannot be described accurately without the
introduction of delay element. Delays can lead to poor
performance and instability of control systems. Considerable
research has been carried out on systems with time-varying
delay in recent years. The criteria for asymptotic stability of
such systems can be classified as delay-independent [18] or
delay-dependent [3], [6], [9], [10], which is less conserva-
tive than delay-independent stability criteria in general. For

∗This work was supported by CRCG 200611159157, Sun Yat-sen Univer-
sity Young Teachers’ Foundation under grant 3171911 and Young Teachers’
Foundation of School of information Science and Technology under grant
350707.

polytopic systems with constant delay, the robust stability
and stabilization are studied in [17]. The extension to time-
varying delay is investigated in [12] with stability criteria less
conservative through the introduction of slack variables in the
LMIs. The polytopic system has been extensively studied in
the literature, as can be seen from [8], [19] and the references
listed therein. To the authors knowledge, the L2-L∞ model
reduction problems for polytopic systems with time-varying
delay are a challenging topic worthwhile to tackle.

II. L2-L∞ MODEL REDUCTION

A polytopic system Σ with time-varying delay is given by

Σ : ẋ (t) = A(t)x (t) + Ah(t)x(t − h(t)) + B(t)u (t)
y (t) = C(t)x (t) + Ch(t)x(t − h(t))
x (t) = 0, ∀t ∈ [−h̄, 0]

where x (t) ∈ R
n is the state, u (t) ∈ R

m is the control input
which belongs to L2[0,∞) and y (t) ∈ R

p is the controlled
output. A(t), Ah(t), B(t), C(t) and Ch(t) are appropriately
dimensioned continuous functions of time t, and satisfy the
real convex polytopic model

(A (t) Ah (t) B (t)) =
q∑

i=1

αi(t) (Ai Ahi Bi) ,

(C (t) Ch (t)) =
q∑

i=1

αi(t) (Ci Chi)

∀αi(t) ≥ 0,
∑q

i=1 αi(t) = 1, where αi(t), i = 1, 2, . . . , q,
are time-varying functions of t, Ci, Chi, Bi, Ai and Ahi,
i = 1, 2, . . . , q, are constant matrices with appropriate dimen-
sions. h(t) is the time-varying delay satisfying 0 < h(t) ≤
h̄ < ∞, ḣ(t) ≤ μ < 1 with h̄ > 0 and μ > 0. System Σ,
which is to be reduced, is assumed to be quadratically stable.

Definition 2.1: If there exists an n̂th-order quadratically
stable system Σ̂

Σ̂ :
.

x̂ (t) = Â(t)x̂ (t) + Âh(t)x̂(t − h(t)) + B̂(t)u (t)
ŷ (t) = Ĉ(t)x̂ (t) + Ĉh(t)x(t − h(t))
x̂ (t) = 0, ∀t ∈ [−h̄, 0]
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where x̂ (t) ∈ R
n̂, ŷ (t) ∈ R

p, and n̂ < n, such that∥∥∥Σ − Σ̂
∥∥∥
L2-L∞

= sup
‖u‖L2

≤1

‖y − ŷ‖L∞ < γ

then we say the L2-L∞ model reduction problem for system
Σ is solvable.
The L2-L∞ gain of retarded system ΣR

ΣR : ẋ (t) = Ax (t) + Ahx(t − h(t)) + Bu (t)
y (t) = Cx (t) + Chx(t − h(t))

can be characterized by the following algebraic conditions,
where A, Ah, B, C and Ch are contant matrices.

Lemma 2.2: [15] If there exist matrices P > 0, Q > 0,
X > 0, Z > 0 and Y, and a scalar 0 < α < 1 such that⎡

⎢⎢⎢⎢⎢⎢⎣

AT P + PA+
h̄X + Y

+Y T + Q
PAh − Y PB τAT Z

AT
h P − Y T −(1 − μ)Q 0 τAT

h Z
BT P 0 −Im τBT Z
τZA τZAh τZB −τZ

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

⎡
⎣ −αP 0 CT

0 −(1 − α)P CT
h

C Ch −γ2Ip

⎤
⎦ < 0

[
X Y
Y T Z

]
≥ 0

then system ΣR is asymptotically stable and ‖ΣR‖L2-L∞ <

γ, where τ = h̄
1−u . In the case of h(t) = h, if there exists

matrices P > 0, Q > 0, and a scalar 0 < α < 1 such that⎡
⎢⎢⎢⎢⎣

AT P + PA+
h̄X + Y +
Y T + Q

PAh − Y PB

AT
h P − Y T −(1 − μ)Q 0
BT P 0 −Im

⎤
⎥⎥⎥⎥⎦ < 0

⎡
⎣ −αP 0 CT

0 −(1 − α)P CT
h

C Ch −γ2Ip

⎤
⎦ < 0

The following theorem gives the solution of L2-L∞ model
reduction problem for system Σ.

Theorem 2.3: With ñ = n+ n̂, if there exist matrices P >
0, P̃ > 0, X > 0, X̃ > 0, Q > 0, Q̃ > 0, M > 0, M̃ > 0,
N > 0, Ñ > 0, Z > 0, Z̃ > 0 and Y, and a scalar 0 < α < 1
such that for i = 1, 2, . . . , q,[

X11 X12

X T
12 X22

]
< 0 (1)

[
Y11 Y12

YT
12 Y22

]
< 0 (2)

⎡
⎣ −αI1PIT

1 0 CT
i

∗ −(1 − α)I1PIT
1 CT

hi

∗ ∗ −γ2Ip

⎤
⎦ < 0 (3)

[
X Y
∗ Z

]
≥ 0 (4)

[
−N Y
∗ −M

]
≤ 0 (5)

PP̃ = Iñ, QQ̃ = Iñ, XX̃ = I (6)

ZZ̃ = Iñ, M̃M = Iñ, ÑN = Iñ (7)

where ∗ denotes the symmetric terms in a symmetric matrix
and

X11 =

⎡
⎢⎢⎢⎢⎣

Λi11 Λi12 Bi Λi14 Λi15

∗ Λ22 0 ΛT
i12 0

∗ ∗ −Im BT
i 0

∗ ∗ ∗ Λi44 Λi45

∗ ∗ ∗ ∗ Λi55

⎤
⎥⎥⎥⎥⎦

X12 =

⎡
⎢⎢⎢⎢⎣

I1P̃ I1P̃ I1P̃ I1P̃
0 0 −Iñ 0
0 0 0 0
0 0 0 0

−I2P̃ −I2P̃ −I2P̃ −I2P̃

⎤
⎥⎥⎥⎥⎦

X22 =

⎡
⎢⎢⎣

−h̄−1X̃ 0 0 0
∗ −Q̃ 0 0
∗ ∗ −M̃ 0
∗ ∗ ∗ −Ñ

⎤
⎥⎥⎦

Y11 =

⎡
⎣ AT

i I1PIT
1 + I1PIT

1 Ai

+I1

(
h̄X + Y

+Y T + Q

)
IT

1

⎤
⎦

Y12 =
[
I1PIT

1 Ahi − I1Y IT
1 τAT

i I1Z
]

Y22 =
[

−(1 − μ)I1QIT
1 τAT

hiI1Z
∗ −τZ

]

and

Λi11 = I1P̃IT
1 AT

i + AiI1P̃IT
1 , Λi12 = AhiI1 (8)

Λi14 = I1P̃IT
1 AT

i , Λi15 = −AiI1P̃IT
2 (9)

Λ22 = −(1 − μ)Q, Λi44 = −τ−1I1Z̃IT
1 (10)

Λi55 = −τ−1I2Z̃IT
2 (11)

Λi45 = −τ−1I1Z̃IT
2 − AiI1P̃IT

2 (12)

then there exists a quadratically stable system Σ̂ such
that the L2-L∞ model reduction problem is sovable with∥∥∥Σ − Σ̂

∥∥∥
L2-L∞

< γ. In this case, a desired reduced system

corresponding to a feasible solution (P, P̃ , X, X̃, Q, Q̃, M,
M̃, N, Ñ , Z, Z̃, Y, α) to (1)–(7) is given by

(
B̂ (t) Â (t) Âh (t)

)
=

q∑
i=1

αi(t)Ḡi1 (13)

(
Ĉ (t) Ĉh (t)

)
=

q∑
i=1

αi(t)Ḡi2 (14)
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where

Ḡi1 =
[

B̂i Âi Âhi

]
= −U−1

i1 Ω̄T
1 Vi1Λ̄T

i1

(
Λ̄1Vi1Λ̄T

1

)−1

+U−1
i1 W

1
2

i1Li1

(
Λ̄1Vi1Λ̄T

1

)− 1
2 (15)

Ḡi2 =
[

Ĉi Ĉhi

]
= −U−1

i2 Ω̄T
2 Vi2Λ̄T

2

(
Λ̄2Vi2Λ̄T

2

)−1

+U−1
i2 W

1
2

i2Li2

(
Λ̄2Vi2Λ̄T

2

)− 1
2 (16)

and for i = 1, 2, . . . , q, Li1 and Li2 are any matrices
satisfying ‖Li1‖ < 1 and ‖Li2‖ < 1, and Ui1 > 0 and
Ui2 > 0 such that

Vi1 =
(
Ω̄1U

−1
i1 Ω̄T

1 − Φ̄i1

)−1
> 0

Vi2 =
(
Ω̄2U

−1
i2 Ω̄T

2 − Φ̄2

)−1
> 0

Wi1 = Ui1 − Ω̄T
1

(
Vi1 − Vi1Λ̄T

1 ×(
Λ̄1Vi1Λ̄T

1

)−1 Λ̄1Vi1

)
Ω̄1

Wi2 = Ui2 − Ω̄T
2

(
V2 − Vi2Λ̄T

2 ×(
Λ̄2Vi2Λ̄T

2

)−1 Λ̄2Vi2

)
Ω̄2

Φ̄i1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀT
i P+

PĀi+
h̄X + Y +
Y T + Q

PĀhi − Y PB̄i τĀT
i Z

∗ −(1 − μ)Q 0 τĀT
hiZ

∗ ∗ −Im τB̄T
i Z

∗ ∗ ∗ −τZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

Φ̄i2 =

⎡
⎣ −αP 0 C̄T

i

∗ −(1 − α)P C̄T
hi

∗ ∗ −γ2Ip

⎤
⎦ (18)

Ω̄1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

P

[
0
In̂

]

0
0

τZ

[
0
In̂

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ω̄2 =

⎡
⎣ 0

0
Ip

⎤
⎦ (19)

Λ̄1 =

⎡
⎣ 0 0 0 0 Im 0

0 In̂ 0 0 0 0
0 0 0 In̂ 0 0

⎤
⎦ (20)

Λ̄2 =
[

0 −In̂ 0 0 0
0 0 0 −In̂ 0

]
(21)

Āi =
[

Ai 0
0 0

]
, Āhi =

[
Ahi 0
0 0

]
(22)

B̄i =
[

Bi

0

]
, C̄i =

[
Ci 0

]
(23)

C̄hi =
[

Chi 0
]

(24)

I1 =
[

In 0
]
, I2 =

[
0 In̂

]
(25)

Proof. We first consider the error system Σ − Σ̂ given by

x̃ (t) = Ã (t) x̃ (t) + Ãh (t) x̃(t − h(t)) + B̃ (t) u (t)
ỹ (t) = C̃ (t) x̃ (t) + C̃h (t) x̃(t − h(t))

where x̃ (t) =
[

xT (t) x̂T (t)
]T

, ỹ (t) = y (t) − ŷ (t) ,

[
B̃ (t) Ã (t) Ãh (t)

]
=

q∑
i=1

αi(t) ×
[
B̄i + F̄ Ḡi1N̄

Āi + F̄ Ḡi1H̄ Āhi + F̄ Ḡi1M̄
]

(26)[
C̃ (t) C̃h (t)

]

=
q∑

i=1

αi(t)
[

C̄i + Ḡi2J̄ C̄hi + Ḡi2K̄
]

(27)

with Ḡi1 and Ḡi2, i = 1, 2, . . . , q, defined in (15) and (16),
B̄i, Āi, Āhi, C̄i and C̄hi given in (22) and (23), and

F̄ =
[

0
In̂

]
, H̄ =

⎡
⎣ 0 0

0 In̂

0 0

⎤
⎦ (28)

M̄ =

⎡
⎣ 0 0

0 0
0 In̂

⎤
⎦ , N̄ =

⎡
⎣ Im

0
0

⎤
⎦ (29)

J̄ =
[

0 −In̂

0 0

]
, K̄ =

[
0 0
0 −In̂

]
(30)

From Lemma 2.2, if there exist matrices Ḡi1 and Ḡi2

satisfying (4) and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Āi + F̄ Ḡi1H̄

)T
P

+P
(
Āi + F̄ Ḡi1H̄

)
+h̄X + Y +

Y T + Q

P
(
Āhi + F̄ Ḡi1M̄

)
−Y

∗ −(1 − μ)Q
∗ ∗
∗ ∗

P
(
B̄i + F̄ Ḡi1N̄

)
τ

(
Āi + F̄ Ḡi1H̄

)T
Z

0 τ
(
Āhi + F̄ Ḡi1M̄

)T
Z

−Im τ
(
B̄i + F̄ Ḡi1N̄

)T
Z

∗ −τZ

⎤
⎥⎥⎥⎦

< 0 (31)

⎡
⎢⎣

−αP 0
(
C̄i + Ḡi2J̄

)T

∗ −(1 − α)P
(
C̄hi + Ḡi2K̄

)T

∗ ∗ −γ2Ip

⎤
⎥⎦ < 0 (32)
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It follows from (31) and (32) that

⎡
⎢⎢⎢⎢⎢⎢⎣

Ã (t)T
P + PÃ (t)

+h̄X + Y
+Y T + Q

PÃh (t) − Y

∗ −(1 − μ)Q
∗ ∗
∗ ∗

P
(
B̄i + F̄ Ḡi1N̄

)
τÃ (t)T

Z

0 τÃh (t)T
Z

−Im τB̃ (t)T
Z

∗ −τZ

⎤
⎥⎥⎦

< 0

⎡
⎣ −αP 0 C̃ (t)T

∗ −(1 − α)P C̃h (t)T

∗ ∗ −γ2Ip

⎤
⎦ < 0

Then we have
∥∥∥Σ − Σ̂

∥∥∥
L2-L∞

< γ. It is easy to show that

matrix inequalities (31) and (32) can be rewritten as

Φ̄i1 + Ω̄1Ḡi1Λ̄1 +
(
Ω̄1Ḡi1Λ̄1

)T
< 0 (33)

Φ̄i2 + Ω̄2Ḡi2Λ̄2 +
(
Ω̄2Ḡi2Λ̄2

)T
< 0 (34)

where Φ̄ij , Ω̄j , and Λ̄j , i = 1, 2, . . . , q, j = 1, 2, are defined
in (17)–(21). LMIs (33) and (34) have solutions Ḡi1 and Ḡi2,
if and only if

Ω̄⊥
1 Φ̄i1Ω̄⊥T

1 < 0, Λ̄T⊥
1 Φ̄i1Λ̄T⊥T

1 < 0 (35)

Ω̄⊥
2 Φ̄i2Ω̄⊥T

2 < 0, Λ̄T⊥
2 Φ̄i2Λ̄T⊥T

2 < 0 (36)

Ω̄⊥
j and Λ̄T⊥

j , j = 1, 2, can be chosen as follows:

Ω̄⊥
1 =

⎡
⎢⎢⎢⎢⎣

I1P
−1 0 0 0

0 Iñ 0 0
0 0 Im 0
0 0 0 τ−1I1Z

−1

−I2P
−1 0 0 τ−1I2Z

−1

⎤
⎥⎥⎥⎥⎦

Λ̄T⊥
1 =

⎡
⎣ I1 0 0 0

0 I1 0 0
0 0 0 Iñ

⎤
⎦

Ω̄⊥
2 =

[
Iñ 0 0
0 Iñ 0

]
Λ̄T⊥

2 =

⎡
⎣ I1 0 0

0 I1 0
0 0 Ip

⎤
⎦

where I1 and I2 are defined in (25). Then, by Schur
complement and the conditions in (6) and (7), we obtain that

Ω̄⊥
1 Φ̄i1Ω̄⊥T

1 < 0, equals to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λi11 Λi12 Bi

∗ −(1 − μ)Q 0
∗ ∗ −Im

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Λi14 Λi15 I1P̃ I1P̃
ΛT

i12 0 0 0
BT

i 0 0 0
Λi44 Λi45 0 0
∗ Λi55 −I2P̃ −I2P̃

∗ ∗ −h̄−1X̃ 0
∗ ∗ ∗ −Q̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+M1Y
TN1 + (M1Y

TN1)T

< 0 (37)

where

M1 =
[

P̃IT
1 −Iñ 0 0 −P̃IT

2 0 0
]T

N1 =
[

P̃IT
1 0 0 0 −P̃IT

2 0 0
]

and Λi11, Λi12, Λi14, Λi15, Λi44 and Λi45, i = 1, 2, . . . , q,
are defined in (8)–(12). Since for any matrices M, N , Y and
M > 0 and N > 0, MY TN + (MY TN )T ≤ MMMT +
N T NN , holds if Y M−1Y T ≤ N. LMI (37) is true if (1)
and (5) hold. Λ̄T⊥

1 Φ̄i1Λ̄T⊥T
1 < 0, is equivalent to (2). For

the inequalities in (36),

Ω̄⊥
2 Φ̄i2Ω̄⊥T

2 =
[

−αP 0
0 −(1 − α)P

]
< 0

and Λ̄T⊥
2 Φ̄i2Λ̄T⊥T

2 < 0 is equivalent to (3). From LMIs
(1)–(5), if there exist matrices P, P̃ , X, X̃, Q, Q̃, M, M̃,
N, Ñ , Z, Z̃ and Y satisfying (35) and (36), there exist
matrices Ḡi1 and Ḡi2 such that LMIs (33) and (34) hold.
Therefore, we have

∥∥∥Σ − Σ̂
∥∥∥
L2-L∞

< γ. All the parameters

of the reduced order models satisfying (33) and (34) can be
constructed by the parametrization method of Gahinet and
Apkarian [7]. This completes the proof. �

In the case of h(t) = h, a delay-independent sufficient
condition is given for the L2-L∞ model reduction problem
from Lemma 2.2 and the proof of Theorem 2.3.

Corollary 2.4: If there exist matrices P > 0, P̃ > 0, Q >
0 and Q̃ > 0, and a scalar 0 < α < 1 such that for i =
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1, 2, . . . , q,

⎡
⎢⎢⎢⎢⎣

I1P̃IT
1 AT

i +
AiI1P̃IT

1 AhiI1 Bi I1P̃
∗ −Q 0 0
∗ ∗ −Im 0
∗ ∗ ∗ −Q̃

⎤
⎥⎥⎥⎥⎦ < 0

⎡
⎣ AT

i I1PIT
1 +

I1PIT
1 Ai + I1QIT

1 I1PIT
1 Ahi

∗ −I1QIT
1

⎤
⎦ < 0

⎡
⎣ −αI1PIT

1 0 CT
i

∗ −(1 − α)I1PIT
1 CT

hi

∗ ∗ −γ2Ip

⎤
⎦ < 0

PP̃ = Iñ, QQ̃ = Iñ

there exists a quadratically stable system Σ̂ with h(t) =
h solving the L2-L∞ model reduction problem with∥∥∥Σ − Σ̂

∥∥∥
L2-L∞

< γ.

Remark 2.5: If P, P̃ = P−1 and Q have the following
special form

P =
[

X̂ X12

XT
12 X22

]
, P−1 =

[
Ŷ −1 Y12

Y T
12 Y22

]

Q =
[

Ẑ X12

XT
12 X22

]
(38)

Corollary 2.4 can be expressed by LMIs with rank constraint:
if there exist matrices X̂ > 0, Ŷ > 0 and Ẑ > 0, and a scalar
0 < α < 1 such that for i = 1, 2, . . . , q,

⎡
⎢⎢⎣

AT
i Ŷ + Ŷ Ai+
Ẑ + Ŷ − X̂ Ŷ Ahi Ŷ Bi

∗ −Ẑ + Ŷ − X̂ 0
∗ ∗ −Im

⎤
⎥⎥⎦ < 0

[
AT

i X̂ + X̂Ai + Ẑ X̂Ahi

∗ −Ẑ

]
< 0

⎡
⎣ −αX̂ 0 CT

i

∗ −(1 − α)X̂ CT
hi

∗ ∗ −γ2Ip

⎤
⎦ < 0

rank(Ŷ − X̂) ≤ n̂

there exists a quadratically stable system Σ̂ with h(t) =
h solving the L2-L∞ model reduction problem with∥∥∥Σ − Σ̂

∥∥∥
L2-L∞

< γ.

If h(t) = 0, Ch = 0 and Ah = 0, q = 1, system Σ reduces
to a continuous time-invariant system without delay

ΣC : ẋ (t) = A1x (t) + B1u (t)
y (t) = C1x (t)

Corollary 2.6: If there exist matrices P > 0 and P̃ > 0
such that

I1P̃IT
1 AT

1 + A1I1P̃IT
1 + B1B

T
1 < 0 (39)

AT
1 I1PIT

1 + I1PIT
1 A1 < 0 (40)

−I1PIT
1 + γ−2CT

1 C1 < 0 (41)

PP̃ = In+n̂ (42)

there exists an asymptotically stable continuous system Σ̂C

Σ̂C :
.

x̂ (t) = Â1x̂ (t) + B̂1u (t)
ŷ (t) = Ĉ1x̂ (t)

that solves the L2-L∞ model reduction problem with∥∥∥ΣC − Σ̂C

∥∥∥
L2-L∞

< γ . If P > 0 has special form

(38), conditions (39)–(42) are equivalent to the existence
of matrices X̂ > 0 and Ŷ > 0 such that AT

1 Ŷ + Ŷ A1 +
B1B

T
1 < 0, AT

1 X̂ + X̂A1 < 0,−X̂ + γ−2CT
1 C1 < 0 and

rank(Ŷ − X̂) ≤ n̂, which recovers the result in [11]. In
this particular case, the model reduction condition is both
necessary and sufficient.

III. MODEL REDUCTION ALGORITHM

In order to use the cone complementarity linearization
(CCL) algorithm [5] to solve the L2-L∞ model reduction
problem with fixed 0 < α < 1, we define a convex
set C := {X | X satisfies LMIs (1)–(5)} and a nonconvex
set T = {X | X satisfies the inverse constraints in (6-7)}
where

X = (P > 0, P̃ > 0, X > 0, X̃ > 0, Q > 0, Q̃ > 0,

Z > 0, Z̃ > 0, M > 0, M̃ > 0, N > 0, Ñ > 0, Y )

The solvability of the L2-L∞ model reduction problem
can be translated into the following nonconvex feasibility
problem:

Find X ∈ C subject to X ∈ T (43)

through the sufficient condition in Theorem 2.3. Then, by
the CCL approach, the above nonconvex problem (43) has a
solution if and only if the minimization problem

minX∈C∩Cin

{
trace(PP̃ + XX̃ + QQ̃+

ZZ̃ + MM̃ + NÑ)

}
(44)

where

Cin =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
P I

I P̃

]
≥ 0,

[
X I

I X̃

]
≥ 0,[

Q I

I Q̃

]
≥ 0,

[
Z I

I Z̃

]
≥ 0,[

M I

I M̃

]
≥ 0,

[
N I

I Ñ

]
≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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achieves a minimum, 12ñ, that is, an optimal solution of
problem (44) satisfying

trace(PP̃ ) = trace(XX̃) = trace(QQ̃) = trace(ZZ̃)
= trace(MM̃) = trace(NÑ) = ñ

Otherwise (43) is infeasible. Therefore, in order to solve the
L2-L∞ model reduction problem for systems with polytopic
uncertainties and time-varying delay, we transform it to a
global solution of the minimization problem (44). The CCL
algorithm solves problem like (44) effectively although it is
still a nonconvex optimization problem [2]. Interested readers
may refer to [5] for the details of the CCL algorithm.

An algorithm is presented to solve the L2-L∞ model
reduction problem based on the above analysis.
L2-L∞ CCL Model Reduction Algorithm:

Step 1 Given system Σ, the order of the reduced order
model n̂, prescribed model reduction error γ > 0 and
δ > 0 is a sufficiently small prescribed a scalar to
control the convergence accuracy.
Step 2 Set k = 0 and for a fixed α, choose any initial
guess

X0 = (P0, P̃0, X0, X̃0, Q0, Q̃0, Z0,

Z̃0, M0, M̃0, N0, Ñ0, Y0) ∈ C

Step 3 Define

fk(P, P̃ ,X, X̃,Q, Q̃, Z, Z̃,M, M̃,N, Ñ)
= trace(PkP̃ + P̃kP + XkX̃ +

X̃kX + QkQ̃ + Q̃kQ + ZkZ̃ + Z̃kZ

+MkM̃ + M̃kM + NkÑ + ÑkN)

Solve the following convex minimization problem:

minX∈C∩Cin

{
fk(P, P̃ ,X, X̃,Q, Q̃,

Z, Z̃,M, M̃,N, Ñ)

}

and denote the minimizer X ∗
k and compute the mini-

mum value f∗
k = fk(X ∗

k ).
Step 4 If |f∗

k − 12ñ| < δ, then construct a reduced
order model based on (13) and (14); otherwise set k =
k + 1, and assign

X ∗
k−1 = (Pk, P̃k, Xk, X̃k, Qk, Q̃k, Zk,

Z̃k,Mk, M̃k, Nk, Ñk, Yk)

and go to step 3.

It can be seen that Step 2 is a simple LMI feasibility
problem, and Step 3 is a convex programming with LMI con-
straints. From the explanation in [2], [5], {f∗

k} is decreasing
and bounded below by 12ñ. Once it converges, then (43)
is feasible, which implies that the L2-L∞ model reduction
problem is solvable for given γ > 0.

IV. CONCLUSION

This paper presents a delay-dependent sufficient condition
for the L2-L∞ model reduction problems of polytopic sys-
tems with time-varying delay. An explicit formula for the
construction of reduced order models has been given in terms
of a set of the solution of LMIs and inverse constraints.
An effective algorithm has been exploited to solve the LMI
problems with inverse constraints.
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